(试卷合集3份)2023届广东省梅州市中考数学统考试题
2023年广东省梅州市大埔县广德中学中考一模数学试卷

2023年广东省梅州市大埔县广德中学中考一模数学试卷一、单选题1. 下列各数中,8的相反数是()A.8B.C.D.2. 眼下,全面推进乡村振兴、加快建设农业强国,是党中央着眼全面建成社会主义现代化强国作出的战略部署,而巩固脱贫成果是乡村振兴的前提,2023年中央财政衔接推进乡村振兴补助资金1485亿元已经提前下达.数据“1485亿”用科学记数法表示为()A.B.C.D.3. 数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列坐标系里的数学曲线既是轴对称图形,又是中心对称图形的是()A.B.C.D.4. 有一组数据:2,5,7,2,3,3,6,下列结论错误的是()A.平均数为4B.中位数为3C.众数为2D.极差是55. 在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红球的概率是()A.B.C.D.6. 实数、在数轴上的位置如图所示,则下列结论不正确的是()A.B.C.D.7. 如图,四边形是的内接四边形,若,则的大小为()A.B.C.D.8. 已知二次函数图像的对称轴为直线,则该二次函数图像与直线的交点个数为()A.0B.1C.2D.0或19. 已知方程的两个根分别为、,则的值为()A.7B.5C.3D.210. 如图,正方形ABCD的边长为2,其面积标记为,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为,…按照此规律继续下去,则的值为()A.B.C.D.二、填空题11. 因式分解: ________ .12. 已知点A与点B(-3,4)关于x轴对称,则点A关于y轴对称的点的坐标为 ___ .13. 如图是由边长相同的小正方形组成的网格,四点均在正方形网格的格点上,线段,相交于点,则 _____ .14. 如图,在平面直角坐标系中,已知经过原点O,与x轴、y轴分别交于A、B两点,点B坐标为,与交于点C,,则圆中阴影部分的面积为 ___________________ .15. 已知四边形为菱形,,,为上任一点,则的最小值是 ________ .三、解答题16. 计算:.17. 先化简,后求值:,从,0,1,2选一个合适的值,代入求值.18. 如图,已知在中,,.(1)用尺规作边的垂直平分线;(保留作图痕迹,不写作法)(2)若边的垂直平分线交于D、交于E;连接,求的周长. 19. 某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).20. 为了节能减排,我市某校准备购买某种品牌的节能灯,已知1只B型节能灯比1只A型节能灯贵2元,用50元买A型节能灯和用70元买B型节能灯的数量相同.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.21. 如图,BE是的直径,点A,D是上的两点,连接,过点A作射线交BE的延长线于点C,使.(1)求证:AC是的切线;(2)若,求阴影部分的面积.22. 折纸是我国传统的民间艺术,通过折纸不仅可以得到许多美丽的图形,折纸的过程还蕴含着丰富的数学知识,在综合与实践课上老师让同学们以“正方形的折叠”为主题开展了数学活动.(1)操作判断:在上选一点,沿折叠,使点落在正方形内部的点处,把纸片展平,过作交、、于点、、,连接并延长交于点,连接,如图①,当为中点时,是________三角形.(2)迁移探究:如图②,若,且,求正方形的边长.如图③,若,直接写出的值为_______.23. 如图,在平面直角坐标系中,直线与x轴、y轴相交于A、B两点,点C的坐标是,连接.(1)求过O、A、C三点的抛物线的解析式;(2)求证:;(3)动点P从点O出发,沿以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿以每秒1个单位长度的速度向点C运动.规定其中一个动点到达终点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,?。
梅州市中考试题及答案(全科)数学

梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页, 23 小题,满分 120 分。
考试用时 90 分钟。
注意事项: 1.答题前,考生务必在答题卡上用黑色笔迹的钢笔或署名笔填写准考据号、姓名、试室号、座位号,再用 2B 铅笔把试室号、座位号的对应数字涂黑。
2.选择题每题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需变动,用橡皮擦擦洁净后,再从头选涂其余答案,答案不可以答在试卷上。
3.非选择题一定用黑色笔迹钢笔或署名笔作答,答案一定写在答题卡各题目指定地区内相应位置上;如需变动,先划掉本来的答案,而后再写上新的答案;禁止使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生一定保持答题卡的整齐。
考试结束后,将试卷和答题卡一并交回。
5.本试卷不用装订 ,考完后一致交县招生办 ( 中招办 )封存。
参照公式: 抛物线 yax 2bxc 的对称轴是直线 x =b, 极点坐标是(b , 4ac b 2 ) .2a2a 4a一、选择题:每题 3 分,共 15 分.每题给出四个答案,此中只有一个是正确的.1. 2 的相反数是A.2B. 1C.1 12D.22.图 1 所示几何体的正视图是图 1ABCD温度 T3.图 2 是我市某一天内的气温变化图,依据图2,26 (℃ )24 以下说法中错误 的是22..20A .这天中最高气温是 24℃1816 B .这天中最高气温与最低气温的差为16℃14 12 10 C .这天中 2 时至 14 时之间的气温在渐渐高升 86D .这天中只有 14 时至 24 时之间的气温在渐渐降低424.函数 yx 1的自变量 x 的取值范围是O 2 4 6 8 10 12 14 16 18 20 22 24 时间 t图 2(时 )A . x1 B . x 1 C . x 1 D . x 15.以下图形中,是轴对称图形而不是中心对称图形的是A .圆B .正方形C .矩形D .正三角形二、填空题:每题3 分,共 24 分.6.如图 3, 在△ ABC 中 , BC =6 cm , E 、F 分别是 AB 、AC 的中点 , 则 EF =_______cm7. 已知反比率函数 yk(k 0) 的图象经过点 (1, 1) , 则 k ___________.x8. 分解因式: a 21=____________.图 39. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、 9、11、 7, 则这组数据的 : ①众数为 _____________; ②中位数为 ____________; ③均匀数为 __________.10. 为增援玉树灾区 , 我市党员捐钱近 600 万元 , 600 万用科学记数法表示为 __________.11. 若 x 1, x 2 是一元二次方程 x 22x 1 0 的两个根,则 x 1+x 2 的值等于 __________.12. 已知一个圆锥的母线长为2 cm , 它的侧面睁开图恰巧是一个半圆, 则这个圆锥的侧面积等于_______ cm 2 .(用含 的式子表示 )13. 平面内可是同一点的n 条直线两两订交 ,它们的交点个数记作 a n ,而且规定 a 1 0 .那么 :① a 2 _____;② a 3 a 2 _______;③ a nan 1______.( n ≥ 2, 用含 n 的代数式表示 )三、解答以下各题:此题有10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.此题满分 7 分.如图 4,Rt △ ABC 中 , ∠ C =90° , ∠A =60° , AC =2. 按以下步骤作图 : ①以 A为圆心 ,以小于 AC 长为半径画弧 ,分别交 AC 、AB 于点 E 、D; ②分别以 D 、E 为圆心 ,以大于12DE 长为半径画弧 ,两弧订交于点 P; ③连接 AP 交 BC 于点 F .那么 :( 1)AB 的长等于 __________;(直接填写答案)( 2)∠ CAF =_________° . (直接填写答案)图 415.此题满分 7 分.计算: | 2| (1) 1( 3.14) 08 cos45 .216. 此题满分 7 分.1 2解方程:x2 x x2 2x 1 .17. 此题满分7 分.在平面直角坐标系中, 点M的坐标为(a,1 2a) .(1)当 a 1时,点M在座标系的第___________象限;(直接填写答案)(2)将点 M 向左平移 2 个单位 ,再向上平移 1 个单位后获得点N,当点 N 在第三象限时 ,求a的取值范围 .18.此题满分8 分.(1)如图 5, PA,PB分别与圆O相切于点A,B. 求证 : PA=PB.(2)如图 6, 过圆O外一点P的两条直线分别与圆O订交于点A、B和C、D. 则当 ___________时 , PB=PD.( 不增添字母符号和协助线,不需证明,只要填上切合题意的一个条件)图 5 图 619.此题满分 8 分.如图 7, 东梅中学要在教课楼后边的空地上用40 米长的竹篱笆围出一个矩形地块作生物园, 矩形的一边用教课楼的外墙 ,其余三边用篱笆笆 . 设矩形的宽为x,面积为y.(1)求 y 与x的函数关系式,并求自变量x的取值范围;(2) 生物园的面积可否达到210 平方米 ?说明原因 .20.此题满分8 分.某校九年级有200 名学生参加了全国初中数学结合比赛的初赛,为了认识本次初赛的成绩状况,从中抽取了50 名学生 , 将他们的初赛成绩(得分为整数,满分为100 分)分红五组:第一组 49.5~59.5;第二组 59.5~ 69.5;第三组 69.5~ 79.5;第四组79.5~ 89.5;第五组89.5~ 100.5.统计后获得图8 所示的频数分布直方图(部分). 察看图形的信息,回答以下问题:( 1)第四组的频数为_________________. (直接填写答案)( 2)若将得分转变为等级,规定:得分低于59.5 分评为“ D”, 59.5~ 69.5 分评为“ C”, 69.5~ 89.5 分评为“ B”, 89.5~ 100.5 分评为“ A” .那么这 200 名参加初赛的学生中,参赛成绩评为“D”的学生约有 ________个 . (直接填写答案)(3)若将抽拿出来的 50 名学生中成绩落在第四、第五组的学生构成一个培训小组,再从这个培训小组中随机精选 2 名学生参加决赛 .用列表法或画树状图法求:精选的 2 名学生的初赛成绩恰巧都在90 分以上的概率 .21.此题满分 8 分.东艺中学初三(1) 班学生到雁鸣湖春游, 有一项活动是划船 . 游船有两种 , 甲种船每条船最多只好坐 4 个人 , 乙种船每条船最多只好坐 6 个人 . 已知初三 (1) 班学生的人数是 5 的倍数 , 若仅租甲种船,则许多于12 条;若仅租乙种船, 则不多于9 条 .(1)求初三 (1) 班学生的人数 ;(2)假如甲种船的租金是每条船 10 元 , 乙种船的租金是每条船 12 元 . 应如何租船 , 才能使每条船都坐满 ,且租金最少 ?说明原因 .22.此题满分10 分.如图 9,△ABC中,点P是边AC上的一个动点,过P作直线 MN∥ BC,设 MN交∠BCA的均分线于点 E,交∠BCA的外角均分线于点 F.(1 )求证:PE=PF;(2)当点P在边AC上运动时,四边形BCFE可能是菱形吗?说明原因;(3 )若在AC边上存在点P, 使四边形AECF是正方形 , 且AP 3.求此时∠ A 的大小 .BC 223.此题满分11 分.如图 10,直角梯形OABC中, OC∥ AB, C(0,3), B(4,1),以 BC为直径的圆交x轴于 E,D两点( D点在 E点右方).(1)求点E, D的坐标 ;(2)求过B, C, D三点的抛物线的函数关系式;(3) 过B, C, D三点的抛物线上能否存在点Q,使△ BDQ是以 BD为直角边的直角三角形?若不存在,说明原因;若存在,求出点Q的坐标 .图 10梅州市 2010 年初中毕业生学业考试数学试卷参照答案与评分建议3 15.1A2A3D4B5D.3 246 3.7 -1.8 (a-1)(a+1).9 9(1 ); 9(1 );9(1 ). 106 106 .112.12 2 . 13 1(1 ); 2(1 )n 1 1.10 81147(1)4. 3(2)30. 7157原式 =2-2+1+ 824 2=1+2=3. 7 167:1 22.2 x( x 1) ( x 1)x 1 0,得12, 得x x 12x x 1,解得 x 1.经查验 x1是原方程的根 . 原方程的解是x 1.4 6 7()177(1) . 2(2) ,N( a -2,2-2 a ). 4N,a 20,2 2a0.1< a <2.7 188(1): OA, OB.PA,PBO,OA PA, OB PB.2OA=OB, OP=OP. 4R t△OAP≌R t△OBP.PA=PB.6(2) ∠OPA= ∠ OPC.(PA=PC ,AB=CD , OPB,PD ,ABCD ) 8 198: (1) , 40 2x . 1y x(40 2x) 2x2 40x. 340 2x 0, 0 x 20. 4(2), 令y 210.得2x2 40 x 210.x2 20 x 105 0. 6b2 4ac 202 4 105 0.该方程无实数根 .210. 8 ( ,)208(1)2. 2(2)64. . 5(3):(1),4,902,A1,A2,902,B1,B2.:A1 A2 B1 B2A1A2, A1B1, A1B2, A1A2 B1 B2A1, A2 A1, B1 A1, B2A2, B1 A2, B2B , A B , B1 2 1 2B2, A2 B2, B1:7(),2,12,2 90 2 ,2 1.8p.12 6218(1) :m ,m12,448 m 54. 3m9.6m5, m =50.(1)50.4(2) xy,,4x 6 y 50,即 2x 3 y 25.5因为 x, y 都是正整数 , 因此 ( x, y)的可能取值为(2,7), (5,5), (8,3),(11,1) .6:w 10 x 12 y 2x 100.7因为 2 0, 因此 w 随 x 的增大而增大 , 7.5因此当 x 2时 , 租金 w 最少 .2 , 7,,. 8(2):xy,,4x 6 y 50,即 2x 3 y 25.5: w 10 x 12 y 2x 100.62.5, 2 ,,.x=2 ,y=7,2 ,7,,.822101: EC ∠BCA, ∠BCE= ∠PCE.MN ∥ BC ∠PEC= ∠BCE.∠PEC= ∠PCE,PE=PC .2PC=PF. PE=PF.32BCFE .4BCFEBF ⊥ EC 1FC ⊥ EC .5F,BF ⊥EC ,BCFE.63AECF P AC, EF ⊥ACEF ∥BCAC ⊥BC .△ ABCACB.8AP 3 , R t △ ABC , tan A BCBC 3 . BC2AC2AP3A= 30° .1023111B (4,1),A (4,0),OD = x , DA =4- x .1DBCx,∠CDB =90°, ODC +BDA=90 ° .OCD +ODC =90° ,OCD =BDA. .R t △ OCD ∽R t △ADB .OC AD.3ODAB3 4 x , x 24x 3 0.x 1 x 1 1, x 2 3.E (1,0),D (3,0).4(2)C (0,3),D (3,0), B (4,1).c 3y ax 2 bx c(a0), 9a3b c 0616a 4b c 1 .a1, b5,c3 .22B C Dy1 25x 37,,x22.3BDQ=90 ° (1)BDC=90 ° CCQQ3 ;8DBQ=90 ° BDCBQBQQ .D 3 0C (0,3)DC yx 3 .8.5BQ DC ,BQ y x m .(4,1),=5.(2)B mDCBQBQ yx 5 .9yx5x 11 x2 5 x6y 3y2 2.x 4.y1.B (4,1),Q(-1,6).(0,3),(-1,6)11。
2023年广东省梅州市大埔县玉瑚中学中考一模数学试卷

2023年广东省梅州市大埔县玉瑚中学中考一模数学试卷一、单选题1. 某速冻水饺的储藏温度是-18±2℃,下列四个冷藏室的温度中不适合储藏此种水饺的是()A.-24℃B.-18℃C.-17℃D.-16℃2. 党的二十大报告中指出,我国全社会研发经费支出从一万亿元增加到二万八千亿元,居世界第二位,研发人员总量居世界首位.将用科学记数法表示为()A.B.C.D.3. 图中其中既是轴对称图形又是中心对称图形的是()A.B.C.D.4. 下列运算正确的是()A.(a+b)(a﹣b)=a2﹣b2B.2(2a﹣b)=4a﹣bC.2a+3b=5ab D.(a+b)2=a2+b25. 如图,,,,则的度数是()A.40°B.50°C.60°D.70°6. 把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.B.C.D.7. 不等式组的解集在数轴上可表示为()A.B.C.D.8. 如下图,在中,,若,则的值为()A.B.C.D.9. 如图,在矩形中,,动点P沿折线从点B开始运动到点D.设运动的路程为x,的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10. 如图,二次函数的图象与轴的一个交点为,对称轴为直线.则下列结论:①;②③④直线可能与有4个交点⑤若点,点是抛物线上的两点,若,则.其中正确的有()A.2个B.3个C.4个D.5个二、填空题11. 因式分解= _________________________ .12. 如图,一个圆锥的高,底面半径,的长是 __________ .13. 如图,是上的三个点,,则度数是_____ .14. 如图,的顶点是正方形网格的格点,则的值为 ___________ .15. 如图,在矩形中,,,点是线段上一动点,将线段绕点顺时针转90°得到线段,连接,则最小值为 _____ .三、解答题16. 计算:17. 先化简,再求值:,其中a=.18. 【阅读材料】老师的问题:已知:如图,.求作:菱形,使点C,D分别在上.小明的作法:(1)以A为圆心,长为半径画弧,交于点D;(2)以B为圆心,长为半径画弧,交于点C;(3)连接.四边形就是所求作的菱形,【解答问题】请根据材料中的信息,证明四边形是菱形.19. 2023年5月4日是第75个中国青年节,在此期间,某校举行了主题为“青春正当时”的知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了300名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.成绩/分频数30900.2120(1)表中___________,___________,___________;(2)请补全频数分布直方图;(3)若某班恰有3名女生和1名男生的初赛成绩均为100分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.20. 加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/ )与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/ .(1)当___________ 时,元/ ;(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?(3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a为何值时,2025年的总种植成本为元?21. 如图,是的外接圆,直径,直线经过点C,于点D,.(1)求证:是的切线;(2)若,求的长;(3)在(2)的条件下,求图中阴影部分的面积.22. 折纸是我国传统的民间艺术,通过折纸不仅可以得到许多美丽的图形,折纸的过程还蕴含着丰富的数学知识,在综合与实践课上老师让同学们以“正方形的折叠”为主题开展了数学活动.(1)操作判断:在上选一点,沿折叠,使点落在正方形内部的点处,把纸片展平,过作交、、于点、、,连接并延长交于点,连接,如图①,当为中点时,是________三角形.(2)迁移探究:如图②,若,且,求正方形的边长.如图③,若,直接写出的值为_______.23. 如图,抛物线交轴于,交轴于点,点在轴下方的抛物线上,且.(1)求点的横坐标;(2)点为抛物线第一象限上一点,过点作轴的平行线分别交于点,若,求抛物线的解析式;(3)在(2)的条件下,点为轴上一点,若,求点的坐标.。
2010-2023历年初中毕业升学考试(广东省梅州卷)数学(带解析)

2010-2023历年初中毕业升学考试(广东省梅州卷)数学(带解析)第1卷一.参考题库(共10题)1.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?2.=【】A.﹣2B.2C.1D.﹣13.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、A C上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°4.正六边形的内角和为▲度.5.如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了▲ cm;②当微型机器人移动了2012cm时,它停在▲点.6.计算:.7.如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠P QO=60°.(1)①点B的坐标是;②∠CAO=度;③当点Q与点A重合时,点P的坐标为;(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.8.使式子有意义的最小整数m是▲.9.如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.10.某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的【】A.总体B.个体C.样本D.以上都不对第1卷参考答案一.参考题库1.参考答案:解:(1)设直线l的解析式是y=kx+b,由图示,直线经过(1,45),(3,42)两点,得,解得。
2024年广东省中考数学试卷(真题)

2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算-5+3的结果是()A.2B.-2C.8D.-82.下列几何图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.3.2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A.43.8410⨯ B.53.8410⨯ C.63.8410⨯ D.538.410⨯4.如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为()A.120︒B.90︒C.60︒D.30︒5.下列计算正确的是()A.2510a a a ⋅=B.824a a a ÷= C.257a a a-+= D.()5210a a =6.长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()A.14B.13C.12D.347.完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.208.若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则()A.321y y y >>B.213y y y >> C.132y y y >> D.312y y y >>9.方程233x x=-的解为()A.3x = B.9x =- C.9x = D.3x =-10.已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是()A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11.数据2,3,5,5,4的众数是____.12.关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13.若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14.计算:333a a a -=--_______.15.如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:0112433-⨯-+.17.如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18.中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19.端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A6879B7787C8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20.广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21.综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm的圆形滤纸;②一只漏斗口直径与母线均为7cm的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.23.【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数ky x=的图象经过点A .【构建联系】(1)求证:函数ky x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC 交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.。
广东省梅州市五校联考2022-2023学年高二下学期期中考数学试题及参考答案

梅州市五校联考高二数学试题考试时间:120分钟 总分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24y x =的焦点坐标是( ) A.()1,0 B.()0,1 C.1,016⎛⎫⎪⎝⎭ D.10,16⎛⎫⎪⎝⎭2.等差数列{}n a 的前n 项和记为n S ,且51010,50S S ==,则15S =( ) A.70 B.90 C.100 D.1203.从012345、、、、、六个数中,选3个不同的数可以组成多少个不同的三位数?( ) A.60 B.80 C.100 D.1204.函数()()3e xf x x =-的单调递减区间是( )A.(),2∞-B.()0,3C.()1,4D.()2,∞+5.已知函数()21382f x x x =-+,且()04f x '=,则0x =( )A.32B.22C.2D.226.如图,用4种不同的颜色,对四边形中的四个区域进行着色,要求有公共边的两个区域不能用同一种颜色,则不同的着色方法有( )A.72B.56C.48D.367.2022年10月9日7时43分,我国在酒泉卫星发射中心使用长征二号丁型运载火箭,成功将先进天基太阳天文台“夸父一号”发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功.该卫星是我国综合性太阳探测卫星,将聚焦太阳磁场、太阳耀斑和日冕物质抛射的观测,开启我国综合性太阳探测时代,实现我国天基太阳探测卫星跨越式突破.“夸父一号”随着地球绕太阳公转,其公转轨道可以看作是一个椭圆,若我们将太阳看做一个点,则太阳是这个椭圆的一个焦点,“夸父一号”离太阳的最远距离为15210万千米,最近距离为14710万千米,则“夸父一号”的公转轨道的离心率为( )A.14711521 B.251471 C.251521 D.2514968.已知函数()()eln e 2,xxf x x ag x x=+=,对任意[][]121,2,1,3x x ∈∃∈,都有不等式()()12f x g x ≥成立,则a 的取值范围是( )A.)2e ,∞⎡-+⎣ B.1e ,2∞-⎡⎫+⎪⎢⎣⎭ e C.,2∞⎡⎫-+⎪⎢⎣⎭ D.21e ,2∞⎡⎫-+⎪⎢⎣⎭二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A.若372,32a a ==,则58a =± B.数列{}2n a 是等比数列C.若数列{}n a 的前n 项和13n n S r -=+,则13r =-D.若首项10a >,公比1q >,则数列{}n a 是递减数列10.已知(1)n x +的展开式中第3项与第7项的二项式系数相等,则( ) A.8n =B.(1)n x +的展开式中2x 项的系数为56C.奇数项的二项式系数和为128D.()21nx y +-的展开式中2xy项的系数为5611.如图是导函数()y f x ='的图象,则下列说法正确的是( )A.函数()y f x =在区间()1,3上单调递减B.函数()y f x =在区间(),0∞-上单调递减C.函数()y f x =在1x =处取得极大值D.函数()y f x =在2x =-处取得极小值12.定义:设()f x '是()f x 的导函数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数()()32503f x ax bx ab =++≠的对称中心为()1,1,则下列说法中正确的有( ) A.1,13a b ==- B.函数()f x 既有极大值又有极小值 C.函数()f x 有三个零点D.过11,3⎛⎫- ⎪⎝⎭可以作两条直线与()y f x =图像相切三、填空题:本题共4小题,每小题5分,共20分.13.2023年春节期间,电影院上映《满江红》《流浪地球2》《熊出没·伴我“熊芯”》等多部电影,这些电影涵盖了悬疑、科幻、动画等多类型题材,为不同年龄段、不同圈层的观众提供了较为丰富的观影选择.某居委会有6张不同的电影票,奖励给甲、乙、丙三户“五好文明家庭”,其中一户1张,一户2张,一户3张,则共有__________种不同的分法.14.在二项式61ax x ⎛⎫+ ⎪⎝⎭的展开式中,常数项是-160,则a 的值为__________.15.若函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ba的值为__________. 16.若函数()()()2ln ,1,0,x a xf xg x e x x∞+==-∃∈+,使得()()f x g x ≥成立,则实数a 的最小值是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题共10分)一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种? 18.(本小题共12分)已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且11332,8a b a b ====. (1)求数列{}n a 和{}n b 的通项公式; (2)若n T 是数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和,若n T M <恒成立,求实数M 的取值范围. 19.(本小题共12分)已知函数()32f x ax bx =++在2x =处取得极值-14.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 在[]3,3-上的最值. 20.(本小题共12分)疫情后,为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额在3万元至6万元(包括3万元和6万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款()f x (万元)随企业原纳税额x (万元)的增加而增加;②补助款不低于原纳税额x (万元)的50%.经测算政府决定采用函数模型()44x bf x x=-+(其中b 为参数)作为补助款发放方案.(1)判断使用参数12b =是否满足条件,并说明理由; (2)求同时满足条件①、②的参数b 的取值范围. 21.(本小题共12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,离心率12e =,点F 到左顶点的距离为3.(1)求椭圆C 的方程;(2)若,A B 是椭圆C 的上下两顶点,,C D 是椭圆C 上异于,A B 关于y 轴对称的两点,直线,AC BD 与x 轴分别交于点,M N .试判断以MN 为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由. 22.(本小题共12分)已知函数()()2ln ,ln xf x x x xg x e a x =-=-,(1)求函数()f x 的单调区间; (2)证明:当0a >时,()()g x f a ≥.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.D3.C4.A5.A6.C7.D8.C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.BC 10.AC 11.ACD 12.ABD三、填空题:本题共4小题,每小题5分,共20分.13.360 14.-2 15.32-16.12四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题共10分)解:(1)将取出4个球分成三类情况: ①取4个红球,没有白球,有44C 种; ②取3个红球1个白球,有3146C C 种; ③取2个红球2个白球,有2246C C 种故有4312244646115C C C C C ++=种.(2)采用间接法:减去最低分5个白球5分,其次4个白球1个红球6分;因此,符合题意的取法共有554110664186C C C C --=种18.(本小题共12分)解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,且0q >. 由132,8a a ==,得822d =+,解3d =. 所以()21331n a n n =+-⨯=-.由132,8b b ==,得282q =,又0q >,解得2q =. 所以1222n nn b -=⨯=.(2)由(1)可知112n n b = 故数列1n b ⎧⎫⎨⎬⎩⎭是以12为首项,12为公比的等比数列,123123111111112222n nn T b b b b =++++=++++1111222111212nn ⎛⎫- ⎪⎛⎫⎝⎭=-< ⎪⎝⎭-因为n T M <恒成立,1M ≥ 即实数M 的取值范围为[)1,∞+ 19.(本小题共12分)(1)因()32f x ax bx =++,故()23f x ax b =+'由于()f x 在2x =处取得极值,故有()()20214f f ⎧=⎪⎨=-⎪⎩'即12082214a b a b +=⎧⎨++=-⎩,化简得12048a b a b +=⎧⎨+=-⎩解得112a b =⎧⎨=-⎩,经检验,1,12a b ==-时,符合题意,所以1,12a b ==-.()()32122,312f x x x f x x =-+-'=,故()()19,19f f =-=-'.所以曲线()y f x =在点()()1,1f 处的切线方程为:()()991y x --=--,即90.x y += (2)()()322122,312.3120f x x x f x x x =-+-'=-≥得2x ≤-或2x ≥;即[]3,2--单调递增,[]2,2-单调递减,[]2,3单调递增,()()()()311,218,214,37f f f f -=-==-=-因此()f x 在[]3,3-的最小值为()214f =-.最大值为()218f -= 20、(本小题共12分) 解(1)()[]()21211212,43,6;044x b f x x f x x x==-=+'+∈>, ()f x 为增函数满足条件①;()31231334343422f =-+=<⋅=,不满足条件②;所以12b =不合要求; (2)由条件①可知,()44x bf x x=-+在[]3,6上单调递增,()2221444b x bf x x x +=+=' 所以当0b ≥时,()()0,f x f x '>为增函数满足条件①;当0b <时,()2240,4x bf x x x+=>>',所以93,04b ≤>≥-满足条件①由条件②可知,()2x f x ≥,即不等式44x bx+≤在[]3,6上恒成立, 等价于2144b x x ≤-+在[]3,6上恒成立,令()()2114,4042h x x x h x x '=-+=-+>, 8x <,即()h x 在[]3,6递增,()min 39393,44h b =∴≤综上,参数b 的取值范围是939,44⎡⎤-⎢⎥⎣⎦. 21.(本小题共12分)解:(1)由题意知12213c a a c a c ⎧==⎧⎪⇒⎨⎨=⎩⎪+=⎩222223, 1.43x y b a c ∴=-=+=椭圆方程为设()00,C x y ,则()00000033,,AC BD y y D x y k k x x -==-, 000033:3,:3y y AC y x BD y x x x ==- 令0y =,则00003333M N x x x x y y --==-+设MN 的中点为E ,则E 的坐标为0003333,02x x y y ⎛⎫-- ⎪-+ ⎪ ⎪ ⎪ ⎪⎝⎭, 即:22220000000003433:3412,3,:4x y y E x y y x E ⎫⎫-+=∴-=-⎪⎪⎪⎪⎝⎭⎝⎭,半径为:0000002200033333342233x x MN y y x x y y x ----+--====--∴圆E 的方程为:22020043163y x y x x ⎛⎫-+= ⎪ ⎪⎝⎭①令02x =-,则00y =,代入①得:224,x y +=②令01x =-,则032y =,代入①得:22(23)16x y ++=, 由①②得:0,2x y ==±,代入①得:20200431643y x x ⎛⎫-+= ⎪ ⎪⎝⎭, 222200004836916,3412y x x y +=⨯+=上式恒成立∴圆E 恒过定点()0,2±. 22、(本小题共12分)解:(1)()y f x =的定义域为()()()0,,2ln 10f x x ∞+-+'=≥,ln 1ln ,0x e x e ≤=<≤,所以()f x 在()0,e 单调递增,在(),e ∞+单调递减.(2)()ln xg x e a x =-定义域是()()0,,(0)x ax g x e a x∞+-'∈=>由图可得:()()()()0000,0,,0;,,0x aex g x x g x x ∞='+'<> 所以()g x 在()00,x 单调递减,在()0,x ∞+单调递增;()()000ln x g x g x e a x ≥=-()0000ln ln 2ln x x e a x f a e a x a a a --=--+由00000000,ln ln ,ln ln ,ln ln x x a aee x a x x a x x x ===-=- ()0000ln ln 2ln x x e a x f a e a x a a a --=--+ ()0000001ln 2ln 220a aa a x a a a ax a a x x x x ⎛⎫=---+=+-=+-≥ ⎪⎝⎭即()00ln xe a xf a -≥ 所以()()g x f a ≥。
2021年广东省梅州市数学中考真题含答案解析

2021年广东省梅州市中考数学试卷一、选择题:每小题3分,共21分,每小题给出四个答案,其中只有一个是正确的.1.(3分)(2015•梅州)的相反数是( ) A.2B.﹣2C.D.﹣2.(3分)(2015•梅州)如图所示几何体的左视图为( ) A.B.C.D.3.(3分)(2015•梅州)下列计算正确的是( ) A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x34.(3分)(2015•梅州)下列说法正确的是( ) A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件 B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定 C.“明天降雨的概率为”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式5.(3分)(2015•梅州)下列命题正确的是( ) A.对角线互相垂直的四边形是菱形 B.一组对边相等,另一组对边平行的四边形是平行四边形 C.对角线相等的四边形是矩形 D.对角线互相垂直平分且相等的四边形是正方形6.(3分)(2015•梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于( ) A.20°B.25°C.40°D.50°7.(3分)(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1。
②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1。
③它的图象与x轴的两个交点是(0,0)和(2,0)。
④当0<x<2时,y>0.其中正确的结论的个数为( ) A.1B.2C.3D.4二、填空题:每小题3分,共24分.8.(3分)(2015•梅州)函数中,自变量x的取值范围是 .9.(3分)(2015•梅州)分解因式:m3﹣m= .10.(3分)(2015•梅州)据统计,2021年我市常住人口约为4320000人,这个数用科学记数法表示为 .11.(3分)(2015•梅州)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 .12.(3分)(2015•梅州)已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F 为顶点的三角形与△ABC相似,则需要增加的一个条件是 .(写出一个即可) 13.(3分)(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于 .14.(3分)(2015•梅州)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为 .15.(3分)(2015•梅州)若=+,对任意自然数n都成立,则a= ,b 。
2022年广东省梅州市中考数学试卷(含答案)

2022年广东省梅州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2B.2C.D.2.(3分)(2022•广东)计算22的结果是()A.1B.C.2D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C 与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省梅州市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2B.2C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1B.C.2D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE 的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,∴y4最小.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C 与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为3.【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20.【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=1.【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则P A=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ 面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则P A=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=P A•CF﹣P A•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )A .B .C .D .2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米5.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .146.如图,A,B 两点分别位于一个池塘的两端,小聪想用绳子测量A,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B 的点C,找到AC,BC 的中点D,E,并且测出DE 的长为10m,则A,B 间的距离为( )A.15m B.25m C.30m D.20m7.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.48.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-49.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.605810.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h二、填空题(本题包括8个小题)11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.12.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.13.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.14.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.15.写出一个一次函数,使它的图象经过第一、三、四象限:______.16.函数y=1x中,自变量x的取值范围是________.17.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.18.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.三、解答题(本题包括8个小题)19.(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.20.(6分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的(0,b),且a、b满足4速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.21.(6分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.22.(8分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.23.(8分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.24.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.25.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.26.(12分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D 是正确答案,故本题正确答案为D 选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.2.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10=∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24=76.故选C.考点:勾股定理.3.D【解析】【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.4.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.6.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.7.B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.8.B【解析】【详解】试题分析:把x=﹣2代入关于x的一元二次方程x2﹣52ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.9.D【解析】【分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律10.B【解析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B二、填空题(本题包括8个小题)11【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴=.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.32°【解析】【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.13.1【解析】【分析】根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.【详解】△=(﹣8)2﹣4m=0,解得m=1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.15.y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b 中k>0,b<0,由此可得如:y=x ﹣1 (答案不唯一). 16.x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键. 17.36【解析】【分析】利用特殊三角形的三边关系,求出AM,AE 长,求比值.【详解】解:如图所示,设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°,∴AC=2BC=2x ,AB=3BC=3x ,根据题意得:AD=BC=x ,AE=DE=AB=3x ,如图,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=3263XAM AE x==, 故答案为:3 6.【点睛】特殊三角形:30°-60°-90°特殊三角形,三边比例是1:3:2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.18.270【解析】【分析】根据三角形的内角和与平角定义可求解.【详解】解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.三、解答题(本题包括8个小题)19.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.20.(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.【解析】b-=可以求得,a b的值,根据长方形的性质,可以求得点B的坐标;试题分析:(160.----的线路移动,可以得(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O C B A O到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.b-=试题解析:(1)∵a、b60.∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒. 21.(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.22.(1)125°;(2)125°;(3)∠BOC=90°+12 n°.【解析】【分析】如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+12∠A,然后根据此结论分别解决(1)、(2)、(3).【详解】如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+12∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+12×70°=125°;(2)∠BOC=90°+12∠A=125°;(3)∠BOC=90°+12 n°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.23.(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC 与DP 是对应边时,有比例式OC OD DP DC =,易求出DP ,仍过点P 作PG ⊥y 轴于点G ,利用比例式DG PG DP DF EF DE==求出DG,PG 的长度,然后根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;这样,直线DE 上根据对应边不同,点P 所在位置不同,就得到了符合条件的4个P 点坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 经过A (﹣1,0)、B (0,﹣3),∴10{3b c c -+==-,解得2{3b c =-=-, 故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC ,∴OC ODDC DP=1DP ,解得, 过点P 作PG ⊥y 轴于点G ,则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2); ②当OC 与DP 是对应边时,∵△DOC ∽△CDP , ∴OC ODDP DC=,即3DP ,解得,过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE ==,即31DG PG ==, 解得DG=9,PG=3,当点P 在点D 的左边时,OG=DG ﹣OD=9﹣1=8,所以,点P 的坐标是(﹣3,8),当点P 在点D 的右边时,OG=OD+DG=1+9=10,所以,点P 的坐标是(3,﹣10),综上所述,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,满足条件的点P 共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题. 24.(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,22OA OC-2253-,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.25.(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为83或2或8﹣2..【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =43°,∴AC =224+4=42,∵∠DAC =∠AHC+∠ACH =43°,∠ACH+∠ACG =43°,∴∠AHC =∠ACG .故答案为=.(2)结论:AC 2=AG•AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =133°,∴△AHC ∽△ACG ,∴AH AC AC AG=, ∴AC 2=AG•AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH•AG =12AC 2=12×(42)2=1. ∴△AGH 的面积为1.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴12BC BE AH AE ==, ∴AE =23AB =83. 如图2中,当CH =HG 时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=EM2m,∴m+2m=4,∴m=4(2﹣1),∴AE=4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m的值为83或2或8﹣2.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.26.(1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,已知O 的周长等于6cm π ,则它的内接正六边形ABCDEF 的面积是( )A .934B .2734C .2732D .2732.如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为( )A .O 1B .O 2C .O 3D .O 43.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .334.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( )A .312B 3C .33D .325.下列计算或化简正确的是()A.234265+=B.842=C.2÷=-=-D.2733(3)36.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07257.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.8.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm9.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A.22B.32C.1 D.6210.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩二、填空题(本题包括8个小题)11.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.12.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.13.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.14.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.15.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.164= .17.不等式5x﹣3<3x+5的非负整数解是_____.18.已知a+b=1,那么a2-b2+2b=________.三、解答题(本题包括8个小题)19.(6分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.20.(6分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.21.(6分)先化简2221169x xx x x-⎛⎫-⋅⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值.22.(8分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.23.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.24.(10分)已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围;若x1,x1满足x11+x11=16+x1x1,求实数k的值.25.(10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN 绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.26.(12分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=332cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.2.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.3.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33,故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.4.B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,33,根据题意得:AD=BC=x,3,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=16xAMAE==;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.5.D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.6.B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.A【解析】【分析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB ⊥BD ,CD ⊥BD ,EF ⊥BD , ∴AB ∥CD ∥EF∴△ABE ∽△DCE ,∴,故选项B 正确,∵EF ∥AB ,∴,∴,故选项C ,D 正确,故选:A .【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.B【解析】【分析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键. 9.C 【解析】【分析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以AH=MH=2AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON ∽△CHM ,再利用相似比可计算出ON 的长.【详解】 试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD 为正方形,∴∠MAH=45°,∴△AMH 为等腰直角三角形,∴AH=MH=22AM=222, ∵CM 平分∠ACB ,∴2∴2 ∴222)2+2,∴OC=122,CH=AC ﹣2+222, ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM ,∴ON OC MH CH =2222=+。