九年级数学上册《中位线》教案1 华东师大版

合集下载

华师大版-数学-九上-23.4 中位线 教案

华师大版-数学-九上-23.4 中位线 教案

23.4中位线教学目标:经历三角形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题 教学重点:经历三角形中位线的性质定理形成过程,掌握定理,并能利用它解决简单的问题.教学难点:经历三角形中位线的性质定理形成过程,掌握定理,并能利用它解决简单的问题.教学过程:新课引入:1.回顾相似三角形的概念及判定方法.2.如图,△ABC 中,DE ∥BC ,则△ADE ∽△ABC .由此可以进一步推知,当点D 是AB 的中点时,点E 也是AC 的中点.现在换一个角度考虑,探究:如果点D.E 原来就是AB 与AC 的中点,那么是否可以推出DE ∥BC 呢?DE 与BC 之间存在什么样的数量关系呢?从画出的图形看,可以猜想: DE ∥BC ,且DE =21BC .证明:如图,△ABC 中,点D.E 分别是AB 与AC 的中点,∴ 21==AC AE AB AD . ∵ ∠A =∠A ,∴ △ADE ∽△ABC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),∴ ∠ADE =∠ABC ,21=BC DE (相似三角形的对应角相等,对应边成比例), ∴ DE ∥BC 且BC DE 21= 概括:我们把连结三角形两边中点的线段叫做三角形的中位线,并且有三角形的中位线平行于第三边并且等于第三边的一半.应用新知:例1. 求证三角形的一条中位线与第三边上的中线互相平分.已知:如图所示,在△ABC 中,AD =DB ,BE =EC ,AF =FC . 求证:AE.DF 互相平分.【答案】连结DE.EF .因为AD =DB ,BE =EC所以DE ∥AC (三角形的中位线平行于第三边并且等于第三边的一半)同理EF ∥AB所以四边形ADEF 是平行四边形因此AE.DF 互相平分(平行四边形的对角线互相平分)例2.如图,△ABC 中,D.E 分别是边BC.AB 的中点,AD.CE 相交于G . 求证: 31==AD GD CE GE【答案】连结ED∵ D.E 分别是边BC.AB 的中点∴ DE ∥AC ,21=AC DE (三角形的中位线平行于第三边并且等于第三边的一半) ∴ △ACG ∽△DEG∴21===AC DE AG GD GC GE ∴ 31==AD GD CE GE 三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的31.课堂小结:说说你在本节课的收获.。

华师大版九年级数学三角形的中位线教案精选全文

华师大版九年级数学三角形的中位线教案精选全文

可编辑修改精选全文完整版三角形的中位线教学目的:1. 使学生掌握三角形中位线概念与三角形中位线定理.2.使学生能熟练应用定理进行有关证明和计算,提高学生分析问题和解决问题的能力.重点难点:三角形中位线的概念和三角形中位线定理是本课的重点;三角形中位线定理的证明是本课的难点.教学过程:一、复习引入1. 复习平行线等分线段定理推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边.2. 如图:B、C两点被池塘隔开,在BC外选一点A,连结AB和AC,并分别找出AB和AC的中点D、E.如果测得DE =20m,那么B、C两点的距离是多少?二、新授1.三角形的中位线的概念:连结三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理如图,DE是ΔABC的一条中位线,如果过D作DE∥BC,交AC于E’,那么根据平行线等分线段定理推论2,得E’是AC的中点,可见DE’与DE重合,所以DE∥BC.由此得到:三角形中位线平行于第三边.同样,过D作DF∥BC,且DE∥FC,DE=1/2BC.因此,又得出:三角形中位线等于第三边的一半.以上两点就是三角形中位线定理.例1:已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点(1)指出图中有几个平行四边形(2)图中与ΔDEF全等的三角形有哪几个(3)若AB=10cm,AC=6cm,则四边形ADFE的周长为______cm(4)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是 _____cm,面积是_____cm例2:顺次连结四边形四条边的中点,所得的四边形是平行四边形师生共同写出已知求证,在分析的基础上写出证明过程.然后作适当的变式:(1)(1)若AC=BD,则四边形EFGH是什么图形?(2)(2)若AC⊥BD,则四边形EFGH是什么图形?(3)(3)若AC=BD,且AC⊥BD,则四边形EFGH是什么图形?例3:如图ΔABC的中线BE、CD相交于点O,F、G分别是BO、CO的中点,试猜想DF与GE有怎么的关系?并证明你的猜想.小结:(1)本课所授内容.(2)定理的特征与应用.。

华东师大版九年级数学上册《中位线》教案及教学反思

华东师大版九年级数学上册《中位线》教案及教学反思

华东师大版九年级数学上册《中位线》教案及教学反思一、教学背景本节课是九年级数学上册的第六章《统计与概率》中的第二节《中位线》。

该课时的主要内容为中位线的概念、求法及其作用。

本节课所涉及的主要知识点包括数列、中位数和中位线等。

二、教学目标1.了解中位线的定义并掌握相关计算方法。

2.能够熟练应用中位线解决实际问题。

3.培养学生观察、总结、归纳、推理和解决问题的能力。

三、教学流程1. 导入课题(5分钟)教师可以通过讲解概率论中的介绍,引出中位线的概念。

随后,教师可用图片、数据等形式展示实际问题,引起学生的兴趣和好奇心,提高学生学习中位线的积极性。

2. 课堂讲解(20分钟)(1)中位线的定义:中位线是一条把一个数据分布分成两部分的线。

它是按照一定的顺序排列的所有数据中位数所在的位置划出来的。

中位线一般用一条竖线来表示。

(2)如何求中位线:以有序数列的中间数为分隔符。

对于“奇数个数”序列来说,中位线就是序列的中间数。

对于“偶数个数”序列,中位线就是中间两个数的平均数。

(3)中位线的作用:中位线用来表示数据分布的集中趋势。

当数据分布集中时,中位线和平均数会接近;当出现异常值的时候,中位线比平均数更能体现数据分布的趋势。

3. 课堂练习(25分钟)(1)练习1:把下面的数据排序后求中位线:9,13,7,3,21,8,22,6。

(2)练习2:一个班级有12名女生,身高分别是:155cm, 165cm, 161cm, 153cm, 170cm, 168cm, 164cm, 151cm, 157cm, 172cm, 169cm, 175cm。

请根据这些数据,求出中位线并表示出来。

4. 综合应用(20分钟)(1)案例1:一家用餐的餐馆想了解顾客的消费水平,店主需要用到这些数据:15,25,30,65,85,90,95,100。

请你在这些消费数据间划分中位线。

(2)案例2:小明家有10个木盒,每个盒子中有一些石子。

这些盒子中石子的数目依次为:5,9,11,15,19,23,23,30,31,50。

九年级数学上册 23.4 中位线教案 (新版)华东师大版

九年级数学上册 23.4 中位线教案 (新版)华东师大版

23.4中位线教学目标:1、经历三角形中位线的性质定理形成过程,掌握定理,并能利用它解决简单的问题。

2、通过命题的教学了解常用的辅助线的作法,并能灵活运用它解题。

3、进一步训练说理的能力。

4、通过学习,进一步培养自主探究和合作交流的学习习惯;进一步了解特殊与一般的辩证唯物主义观点;转化的思想。

教学重点:经历三角形中位线的性质定理形成过程,掌握定理,并能利用它解决简单的问题。

教学难点:进一步训练说理的能力。

教学过程:一、三角形的中位线(一)问题导入在23.3中,我们曾解决过如下的问题:如图24.4.1,△ABC 中,DE ∥BC ,则△ADE ∽△ABC 。

由此可以进一步推知,当点D 是AB 的中点时,点E 也是AC 的中点。

现在换一个角度考虑,图24.4.1如果点D 、E 原来就是AB 与AC 的中点,那么是否可以推出DE ∥BC 呢?DE 与BC 之间存在什么样的数量关系呢?(二)探究过程1、猜想从画出的图形看,可以猜想: DE ∥BC ,且DE =21BC .图24.4.22、证明:如图24.4.2,△ABC 中,点D 、E 分别是AB 与AC 的中点,∴ 21==AC AE AB AD . ∵ ∠A =∠A ,∴ △ADE ∽△ABC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),∴ ∠ADE =∠ABC ,21=BC DE (相似三角形的对应角相等,对应边成比例), ∴ DE ∥BC 且BC DE 21=. 思考:本题还有其他的解法吗?已知: 如图所示,在△ABC 中,AD =DB ,AE =EC 。

求证: DE ∥BC ,DE =21BC 。

分析: 要证DE ∥BC ,DE =21BC ,可延长DE 到F ,使EF =DE ,于是本题就转化为证明DF =BC ,DE ∥BC ,故只要证明四边形BCFD 为平行四边形。

还可以作如下的辅助线作法。

九年级数学教案三角形中位线(华师大版)

九年级数学教案三角形中位线(华师大版)

三角形中位线(华师大版)24.4.1三角形的中位线从化三中初三备课组一、教学目标:1.知识技能目标:(1)探索并掌握三角形的中位线的概念性质;(2)会用三角形中位线的性质解决有关问题;2.过程方法目标:经历探索三角形的中位线性质的过程,体会转化的思想方法;3.情感态度目标:通过变式练习,小组讨论、交流等活动,培养良好的学习态度以及自主意识和合作精神.二、教学过程:(一)问题引入(5分钟)1、如图△abc中,de∥bc,ad:ab=1:3,ae=2则ac=学生活动:根据相似三角形的判定方法判定ade△∽△abc,再由相似三角形的性质对应边成比例求出ac的长。

2、问题延伸△abc中,de∥bc,当点d是ab的中点时, ae:ac=学生活动:ae:ac=1:2,即ae=ac教师活动:当点d是ab的中点时,de∥bc,我们可以得到点e也是ac中点。

通过上面的问题我们可以看到线段de实质上就是三角形两边中点的连线,我们给这样特殊的线段起个名称叫做三角形的中位线这就是我们这节课所要探讨的问题(板书:三角形的中位线)(二)新课探讨1、中位线定义cbaed我们把连结三角形两边中点的线段叫做三角形的中位线。

2、探索中位线的性质试一试:任意画一个△abc,并画出它的中位线。

你能画几条?学生活动:动手画图,与同伴交流,得出三角形的中位线有三条。

猜一猜:de与bc有怎样的位置关系和数量关系?学生猜想:de∥bc,(学生可借助直尺和量角器通过测量来得到)教师提问:你能证明你所猜想的结论吗?学生活动:动手证明,并与同伴交流。

思路点拨:(1)弄清楚已知条件是什么?结论是什么?(已知条件:在△abc中,点d、e分别是ab与ac的中点。

求证:de∥bc,)(2)引导学生先证ade△∽△abc,得对应角相等和对应边成比例,可得证。

证明:如图,△abc中,点d、e分别是ab与ac的中点,∴.∵∠a=∠a,∴△ade∽△abc(如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),∴∠ade=∠abc,(相似三角形的对应角相等,对应边成比例),∴de∥bc且3、三角形中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.用符号语言表示:∵ de是△abc的中位线∴ de∥bc,(三)灵活运用,巩固新知1、已知:如果,点d、e、f分别是△abc的三边的中点.(1)若ab=8cm,则ef= . ;(2)若de=5cm,则bc= .(3)若增加m、n分别bd、bf的中点,问mn与ac有什么关系?为什么?2、例:已知:如图所示,在△abc中,ad=db,be=ec,af=fc.(1)四边形adef是什么形状的四边形?并加以证明。

华东师大版初中数学九年级上册23.4中位线教案

华东师大版初中数学九年级上册23.4中位线教案

第23章图形的相似23.4 三角形的中位线教学目标:知识目标1、理解三角形中位线的概念;2、会运用定理进行相关的论证和计算。

能力目标1、经历观察、测量、猜测、证明的过程,进一步发展学生的推理论证能力。

2、通过交流与合作培养学生的探究式学习的方法,学会几何推理。

情感目标1、落实新课程“合作学习,主动探究”思想。

2、培养学生自己探索数学的精神;教学重难点:重点:三角形中位线定理及其应用。

难点:三角形中位线定理的验证及添加辅助线解决实际问题。

教法:五步教学法课前准备:多媒体、课件、教案、三角板。

教学过程:一、根据目标及重、难点自主预习书P77-78二、实验探究,引出概念:活动:动手实践任意一张三角形纸片,能否只剪一刀,使分成的两部分拼成一个平行四边形?结合刚才的学习,回答以下几个问题:1、概念-----连结三角形两边中点的线段叫三角形的中位线2、几何语言:∵点D、E分别是AB和AC的中点∴DE是△ABC的中位线反过来也成立∵DE是△ABC的中位线∴点D、E分别是AB和AC的中点3、提问:三角形有几条中位线?答:有三条中位线。

4、区别中位线与中线概念三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.【引导启发】启发学生发现剪出的这条线段与第三边之间有怎样的关系?(提示学生回答位置关系和数量关系)二、教师释疑:引导学生从观察、测量、猜测、证明 这四步探索法得出定理。

----形成探索问题的一般方法。

1、观察、测量。

2、猜想:三角形的中位线平行于第三边,并且等于第三边的一半。

3、证明:已知:在△ABC 中,D 、E 分别是AB 、AC 的中点。

求证:DE ∥BC ,DE=BC 21 方法一:利用三角形相似方法二:构造平行四边形(提示:由剪纸、拼图得到启发,从而构造平行四边形)4、形成定理:C B A ED C B AE D①、三角形中位线的性质定理:三角形的中位线平行于第三边,并且等于第三边的一半。

九年级数学上册《中位线》教案1 华东师大版【精品教案】

九年级数学上册《中位线》教案1 华东师大版【精品教案】

中位线教学目标:1、经历三角形中位线的性质定理和梯形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题。

2、通过命题的教学了解常用的辅助线的作法,并能灵活运用它们解题。

3、进一步训练说理的能力。

4、通过学习,进一步培养自主探究和合作交流的学习习惯;进一步了解特殊与一般的辩证唯物主义观点;转化的思想。

教学重点:经历三角形中位线的性质定理和梯形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题。

教学难点:进一步训练说理的能力。

教学过程:一、三角形的中位线(一)问题导入在§24.3中,我们曾解决过如下的问题:如图24.4.1,△ABC中,DE∥BC,则△ADE∽△ABC。

由此可以进一步推知,当点D是AB的中点时,点E也是AC的中点。

现在换一个角度考虑,图24.4.1如果点D、E原来就是AB与AC的中点,那么是否可以推出DE∥BC呢?DE与BC之间存在什么样的数量关系呢?(二)探究过程1、猜想从画出的图形看,可以猜想: DE ∥BC ,且DE =21BC .图24.4.22、证明:如图24.4.2,△ABC 中,点D 、E 分别是AB 与AC 的中点,∴ 21==AC AE AB AD . ∵ ∠A =∠A ,∴ △ADE ∽△ABC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),∴ ∠ADE =∠ABC ,21=BC DE (相似三角形的对应角相等,对应边成比例), ∴ DE ∥BC 且BC DE 21= 思考:本题还有其它的解法吗?已知: 如图所示,在△ABC 中,AD =DB ,AE =EC 。

求证: DE ∥BC ,DE =21BC 。

分析: 要证DE ∥BC ,DE =21BC ,可延长DE 到F ,使EF =DE ,于是本题就转化为证明DF =BC ,DE ∥BC ,故只要证明四边形BCFD 为平行四边形。

2022年华师大版《中位线》公开课教案

2022年华师大版《中位线》公开课教案

23.4 中位线1.掌握中位线的定义以及中位线定理;(重点)2.综合运用平行四边形的判定及中位线定理解决问题.(难点)一、情境导入如以下图,吴伯伯家有一块等边三角形的空地ABC,点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】利用三角形中位线定理求线段的长如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.假设DF=3,那么AC的长为()A.32B .3C .6D .9 解析:∵D 、E 分别为AC 、BC 的中点,∴DE ∥AB ,∴∠2=∠3,又∵AF 平分∠CAB ,∠1=∠3,∴∠1=∠2,∴AD =DF =3,∴AC =2AD C.方法总结:此题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.【类型二】 利用三角形中位线定理求角如图,C 、D 分别为EA 、EB 的中点,∠E =30°,∠1=110°,那么∠2的度数为( )A .80°B .90°C .100°D .110°解析:∵C 、D 分别为EA 、EB 的中点,∴CD 是三角形EAB 的中位线,∴CD ∥AB ,∴∠2=∠ECD .∵∠1=110°,∠E =30°,∴∠ECD =80°,应选A.方法总结:中位线定理牵扯到平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.【类型三】 运用三角形的中位线性质进行证明如图,在△ABC 中,AB =5,AC =3,点N 为BC 的中点,AM 平分∠BAC ,CM ⊥AM ,垂足为点M ,延长CM 交AB 于点D ,求MN 的长.解析:为证MN 为△BCD 的中位线,应根据三线合一,得到DM =MC ,即可解决问题. 解:∵AM 平分∠BAC ,CM ⊥AM ,∴AD =AC =3,DM =CM .∵BN =CN ,∴MN 为△BCD的中位线,∴MN =12(5-3)=1. 方法总结:当三角形的一边的中点时,要注意分析问题中是否有隐含的中点.如一个三角形一边上的高又是这边所对的角平分线时,根据“三线合一〞可知,这实际上是又告诉了我们一个中点.【类型四】 中位线定理的综合应用如图,E 为平行四边形ABCD 中DC 边的延长线上一点,且CE =DC ,连接AE ,分别交BC 、BD 于点F 、G ,连接AC 交BD 于O ,连接OF ,判断AB 与OF 的位置关系和大小关系,并证明你的结论.解析:此题可先证明△ABF ≌△ECF ,从而得出BF =CF ,这样就得出了OF 是△ABC 的中位线,从而利用中位线定理即可得出线段OF 与线段AB 的关系.解:AB =2OF .证明如下:∵四边形ABCD 是平行四边形,∴AB =CD ,OA =OC .∴∠BAF =∠CEF ,∠ABF =∠ECF .∵CE =DC ,在平行四边形ABCD 中,CD =AB ,∴AB =CE .∴在△ABF 和△ECF 中,⎩⎪⎨⎪⎧∠BAF =∠CEF ,AB =CE ,∠ABF =∠BCE ,∴△ABF ≌△ECF (ASA),∴BF =CF .∵OA =OC ,∴OF 是△ABC 的中位线,∴AB =2OF ,AB ∥OF .方法总结:此题综合的知识点比拟多,解答此题的关键是判断出OF 是△ABC 的中位线.三、板书设计1.三角形的中位线连接三角形的两边中点的线段叫做三角形的中位线.2.三角形中位线定理三角形的中位线平行于第三边,且等于第三边的一半.本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和开展,更好地进行知识建构,实现良性循环.第1课时 比赛积分和行程问题【知识与技能】1.了解列二元一次方程组与列一元一次方程组的异同.2.经历和体验方程组解决实际问题的过程,了解应用二元一次方程组解决实际问题的一般步骤.【过程与方法】经历二元一次方程组解决实际问题的过程,体会列二元一次方程组与列一元一次方程组的异同,知道列二元一次方程组解决实际问题的一般步骤.【情感态度】针对问题的探究,鼓励学生大胆尝试,通过交流、合作、讨论,享受学习的乐趣和成功感,培养学生大胆发言的习惯,敢于面对挑战.【教学重点】重点是会用列方程组解决比赛积分和行程问题.【教学难点】难点是在实际问题中找等量关系、列方程组.一、情境导入,初步认识【情境】实物投影,并呈现问题:甲、乙两人在一条长400米的环形跑道上跑步,假设同向跑,那么每隔103分钟相遇一次;假设反向跑,那么每隔40秒相遇一次.又知甲比乙跑得快,求甲、乙两人的速度.你能找出问题中所含的等量关系吗?你能列方程组解决问题吗?总结列方程组解应用题的一般步骤.【教学说明】情境中同向跑是追及问题,追及时甲比乙多跑一周;反向跑是相遇问题,相遇时两人所跑路程之和是环形跑道的长.解:设甲的速度为x米/秒,乙的速度为y米/秒.依题意,得4040400200200400x yx y+=⎧⎨-=⎩,.解得64.xy=⎧⎨=⎩,甲的速度6米/秒,乙的速度4米/秒.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知列二元一次方程组解应用题的一般步骤问题列二元一次方程组解应用题的一般步骤是什么?【教学说明】学生通过类比一元一次方程应用的步骤,在经过观察、分析、类比后能得出结论.【归纳结论】列二元一次方程组解应用题的一般步骤:①设出题中的两个未知数;②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案.三、运用新知,深化理解1.小明去郊游,早上9时下车,先走平路,然后登山,到山顶后又沿原路返回到下车处,正好是下午2时,假设他走平路每小时走4 km,爬山时每小时走3 km,下山时每小时走6 km,那么小明从上午到下午一共走的路程是〔〕2.某校学生进行军训,以每小时5km的速度去执行任务,出发4小时12分钟后,学校军训指挥部派通讯员骑摩托车追赶学生队伍传达新任务,用了36分钟赶上了队伍,求摩托车的速度.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地稳固新知识.通过本环节的讲解与训练,让学生对列二元一次方程组解应用题有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.x千米.根据题意,列方程得3660x=5×(41260+3660)解这个方程得x=40答:摩托车的速度为每小时40千米.四、师生互动,课堂小结1.列方程组解比赛积分和行程问题需要注意哪些问题?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回忆以加深学生的印象,同时使知识系统化.1.布置作业:从教材第109页“练习〞和教材第112页“〞中选取.2.完成同步练习册中本课时的练习.这节课充分利用学生身边的实际问题,尽可能增加教学过程的趣味性、实践性,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究.在列方程组的建模过程中,强化了方程的模型思想,培养了学生列方程组解决实际问题的意识和能力,在实际问题的解决中,进一步提高学生解方程组的能力.同时,利用列表、画线段图等手段能帮助学生提高分析问题和解决问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中位线
教学目标:
1、经历三角形中位线的性质定理和梯形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题。

2、通过命题的教学了解常用的辅助线的作法,并能灵活运用它们解题。

3、进一步训练说理的能力。

4、通过学习,进一步培养自主探究和合作交流的学习习惯;进一步了解特殊与一般的辩证唯物主义观点;转化的思想。

教学重点:
经历三角形中位线的性质定理和梯形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题。

教学难点:
进一步训练说理的能力。

教学过程:
一、三角形的中位线
(一)问题导入
在§24.3中,我们曾解决过如下的问题:
如图24.4.1,△ABC中,DE∥BC,则△ADE∽△ABC。

由此可以进一步推知,当点D是AB的中点时,点E也是AC的中点。

现在换一个角度考虑,
图24.4.1
如果点D、E原来就是AB与AC的中点,那么是否可以推出DE∥BC呢?DE与BC之间存在什么样的数量关系呢?
(二)探究过程
1、猜想
从画出的图形看,可以猜想: DE ∥BC ,且DE
=21BC .
图24.4.2
2、证明:如图24.4.2,△ABC 中,点
D 、
E 分别是AB 与AC 的中点,
∴ 2
1==AC AE AB AD . ∵ ∠A =∠A ,
∴ △ADE ∽△ABC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),
∴ ∠ADE =∠ABC ,2
1=BC DE (相似三角形的对应角相等,对应边成比例), ∴ DE ∥BC 且BC DE 2
1= 思考:本题还有其它的解法吗?
已知: 如图所示,在△ABC 中,AD =DB ,AE =EC 。

求证: DE ∥BC ,DE =2
1BC 。

分析: 要证DE ∥BC ,DE =2
1BC ,可延长DE 到F ,使EF =DE ,于是本题就转化为证明DF =BC ,DE ∥BC ,
故只要证明四边形BCFD 为平行四边形。

还可以作如下的辅助线作法。

3、概括 我们把连结三角形两边中点的线段叫做三角形的中位线,并且有
三角形的中位线平行于第三边并且等于第三边的一半。

介绍三角形的中位线时,强调指出它与三角形中线的区别。

(三)应用
例1 求证三角形的一条中位线与第三边上的中线互相平分。

图24.4.3
已知: 如图24.4.3所示,在△ABC 中,AD =DB ,BE =EC ,AF =FC 。

求证: AE 、DF 互相平分。

证明 连结DE 、EF .因为AD =DB ,BE =EC
所以DE ∥AC (三角形的中位线平行于第三边并且等于第三边的一半)
同理EF ∥AB
所以四边形ADEF 是平行四边形
因此AE 、DF 互相平分(平行四边形的对角线互相平分)
例2 如图24.4.4,△ABC 中,D 、E 分别是边BC 、AB 的中点,AD 、CE 相交于G 。

求证: 31
==AD GD CE GE
图24.4.4
证明 连结ED
∵ D 、E 分别是边BC 、AB 的中点
∴ DE ∥AC ,21
=AC DE
(三角形的中位线平行于第三边并且等于第三边的一半)
∴ △ACG ∽△DEG

2
1===AC DE AG GD GC GE ∴ 31==AD GD CE GE
图24.4.5
小结:
如果在图24.4.4中,取AC 的中点F ,假设BF 与AD 交于G ′,如图24.4.5,那么我们同理有31='='BF F G AD D G ,所以有3
1='=AD D G AD GD ,即两图中的点G 与G ′是重合的。

于是,我们有以下结论:
三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的3
1。

[同步训练] 如图,在△ABC 中,AB =AC ,D 、E 、F 分别是AB 、BC 、CA 的中点.求证:四边形ADEF 是菱形。

二、梯形的中位线
由三角形的中位线的有关结论,我们还可以得到
梯形的中位线平行于两底边,并且等于两底和的一半.
已知: 如图24.4.6所示,在梯形ABCD 中,AD ∥BC ,AE =BE ,DF =CF .
求证: EF ∥BC ,EF =2
1(AD +BC ).
图24.4.6
分析 由于本题结论与三角形中位线的有关结论比较接近,可以连结AF ,并延长AF 交BC 的延长线于G ,证明的关键在于说明EF 为△ABG 的中位线。

于是本题就转化为证明AF =GF ,AD =CG ,故只要证明△ADF ≌△GCF .
证明略
思考
图24.4.7
如图24.4.7,你可能记得梯形的面积公式为
h l l S )(2
121+=. 其中1l 、2l 分别为梯形的两底边的长,h 为梯形的高.现在有了梯形中位线,这一公式可以怎样简化呢?它的几何意义是什么?
三、 小结与作业
小结:谈一下你有哪些收获?。

相关文档
最新文档