高职(单考单招)数学试卷
单招数学试题及答案

单招数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = 2x + 3,则f(1)的值为:A. 5B. 4C. 3D. 2答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 计算(3x - 2)(x + 1)的展开式中x²的系数为:A. 1B. 3C. -1D. -3答案:B4. 函数y = x² - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A5. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值为:A. 9B. 10C. 11D. 12答案:A6. 若sinθ = 3/5,且θ∈(0, π/2),则cosθ的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A7. 已知圆心为C(0,0),半径为1的圆的方程是:A. x² + y² = 1B. x² + y² = 2C. x² + y² = 0D. x² + y² = -1答案:A8. 计算极限lim(x→0) (sin x / x)的值为:A. 0B. 1C. -1D. 2答案:B9. 已知函数f(x) = x³ - 3x,求f'(x)的值为:A. 3x² - 3B. x² - 3C. x³ - 3x²D. 3x - 3答案:A10. 计算定积分∫(0 to 1) x² dx的值为:A. 1/3B. 1/2C. 1D. 2答案:B二、填空题(每题4分,共20分)1. 函数f(x) = x³ + 2x² - 5x + 6的导数f'(x)为______。
答案:3x² + 4x - 52. 已知等比数列{bn}的首项b1=2,公比q=3,那么b3的值为______。
2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
单招试卷数学试题及答案

单招试卷数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x+3,则f(-1)的值为:A. 1B. -1C. -5D. 52. 已知集合A={1,2,3},B={2,3,4},则A∩B为:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}3. 直线y=2x+1与x轴的交点坐标为:A. (0,1)B. (-1/2, 0)C. (1/2, 0)D. (0, -1)4. 函数y=x^2-4x+4的最小值是:A. 0B. 1C. 4D. 85. 等比数列{a_n}中,a_1=2,公比q=2,则a_3的值为:A. 4B. 8C. 16D. 326. 已知向量a=(1,2),b=(2,3),则向量a·b的值为:A. 5B. 6C. 7D. 87. 圆的方程为(x-2)^2+(y-3)^2=9,该圆的半径为:A. 3B. 6C. 9D. 128. 已知三角形ABC中,a=3,b=4,c=5,则cosA的值为:A. 1/2B. 1/3C. 1/4D. 1/59. 函数y=sin(x)的周期为:A. 2πB. πC. 3πD. 4π10. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a=2,b=1,则该双曲线的渐近线方程为:A. y=±x/2B. y=±2xC. y=±xD. y=±1/2x二、填空题(每题4分,共20分)11. 已知等差数列{a_n}中,a_1=1,d=2,则a_5的值为______。
12. 函数y=cos(x)的值域为______。
13. 已知向量a=(3,-1),b=(-1,3),则向量a与b的夹角为______。
14. 已知椭圆方程为x^2/16 + y^2/9 = 1,则该椭圆的离心率为______。
15. 函数y=ln(x)的定义域为______。
三、解答题(每题20分,共40分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x)。
2023年高职单独招生入学考试数学样卷

试卷共 1页,第1页姓名:考生号:考场号:座位号:…..………………密…....………封…..…....….…线…….…...……内….….....….…不…..….....……要…………....…答…….….…题………………2023年高职单独招生考试《 数 学 》样卷第二部分:数学(总分100分)一、选择题(每小题 5分,16题,共 80 分,请把答案写答题卡中)23.下列结论不正确的是( )A.0∈NB. −5∈ZC.−12∈Q D. √8∉R 24.下列函数既是奇函数又是增函数的是( ) A .x y = B .22x y = C .31y x =+ D .xy 1=25.{}{}=⋃<<=<<=B A ,61B ,50A 则集合x x x x ( ) A.{}10<<x x B.{}60<<x x C.{}51<<x x D.{}65<<x x 26.从总体中抽取样本13、15、18、16、17、14,则样本均值为( )A 93B 16C 15.5D 15 27.集合{}53><x x x 或可用区间表示为( )A .[3,5]B .(3,5)C .(-∞,3)∩(5,+∞)D .(-∞,3)∪(5,+∞) 28.设2lg ,3lg ==y x 则23lg()x y =( ) A 、6 B 、12 C 、17 D 、1029.两条直线023-2=+y x 与0164=+-y x 的位置关系是( ) A .平行 B .重合 C .垂直 D .相交 30.下列各组向量中相互垂直的是( )A.→a =(1,1),→b =(-2,2) B.→a =(2,1),→b =(-2,1) C.→a =(3,-2),→b =(-2,3) D.→a =(1,4),→b =(-2,1) 31.等差数列-6,-1,4,9……中的第10项是( ) A 、21 B 、-21 C 、39 D 、-3932.长方体ABCD -A 1B 1C 1D 1 中,直线DD 1与直线AB 的位置关系为( ) A. 共面 B. 异面 C. 垂直 D. 相交33.如图所示的长方体中, 301=∠BAB ,则异面直线CD 与直线AB 1的夹角为( )。
高职单独招生考试数学试卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-2.在空间中,下列结论正确的是( ) A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块3.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-6.cos78cos18sin18sin102⋅+⋅=( )A.C.12-D.127.在复平面内,复数z 满足(1)2i z -⋅=,则(z = ) A .2i +B .2i -C .1i -D .1i +6.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为( ) A.16B. 0.25C.19D.5187.已知圆锥底面半径为4,侧面面积为60,则母线长为( ) A. 8B. 16C.152D. 158.函数y = sin2x 的图像如何平移得到函数sin(2)3y x的图像( )A. 向左平移6个单位B. 向右平移6个单位C. 向左平移3个单位D. 向右平移3个单位9.设动点M 到1(13 0)F ,的距离减去它到2(13 0)F ,的距离等于4,则动点M 的轨迹方程为( ) A. 22 1 (2)49x y x ≤ B. 22 1 (2)49x y x ≥ C.22 1 (2)49y x y ≥D.22 1 (x 3)94x y ≥10.已知函数()3sin 3cos f x xx ,则()12f ( ) A.6B.23C.22D.2611.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( ) A. 280种B. 240种C. 360种D. 144种12.如下图20图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( ) A. A ′C ⊥平面DBC ′ B. 平面AB ′D ′//平面BDC ′ C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC13. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1}B. {-1}C. {1,3}D. ∅14. 不等式x2-4x ≤0的解集为( ) A. [0,4]B. (1,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)15. 函数f (x )=ln(x −2)+1x−3的定义域为( )A. (5,+∞)B. [5,+∞)C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)16. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗B. DB⃗⃗⃗⃗⃗C. AC⃗⃗⃗⃗⃗D. CA⃗⃗⃗⃗⃗ 17. 下列函数以π为周期的是( ) A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x18. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 180B. 380C. 190D. 12019. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B.2 C . √3 D.√3320. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限B. 第二象限C. 第三象限D.第四象限二、填空题(共10小题,每小题3分;共计30分) 1、执行以下语句后,打印纸上打印出的结果应是:_____.2、角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.3、过点)1,2(-p 且与直线0102=+-y x 平行的直线方程是______4、在∆ABC 中,已知∠B=︒30,∠C=︒135,AB=4,则AC=______5、已知函数bx y +-=sin 31的最大值是97,则b=______6、75sin 15sin +的值是______.7、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______. 8、已知2tan -=α,71tan =+)(βα,则βtan 的值为______ .9、三个数2,x ,10成等差数列,则=x ______10、已知b kx x f +=)(,且1)1(=-f ,3)2(=-f ,则=k ______,=b ______ 三、大题:(满分30分) 1、已知函数3()x x b f x x ++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.2、某学校组织"一带一路”知识竞赛,有A ,B 两类问题・每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题 回答正确得80分,否则得0分。
高职单独招生考试数学卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是()A.相交切不过圆心B.相切C.相离D.相交且过圆心2.双曲线22149x y -=的离心率e=()A.23B.32C.2D.33.已知角β终边上一点(4,3)P -,则cos β=()A.35-B.45C.34-D.544.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1- C.12D.12-5.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B.C.D.7.抛物线上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=_____.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x mπ∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知数列{a n }满足a 1=1,a n+1{a n +1,n 为奇数a n +2,n 为偶数(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和参考答案:一、选择题:1-5题答案:DCBBD 6-10题答案:ADDBD 11-15题答案:ABDCA 16-20题答案:BABCB 部分答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离d ==,即直线与圆相交且过圆心.2、答案.C【解析】由双曲线的方程可知2,3,a b c ===,2c e a ==.3、答案.B【解析】由余弦函数的定义可知4cos 5β==.4、答案.B 【解析】5(1)124k --==---.5、答案.D 【解析】1cos 211cos 2cos 2222x y x x -=+=+,最小正周期T =π,最小值为0.二、填空题:1、3﹣4i ;2、{5};3、30;4、2512-;5、36;6、2;7、 ;8、1;9、1532-;10、x-y-1=0。
2024单招数学试卷

2024单招数学试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. B⊂neqq AD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞,1)D. (1,+∞)3. 若sinα=(3)/(5),且α是第二象限角,则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2 = 3(x - 1)B. y+2=3(x + 1)C. y - 2=-3(x - 1)D. y+2=-3(x + 1)5. 等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 11C. 13D. 156. 在ABC中,若a = 3,b = 4,sin B=(2)/(3),则sin A的值为()A. (1)/(2)B. (3)/(4)C. (1)/(3)D. (4)/(9)7. 函数y = 2sin(2x+(π)/(3))的最小正周期是()A. πB. 2πC. (π)/(2)D. (2π)/(3)8. 若向量→a=(1,2),→b=(3,- 1),则→a·→b的值为()A. 1B. - 1C. 5D. -59. 双曲线frac{x^2}{9}-frac{y^2}{16}=1的渐近线方程为()A. y=±(3)/(4)xB. y=±(4)/(3)xC. y=±(9)/(16)xD. y=±(16)/(9)x10. 从5名男生和3名女生中选3人参加某项活动,其中至少有1名女生的选法有()种。
A. 46B. 56C. 70D. 8011. 若f(x)=x^3+ax^2+bx + c,且f(1)=f(2)=0,f(-1)= - 6,则a + b + c的值为()A. -1B. 0C. 1D. 212. 已知函数y = f(x)的图象关于直线x = 1对称,当x≤slant1时,y=-x^2+1,则当x > 1时,y的表达式为()A. y=-(x - 2)^2+1B. y=-(x - 1)^2+1C. y=-(x + 1)^2+1D. y=-(x + 2)^2+1二、填空题(每题5分,共20分)1. 若复数z = 1 + i,则z的共轭复数¯z=_1 - i。
高职2023年单招考试《数学》样卷二及参考答案

2023年单独招生考试《数学》试卷(样卷)一、单项选择题(本题共15小题,每题3分,共45分) 1.下列属于必然事件的是( )A.三角形中,任意两边之和大于第三边B.明天下雨C.任意买一张电影票,座位号是单号D.公鸡下蛋 2.=︒60cos ( ) A.0 B.21 C.23 D.1 3.数集N 表示( )A.有理数集B.实数集C.自然数集D.整数集 4.大于2且小于11的偶数组成的集合( ) A.}10,8,6{B.}8,64{,C.}8,6{D.}10,8,64{, 5.函数3)(x x f =的奇偶性是( )A.奇函数B.偶函数C.非奇非偶函数D.不确定 6.不等式92>x 的解集为( ) A.}3|{<x xB.}33|{>-<x x x 或C.}3|{->x xD.}33|{<<-x x7.不等式3||≤x 的解集为( ) A.}3|{≤x xB.}3|{-≥x xC.}33|{≤≤-x xD.}33|{≥-≤x x x 或 8.下列选项中,最小的数是( )A.-3B.-πC.-3.14D.-4139.等差数列:-6、-18、 、-42、…,则空白处应填( )A.-27B.-30C.-24D.-3610.下列为对数函数的是( )A.x y 2=B.2x y =C.x y πlog =D.x y 3= 11.圆柱的俯视图是( )A.长方形B.三角形C.梯形D.圆 12.三角函数诱导公式:=+)sin(πα( )A.αsinB.αsin -C.αcosD.αcos - 13.已知 ()0 ,2-=→a ,()1 ,2=→b ,则 =⋅→→b a ( )A.1-B. 2-C.3-D.4- 14.5log 25( )=A.2B.3C.4D.5 15.下列调查中,须用普查的是( )A.了解某市学生的视力情况B.了解我某中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况 二、是非判断题(正确写A ,错误写B ,本题共10小题,每题3分,共30分) 16.两点之间直线最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高职(单考单招)数学模拟试卷
班级 姓名
一、单项选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个是符合题目要求的.)
1.集合{}13A x x =-<B={}210x x +<则A B ( )
A.(-2,
12) B.(-2,-12) C. (),4-∞ D. 12,2⎛⎤- ⎥⎝⎦ 2.“1sin 2α≠”是“6
πα≠”的 ( ) A .充分条件 B.必要条件 C.充要条件 D.既不充分又不必要条件
3.偶函数y=f(x)在[2,10]上递增,则f (-5),f (-3),f (4)大小比较正确的是 ( )
A .f(-5)<(-3) B.f(-5)<f(4)<f(-3) C.f(4)<f(-3)<F(-5) D.f(-3)<f(4)<f(-5)
4.函数
( )
A.
{}0x x > B. {}0x x ≠ C. {}0x x ≥ D. {}0x x < 5.若3a =2,则33log 82log 6-用a 表示的代数式为 ( )
A. a —2
B. 3a —(1+2a )
C.5a —2
D.3a —2a
6.已知a 是第二象限角,其终边上一点P (x sin α=
4,则tan α的值为( )
A. 7
B. —7
C. —4
D. —4
7.不等式2x +a x —6<0的解集是(-2,3),则a = ( )
A.1
B.-1
C.5
D.-5
8.直线l 上一点(-1,2),倾斜角为a ,且tan
2a =12
,则直线l 的方程是 ( ) A.4x +3y +10=0 B.4x -3y -10=0 C.4x -3y +10=0 D.4x +3y -10=0 9.用0,1,2,3,4五个数字可组成不允许数字重复的三位偶数的个数是 ( )
A.12个
B.18个
C.30个
D.48个
10.若sin θtan θ>0,则θ所在象限是 ( )
A.第一、二象限
B.第二、三象限
C.第三、四象限
D.第一、四象限
11.在数列{}n a 中,1a =2,13n a +—3n a =1,则100a 的值是 ( )
A.34
B.35
C.36
D.37
12.数列{}n a 中,1a +4a =18,n a =21n a -,该数列前8项和等于 ( )
A.270
B.510
C.512
D.800
13.函数y =2sin x —2cox x 的最小正周期和最大值分别为 ( )
A.2π
B.2π,-1
C. π,1
D. π,-1
14.已知圆2x +2y +ax +by -6=0的圆心是(3,-4),则圆半径是 ( )
A. 72
B.5
C.
D.9 15.如果f(x)= 5x +ax +by -8且f (-2)=10,那么f (2)等于 ( )
A.10
B.-10
C.-18
D.-26
二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上.)
16.已知f (cos x )=cos2x ,则f (-3)=______.
17.方程2log (2x -18)—2log (65)x -=0的解是______.
18.方程28r C =3828r C -的解为______.
19.设f (x )=3ax +sin b x +2,且f (-1)=______.
20.数列{}n a 中,3
a =5,1n a +=n a +3,则该数列的第7项是______. 21.二次函数[]2
53,3,0y x x x =--+∈-的值域为______. 三、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤)
22.(本小题满分8分)计算:521log 233433log 8log 275
(3)sin 82
π--⨯+++.
23.(本小题满分8分)二次函数f (x )=2ax +bx +c ,满足f (x )=f (2-x ),有最大值3,它与x 轴的两个交点以及顶点所确定的三角面积为9,求该二次函数解析式.
24.(本小题满分8分)已知tan 3α=,求2sin sin cos ααα-.
25.(本小题满分8分)已知(1)n x +的展开式中的第2、3、4项的二项式系数成等差数列,求n.
26.(本小题满分8分)已知函数y=2sin 4sin 1x x ++,
(1)求y 的最大值和最小值;
(2)在[0,2π]内,写出当y 取最大值和最小值时x 的值。
27.(本小题满分8分)等差数列{}n a 中,已知1a =2,1a +2a +3a =12.
(1)试求{}n a 的通项公式;
(2)令n b =3
n a ,求数列{}n a 的前n 项之和.
28.(本小题满分8分)在8
的展开式中,求x 的一次项的系数.
29.(本小题满分9分)等差数列{}n a 中,2a +8a =16,3a 7a =48,求数列通项公式,并说明当0d <时,前几项和最大?
30.(本小题满分10分)经市场调查,某商品在近100天内,其销售量和价格平均为t 的函数,且销售量近似地满足关系:()108(,100)g t t t N o t =-+∈≤≤,在前100天里价格为f (t )=t+33(,40)t N o t ∈≤≤,在后60天价格为f (t )=-t+118(,100)t N o t ∈≤≤,求这种商品在第几天日销售额最大,最大为多少元?。