精密和超精密加工论文

合集下载

超精密加工技术论文

超精密加工技术论文

论述精密与超精密加工的工作环境前言超精密加工技术综合应用了机械技术发展的新成果及现代电子技术、测量技术和计算机技术等,是尖端技术产品发展中不可缺少的关键环节…。

同时,超精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。

从某种意义上说,超精密加工对先进制造技术特别是纳米技术对整个社会生产力水平的提高起到举足轻重的地位,也成为衡量一个国家科技发展的标准之一。

目前超精密加工还没有确切的定义,一般是指达到绝对加工精度为0.1µm或表面粗糙度为Ra 0.0lµm以及达到加工允差和加工尺寸之比为106的加工技术。

超精密加工对环境的要求十分严格,纳米加工对环境的要求就更加苛刻。

只有对它的支撑环境加以严格控制,才能保证加工精度。

加工所需的支撑环境主要包括空气环境、热环境、振动环境、声环境和磁环境等几个方面。

本文着重介绍温度环境以及振动环境两个方面的环境因素以及一般的解决措施。

一、温度控制随着科学技术的飞速发展和国际竞争的加剧,超精密加工技术越来越成为工业化国家长远发展的根本支撑。

保证良好的稳定加工条件是实现超精密加工的关键之一。

据文献统计,在精密加工、超精密加工中机床热变形引起的加工误差占总误差的40%~70%。

超精密加工60mm长的铝合金工件,温度变化1℃将产生1.35μm的误差。

若确保0.1μm级加工精度,环境温度变化至少应控制在0.1℃范围内。

国外比较成功的经验是将机床加工部位或其特征部位实现局部恒温化,进行积极的温度控制,例如美国LLNL实验室把超精密机床放置在铝制框架和耐热塑料制成的掩蔽间中,从天棚顶向下吹入流量为20m3/min的恒温空气,采用冷却水-空气热交换方式的温控系统,达到±0.04℃的温控精度。

温度控制主要的2种传热介质是油和空气,油的热容比较高且不可压缩,所以油喷淋温度可以比气喷淋达到更高的控制精度,美国LLNL实验室使用恒温油对放在局部恒温玻璃罩内的一台双轴超精密金刚石车床进行喷射,可以使加工区域内的温度保持在20℃±0.06℃。

精密和超精密加工选修课论文

精密和超精密加工选修课论文

精密和超精密加工技术【摘要】本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。

尽管超精密加工迄今尚无确切的定义,但是它仍然在向更高的层次发展。

超精密加工将向高精度、高效率、大型化、微型化、智能化、工艺整合化、在线加工检测一体化、绿色化等方向发展。

在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。

创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。

环保也是制造业发展的必然趋势。

【关键词】超精密加工发展趋势发展策略【Abstract】The development of precision machining of the century to the ultra-precision machining process is complicated and difficult, the current ultra-precision machining has matured, has formed a series, which includes the ultra-precision machining, ultra precision grinding, ultra-precision grinding, ultra precision special processing. Although the ultra-precision machining so far no precise definition, but it is still to a higher level. Ultra-precision machining will be high-precision, high efficiency, large-scale, micro-, intelligence, process integration technology, online processing and testing the integration of green and other direction. In the near future, will also achieve precision machining precision, intelligence, automation, and efficient information technology, flexibility, integration. Innovative thinking and advanced manufacturing model put forward are also bound to precision and ultra precision technology development strategy. Environmental protection is also the inevitable trend of manufacturing industry.【Keywords】Ultra-precision machining Development Trends Development Strategy一、超精密加工的分类㈠超精密切削超精密切削以SPDT技术开始,该技术以空气轴承主轴、气动滑板、高刚性、高精度工具、反馈控制和环境温度控制为支撑,可获得纳米级表面粗糙度。

精密和超精密加工论文

精密和超精密加工论文

精密和超精密加工论文(6000个字)一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。

a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

超精密制造技术论文

超精密制造技术论文

超精密制造技术论文精密和超精密加工技术、制造自动化是先进制造技术的两大领域,而精密和超精密加工技术是先进制造技术中最具有实质性的重要组成部分,店铺整理了超精密制造技术论文,有兴趣的亲可以来阅读一下! 超精密制造技术论文篇一超精密加工技术浅析[摘要] 精密和超精密加工技术、制造自动化是先进制造技术的两大领域,而精密和超精密加工技术是先进制造技术中最具有实质性的重要组成部分,它是先进制造技术的基础与关键,是衡量一个国家工业水平及科学技术水平的重要标志之一。

超精密加工技术的发展促进了机械、电子、半导体、光学、传感器和测量技术以及材料科学的发展。

[关键词] 精密和超精密加工技术半导体制造技术1、概述目前,在工业发达国家中,一般工厂能稳定掌握的加工精度是lμm,与此相应,通常将加工精度在0.1―1μm,加工表面粗糙度在Ra0.02―0.1μm之间的加工方法称为精密加工,而将加工精度高于0.1μm,加工表面粗糙度小于Ra0.01pm的加工方法称为超精密加工。

现代机械工业之所以要致力于提高加工精度,其主要的原因在于:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化,增强零件的互换性,提高装配生产率,并促进自动化装配。

超精密加工技术在尖端产品和现代化武器的制造中占有非常重要地位。

例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。

制造惯性仪表,需要有超精密加工技术和相应的设备【1】。

例如:美国民兵m型洲际导弹系统陀螺仪的精度为0.03°一0.05°/h,其命中精度的圆概误差为500m,而MX 战略导弹(可装载10个核弹头)制导系统陀螺仪比民兵m型导弹高出一个数量级,从而保证命中精度的圆概率误差只有50~150m。

如果1kg重的陀螺转子,其质量中心偏离其对称轴0.5nm,则会引起100m的射程误差和50m的轨道误差。

惯性仪表中有许多零件的制造精度都要求达到小于微米级。

精密加工和超精密加工的研究与对策

精密加工和超精密加工的研究与对策
的工艺 问题 , 而成 为 一项包 含 内容极 其 广泛 的系统 工
采用液体静压轴承或空气静压轴承的主轴和导轨 , 精 密滚 珠丝 杠传动 , 有微动 工作 台、 配 误差 补偿 装置 , 实
现微 位移 。 ②高 刚度 。除零 、 件本 身 的 刚度 外 , 应 注 意 部 还
接触 刚度 , 同时应 考 虑 由工 件 、 床 、 具 、 具 所 组 机 刀 夹
精密 加工和 超精密 加工是 现代 制造 技术 的前沿 ,
2 精 密 加 工 和 超 精 密 加 工 的 内涵 …
随着 现代工 业 的不断 发展 , 密加 工和超精 密加 精
工 在 机械 、 电子 、 轻工 、 国防等 领域 占有 愈来愈 重要 及
因为许多先 进技术 产 品需要 以高精 度制 造 , 密加工 精
毫 题 论 述

机械 研 究 与 应 用 ・
精 密 加 工 和 超 精 密 加 工 的 研 究 与 对 策
程 0 300)

要: 在简述精 密、 超精 密加工 内涵和 重要性的基础上 , 重点分析 了影响精密、 超精 密加 工的 因素及 采取 对策。针对
p o e sn u o t r u o w r . rc s i g o o rc u r a e p t r ad f n y f Ke r s r iin p o e s g l a p e iin p o e sn ;a v n e n ua trn c oo y;a ay i ; y wo d :p e so rc s i ;u t r cso rc si g d a c d ma fcu i g t h lg c n r en n lss
从 先进制 造技术 的技 术实质 性 而论 , 主要有 精密

精密和超精密加工技术的发展

精密和超精密加工技术的发展

精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。

但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。

目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。

下面对国内外精密和超精密加工技术的最新发展情况介绍如下。

精密机床技术的发展精密机床是精密加工的基础。

当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。

瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。

瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。

从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。

使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。

使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。

超精密切削的切削厚度可极小,最小切削厚度可至1nm。

超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。

因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。

精密加工论文

精密加工论文

超精密加工技术的发展及其对策超精密加工技术,是现代机械制造业最主要的发展方向之一。

在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。

在简述精密、超精密加工内涵和重要性的基础上,重点分析了影响精密、超精密加工的因素及采取对策。

针对世界上一些发达国家研制开发精密、超精密加工技术已达到了很高技术水平的现状,提出了我国超精密加工的主要研究方向及目标。

关键词超精密加工扫描隧道若干建议1 前言超精密加工是指亚微米级(尺寸误差为0.3~0.03μm,表面粗糙度为Ra0.03~0.005μm)和纳米级(精度误差为0.03μm,表面粗糙度小于Ra0.005μm)精度的加工。

实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。

加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。

超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。

它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。

超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。

超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1μm。

如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。

2 国外概况美国是最早研制开发超精密加工技术的国家。

早在1962年,美国就开发出以单点金刚石车刀镜面切削铝合金和无氧铜的超精密半球车床,其主轴回转精度为0.125μm,加工直径为?100mm的半球,尺寸精度为±0.6μm,粗糙度为Ra0.025μm。

1984年又研制成功大型光学金刚石车床,可加工重1350kg,?1625mm的大型零件,工件的圆度和平面度达0.025μm,表面粗糙度为Ra0.042μm。

在该机床上采用多项新技术,如多光路激光测量反馈控制,用静电电容测微仪测量工件变形,32位机的CNC系统,用摩擦式驱动进给和热交换器控制温度等。

精密超精密加工技术的发展及应用

精密超精密加工技术的发展及应用

精密超精密加工技术的发展及应用1、概述精密和超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。

随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅速发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切⑴。

目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

"]我国是制造业大国,近年来在精密加工技术和精密机床设备制造上也小有成就。

但是和发达国家制造强国相比,我国目前仍有差距。

我国每年虽有大量机电产品出口,但多数是技术含量较低、价格亦较便宜的中低档产品;而从国外进口的则大多是技术含量高、价格昂贵的高档产品。

2、国内外精密超精密加工技术发展通常按照加工精度划分,机械加工可分为一般加工、精密加工和超精密加工三个阶段。

目前,精密加工是指精密加工精度为1-0.1 m表面粗糙度为]RaO.1-O.O1 口的加工技术。

但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

」20世纪60年代初期,随着航天、宇航的发展,精密超精密加工技术首先在美国被提出,并由于得到了政府和军方的财政支持而迅速发展。

到了20世纪70年代,日本也成立了超精密加工技术委员会并制定了相应发展规划,将该技术列入高新技术产业,经过多年的发展,使得日本在民用光学、电子及信息产品等产业处于世界领先地位[2]。

2.1国外发展超精密加工发展到今天,已经取得了重大进展,超精密加工以不再是一种孤立的加工方法和单纯的工艺问题,而成为一项包含内容极其广泛的系统工程。

超精密加工是以每个加工点局部的材料微观变形或去除作用的总和所体现的。

其加工机理随着加工单位(加工应力作用的范围)和工件材料的不均质程度(材料缺陷或因加工产生缺陷)不同而异,如图1所示⑻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精密和超精密加工论文一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。

a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

手工或机械抛光加工后工件表面粗糙度Ra≤0.05?;m,可用于平面、柱面、曲面及模具型腔的抛光加工。

超声波抛光加工精度0.01~0.02?;m,表面粗糙度Ra0.1?;m。

化学抛光加工的表面粗糙度一般为Ra≤0.2?;m。

电化学抛光可提高到Ra0.1~0.08?m。

超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。

当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。

微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。

光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。

实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。

精整加工是近年来提出的一个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状、位置精度)的加工方法。

二、精密加工的发展现状与应用1.精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形技术在工业发达国家受到高度重视,并投入大量资金优先发展。

70年代美国空军主持制订“锻造工艺现代化计划”,目的是使锻造这一重要工艺实现现代化,更多地使用CAD/CAM,使新锻件的制造周期减少75%。

1992年,美国国防部提出了“军用关键技术清单”,其中包含了等压成型工艺、数控计算机控制旋压、塑变和剪切成形机械、超塑成型/扩散连接工艺、液压延伸成型工艺等精密塑性成型工艺。

国外近年来还发展了以航空航天产品为应用对象的“大型模锻件的锻造及叶片精锻工艺”、“快速凝固粉末层压工艺”、“大型复杂结构件强力旋压成型工艺”、“难变形材料超塑成形工艺”、“先进材料(如金属基复合材料、陶瓷基复合材料等)成形工艺”等。

我国的超塑成形技术在航天航空及机械行业也有应用,如航天工业中的卫星部件、导弹和火箭气瓶等,采用超塑成形法制造侦察卫星的钦合金回收舱。

与此同时,还基本上掌握了锌、铜、铝、钦合金的超塑成形工艺,最小成形厚度可达0.3mm,形状也较复杂。

此外,国外已广泛应用精密模压成形技术制造武器。

常用的精密模压成形技术,如闭塞式锻造、采用分流原理的精密成形及等温成形等国外已用于军工生产。

目前,精密模压技术在我国应用还较少,精度也较差,国外精度为±0.05—0.10mm,我国为±0.1—0.25mm。

2.孔加工技术的发展现状及应用近年来,汽车、模具零部件、金属加工大都采用以CNC机床为中心的生产形态,进行孔加工时,也大都采用加工中心、CNC电加工机床等先进设备,高速、高精度钻削加工已提上议事日程。

无论哪个领域的孔加工,实现高精度和高速化都是取得用户订单的重要竞争手段。

近年来,随着高速铣削的出现,以铣削刀具为中心的切削加工正在进入高速高精度化的加工时期。

在孔加工作业中,目前仍大量使用高速钢麻花钻,但各企业之间在孔加工精度和加工效率方面已逐渐拉开了差距。

高速切削钻头的材料以陶瓷涂层硬质合金为主,如MAZAK公司和森精机制作所在加工铸铁时,即采用了陶瓷涂层钻头。

在加工铝合金等有色材料时,可采用金刚石涂层硬质合金钻头、DLC涂层硬质合金钻头或带金刚石烧结体刀齿的钻头。

高速高精度孔加工除采用CNC切削方式对孔进行精密加工外,还可采用镗削和铰削等方式对孔进行高精度加工。

随着加工中心主轴的高速化,已可采用镗削工具对孔进行高速精密加工。

随着IT相关产业的发展,近年来,光学和电子工业所用装置的零部件产品的需求急速增长,这种增长刺激了微细形状及高精度加工技术的迅速发展。

其中,微细孔加工技术的开发应用尤其引人注目。

微细孔加工早已在印刷电路板等加工中加以应用,包括钢材在内的多种被加工材料,均可用钻头进行小直径加工。

目前,小直径孔加工中,利用钻头切削的直径最小可至φ50μm左右。

小于φ50μm的孔则多采用电加工来完成。

为了抑制毛刺的产生,许多研究者提出可采用超声波振动切削的方式。

目前,正在探索一种应用范围广而且工艺合理的超声波振动切削模式,其中包括研究机床的适应特性等内容。

随着这些问题的顺利解决,今后可望更好地实现直径更小的微小深孔加工,加工精度会更高。

3.特种热处理的发展现状与应用特种热处理工艺是国防工业系统关键制造技术之一。

真空热处理以其特有的无污梁、无氧化、工件变形小和适用范围广等优点,广泛用于航空航天结构件处理,如齿轮结构件表面渗碳或渗氮,导弹和航天器各种合金或钢件的去应力、增强或增韧处理等。

典型结构如:仪表零件、传动结构、燃料贮箱、发动机壳体等;美国热处理炉约有50%以上为真空热处理炉。

真空热处理炉已广泛采用了计算机控制,目前已发展到真空化学热处理和真空气淬热处理,包括高压真空气淬、高流率真空气淬和高压高流率真空气淬技术等。

另外,激光热处理技术在国外已广泛用于航空、航天、电子、仪表等领域,如各种复杂表面件、微型构件、需局部强化处理构件、微型电子器件、大规模集成电路的生产和修补、精密光学元件、精密测量元件等。

4.数控电火花加工新工艺的应用a.标准化夹具数控电火花加工为保证极高的重复定位精度且不降低加工效率,采用快速装夹的标准化夹具。

标准化夹具,是一种快速精密定位的工艺方法,它的使用大大减少了数控电火花加工过程中的装夹定位时间,有效地提升了企业的竞争力。

目前有瑞士的EROWA和瑞典的3R装置可实现快速精密定位。

b.混粉加工方法在放电加工液内混入粉末添加剂,以高速获得光泽面的加工方法称之为混粉加工。

该方法主要应用于复杂模具型腔,尤其是不便于进行抛光作业的复杂曲面的精密加工。

可降低零件表面粗糙度值,省去手工抛光工序,提高零件的使用性能(如寿命、耐磨性、耐腐蚀性、脱模性等)。

混粉加工技术的发展,使精密型腔模具镜面加工成为现实。

c.摇动加工方法电火花加工复杂型腔时,可根据被加工部位的摇动图形、摇动量的形状及精度的要求,选用电极不断摇动的方法,获得侧面与底面更均匀的表面粗糙度,更容易控制加工尺寸,实现小间隙放电条件下的稳定加工。

d.多轴联动加工方法近年来,随着模具工业和IT技术的发展,多轴联动电火花加工技术取得了长足的进步。

模具企业采用多轴联动的方法来提高加工性能,如清角部位在加工可行的情况下采用X、Y、Z三轴联动的方法,即斜向加工,避免了因加工部位面积小而发生放电不稳定的现象。

模具潜伏式胶口的加工通过对电极斜度装夹定位的设计,也可进行斜向多轴联动加工。

采用多轴回转系统与多种直线运动协调组合成多种复合运动方式,可适应不同种类工件的加工要求,扩大数控电火花加工的加工范围,提高其在精密加工方面的比较优势和技术效益。

5.精密加工技术的发展趋势面向21世纪的精密加工技术的发展趋势体现在以下几个方面:a.精密化精密加工的核心主要体现在对尺寸精度、仿形精度、表面质量的要求。

当前精密电火花加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。

通过采用一系列先进加工技术和工艺方法,可达到镜面加工效果且能够成功地完成微型接插件、IC塑封、手机、CD盒等高精密模具部位的电火花加工。

b.智能化智能化是而向21世纪制造技术的发展趋势之一。

智能制造技术(IMT)是将人工智能融入制造过程的各个环节,通过模拟人类专家的智能活动,取代或延伸制造系统中的部分脑力劳动,在制造过程中系统能自动监测其运行状态,在受到外界干扰或内部激励能自动调整其参数,以达到最佳状态和具备自组织能力。

新型数控电火花机床采用了模糊控制技术和专家系统智能控制技术。

模糊控制技术是由计算机监测来判定电火花加工间隙的状态,在保持稳定电弧的范围内自动选择使加工效率达到最高的加工条件;自动监控加工过程,实现最稳定的加工过程的控制技术。

采用人机对话方式的专家系统,根据加工的条件、要求,合理输入设定值后便能自动创建加工程序,选用最佳加工条件组合来进行加工。

在线自动监测、调整加工过程,实现加工过程的最优化控制。

专家系统在检测加工条件时,只要输入加工形状、电极与工件材质、加工位置、目标粗糙度值、电极缩放量、摇动方式、锥度值等指标,就可自动推算并配置最佳加工条件。

相关文档
最新文档