一元二次方程复习(中考考点训练)

合集下载

《一元二次方程》总复习、练习、中考真题【题型解析】

《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。

x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。

步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。

步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。

一元二次方程篇(原卷版)--中考数学必考考点总结+题型专训

一元二次方程篇(原卷版)--中考数学必考考点总结+题型专训

知识回顾微专题专题11一元二次方程考点一:一元二次方程之相关概念1.一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程。

2.一元二次方程的一般形式:一元二次方程的一般形式为:()002≠=++a c bx ax 。

其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 为常数项。

3.一元二次方程的解:使一元二次方程左右两边成立的未知数的值叫做一元二次方程的解,又叫做一元二次方程的根。

1.(2022•广东)若x =1是方程x 2﹣2x +a =0的根,则a =.2.(2022•连云港)若关于x 的一元二次方程mx 2+nx ﹣1=0(m ≠0)的一个根是x =1,则m +n 的值是.3.(2022•资阳)若a 是一元二次方程x 2+2x ﹣3=0的一个根,则2a 2+4a 的值是.4.(2022•遂宁)已知m 为方程x 2+3x ﹣2022=0的根,那么m 3+2m 2﹣2025m +2022的值为()A .﹣2022B .0C .2022D .40445.(2022•衢州)将一个容积为360cm 3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x (cm )满足的一元二次方程:(不必化简).知识回顾考点二:一元二次方程之解一元二次方程1.直接开方法解一元二次方程:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0)①p x =2时,方程的解为:p x p x -==21,。

②()p a x =+2时,方程的解为:a p x a p x --=-=21,。

③()p b ax =+2时,方程的解为:ab p x a b p x --=-=21,。

2.配方法解一元二次方程:运用公式:()2222b a b ab a ±=+±。

具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

专题08 一元二次方程(4大考点)2022-2024年中考数学真题分类汇编

专题08 一元二次方程(4大考点)2022-2024年中考数学真题分类汇编

专题08 一元二次方程(4大考点)【考点归纳】一、考点01 解一元二次方程-------------------------------------------------------------------------------------------------------------------1二、考点02 一元二次方程根的判别式------------------------------------------------------------------------------------------------------2三、考点03 根与系数的关系-------------------------------------------------------------------------------------------------------------------3四、考点04 一元二次方程的实际应用------------------------------------------------------------------------------------------------------4考点01 解一元二次方程一、考点01 解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为( )A .2B .2-C .2或2-D .123.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为( )A .4B .4-C .3D .3-4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为( )A .17或13B .13或21C .17D .136.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或18.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为 .9.(2023·广东广州·中考真题)解方程:2650x x -+=.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.考点02 一元二次方程根的判别式二、考点02 一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m的取值范围是( )A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( )A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =( )A .9-B .4C .1-D .116.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A .0B .1C .2D .318.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .1620.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为 .23.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为 .24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是 .25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c = .26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.考点03 根与系数的关系三、考点03 根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .134.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为 .36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是 .37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.39.(2023·内蒙古通辽·中考真题)阅读材料:材料1:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根12x x ,和系数a ,b ,c 有如下关系:12b x x a+=-,12c x x a =.材料2:已知一元二次方程210x x --=的两个实数根分别为m ,n ,求22m n mn +的值.解:∵m ,n 是一元二次方程210x x --=的两个实数根,∴1,1m n mn +==-.则()22111m n mn mn m n +=+=-⨯=-.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程22310x x +-=的两个实数根为12x x ,,则12x x +=___________,12x x =___________;(2)类比:已知一元二次方程22310x x +-=的两个实数根为m ,n ,求22m n +的值;(3)提升:已知实数s ,t 满足2223102310s s t t +-=+-=,且s t ≠,求11s t-的值.考点04 一元二次方程的实际应用四、考点04 一元二次方程的实际应用40.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=41.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是( )A .()0.6410.69x +=B .()20.6410.69x +=C .()0.64120.69x +=D .()20.64120.69x +=42.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( )A .()67012780x ⨯+=B .()26701780x ⨯+=C .()26701780x ⨯+=D .()6701780x ⨯+=43.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为( )A .20%B .22%C .25%D .28%44.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段10m 长的铁丝网围成一个一边靠墙(墙长5.5m )的矩形鸭舍,其面积为215m ,在鸭舍侧面中间位置留一个1m 宽的门(由其它材料制成),则BC 长为( )A .5m 或6mB .2.5m 或3mC .5mD .3m45.(2023·浙江衢州·中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x 人,则可得到方程( )A .()136x x ++=B .()2136x +=C .()1136x x x +++=D .2136x x ++=46.(2023·湖北襄阳·中考真题)我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x 步,根据题意列方程正确的是( )A .22(12)864x x ++=B .22(12)864x x ++=C .(12)864x x -=D .(12)864x x +=47.(2023·黑龙江哈尔滨·中考真题)为了改善居民生活环境,云中小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x 米,根据题意,所列方程正确的是( )A .()6720x x -=B .()6720x x +=C .()6360x x -=D .()6360x x +=48.(2023·黑龙江·中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m,则小路的宽是()A.5m B.70m C.5m或70m D.10m49.(2022·黑龙江·中考真题)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.950.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是.51.(2023·黑龙江牡丹江·中考真题)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是.52.(2022·上海·中考真题)某公司5月份的营业额为25万,7月份的营业额为36万,已知6、7月的增长率相同,则增长率为.53.(2022·四川成都·中考真题)若一个直角三角形两条直角边的长分别是一元二次方程2640x x-+=的两个实数根,则这个直角三角形斜边的长是.54.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为2S.cm(1)求y与,x s与x的关系式.(2)围成的矩形花圃面积能否为2750cm,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.55.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?56.(2023·江苏·中考真题)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD (如图),生态园一面靠墙(墙足够长),另外三面用18m 的篱笆围成.生态园的面积能否为240m ?如果能,请求出AB 的长;如果不能,请说明理由.57.(2023·江苏·中考真题)如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为cm cm cm cm a b c d 、、、.若纸张大小为16cm 10cm ⨯,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的70%,则需如何设置页边距?58.(2023·湖北黄冈·中考真题)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中21000m 的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位;元/2m )与其种植面积x (单位:2m )的函数关系如图所示,其中200700x ≤≤;乙种蔬菜的种植成本为50元/2m .(1)当x =___________2m 时,35y =元/2m ;(2)设2023年甲乙两种蔬菜总种植成本为W 元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这21000m 土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下a,当a为何值时,2025降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降%年的总种植成本为28920元?59.(2022·山东德州·中考真题)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为2800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.60.(2022·辽宁沈阳·中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.专题08 一元二次方程(4大考点)(解析版)【考点归纳】一、考点01 解一元二次方程----------------------------------------------------------------------------------------------------------1二、考点02 一元二次方程根的判别式----------------------------------------------------------------------------------------------5三、考点03 根与系数的关系--------------------------------------------------------------------------------------------------------16四、考点04 一元二次方程的实际应用--------------------------------------------------------------------------------------------22考点01 解一元二次方程一、考点01 解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为( )A .2B .2-C .2或2-D .12【答案】A【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为0.由一元二次方程的定义,可知20a +≠;一根是0,代入()22240a x x a +++-=可得240a -=,即可求答案.【详解】解:()22240a x x a +++-=是关于x 的一元二次方程,20a ∴+≠,即2a ≠-①由一个根0x =,代入()22240a x x a +++-=,可得240a -=,解之得2a =±;②由①②得2a =;故选A3.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为( )A .4B .4-C .3D .3-【答案】B【分析】本题考查了一元二次方程的解,熟练掌握“能使一元二次方程左右两边相等的未知数的值是一元二次方程的解”是解题的关键.把1x =代入一元二次方程得到130++=m ,求解即可得出m 的值.【详解】解:把1x =代入方程230x mx +=+得:130++=m ,解得:4m =-.故选:B .4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为( )A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .6.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A8.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为 .【答案】3【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.将2y x =代入22330x y x -+-=,转化为解一元二次方程,20y x =≥,要进行舍解.【详解】解:∵20y x -=,∴2y x =,将2y x =代入22330x y x -+-=得,2330x x x -+-=,即:2230x x --=,()()310x x -+=,∴3x =或=1x -,∵20y x =≥,∴=1x -舍,∴3x =,故答案为:3.9.(2023·广东广州·中考真题)解方程:2650x x -+=.【答案】11x =,25x =【分析】直接利用因式分解法解一元二次方程即可.【详解】解:2650x x -+=,()()150x x --=,10x -=或50x -=,11x =,25x =.【点睛】本题考查因式分解法解一元二次方程,正确计算是解题的关键.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.二、考点02 一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠【答案】D 【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠.故选:D .12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( )A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠【答案】D【分析】由于关于x 的一元二次方程2210mx x ++=有实数根,根据一元二次方程根与系数的关系可知0∆≥,且0m ≠,据此列不等式求解即可.【详解】解:由题意得,440m -≥,且0m ≠,解得,1m £,且0m ≠.故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-【答案】B【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =( )A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .16.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <【答案】A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +-+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案.【详解】解: 关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,∴()()22410m ∆=--+>,解得:0m <,10m +≠ ,1m ∴≠-,m ∴的取值范围是:0m <且1m ≠-.故选:A .17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A .0B .1C .2D .3【答案】A 【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程2210x x k ++-=无实数根,∴()Δ4410k =--<,解得:0k <,则函数y kx =的图象过二,四象限,18.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=有两个相等的实数根,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .2690x x -+=20.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为.22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为 .【答案】2【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=->;有两个相等的实数根,则240b ac ∆=-=;没有实数根,则24<0b ac ∆=-.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=-=--⨯⨯=,解得:2k =故答案为:223.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为.24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是 .25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c = .【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是.【答案】1k <【分析】本题考查了一元二次方程根的判别式.根据根的判别式的意义得到()2240k -->,然后解不等式即可.【详解】解:根据题意得()2240k ∆=-->,解得1k <.故答案为:1k <.27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.【答案】(1)证明见解析;(2)11m =或22m =-.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=-x x m ,进行变形后代入即可求解.【详解】(1)证明:()()22Δ24118m m m ⎡⎤=-+-⨯⨯-=+⎣⎦,∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m -++-=的两个实数根,∴122x x m +=+,121⋅=-x x m ,∴()()()22221212121232319x x x x x x x x m m +-=+-=+--=,解得:11m =或22m =-.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.【答案】(1)证明见解析(2)m 的值为1或2-【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:∵()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵()22210x m x m m -+++=的两个实数根为,a b ,∴221,a b m ab m m +=+=+.∵()()2220a b a b ++=,∴2224220a ab b ab +++=,22()20a b ab ++=.∴222(21)20m m m +++=.即220m m +-=.解得1m =或2m =-.∴m 的值为1或2-.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.三、考点03 根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .1【答案】A【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵1x ,2x 是方程220220x x --=的两个实数根,∴2112022x x -=,122022x x =-,121x x =+321122022-+x x x ()()()2222211212121220222122022x x x x x x x x x =-+=+=+-=-⨯-4045=故选A【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,掌握一元二次方程根与系数的关系是解题的关键.34.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为 .【答案】7【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是 .37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k -+-+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可.。

初三数学 一元二次方程复习

初三数学 一元二次方程复习

初三数学一元二次方程复习一.填空题(共60小题)1.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m+2=.2.若关于x的一元二次方程(a+1)x2+x﹣a2+1=0有一个根为0,则方程的另一个根为.3.若关于x的一元二次方程(a+2)x2﹣2x+a2﹣4=0有一个根是0,则a的值为.4.如关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0一个根为0,则m=.5.已知a是方程x2+5x﹣1=0的根,则代数式a2+5a+2024的值为.6.若a是方程2x2﹣4x+1=0的一个根,则代数式2021﹣2a2+4a的值为.7.设a是方程x2﹣2006x+1=0的一个根,则代数式a2﹣2007a+的值为.8.关于x的方程是一元二次方程,则m=.9.关于x的方程(x+h)2+k=0(h,k均为常数)的解是x1=﹣3,x2=2,则方程(x+h﹣3)2+k=0的解是.10.已知关于x的一元二次方程m(x﹣h)2﹣k=0(m,h,k均为常数,且m≠0)的解是x1=2,x2=5,则关于x的一元二次方程m(x﹣h+3)2=k的解是.11.关于x的方程a(x+m)2+b=0的解是x1=﹣3,x2=2(a、b、m为常数,a≠0),则方程a(2x+m+1)2+b=0的解是.12.用配方法解一元二次方程x2﹣2x﹣5=0时,将它化为(x+a)2=b的形式,则a+b的值为.13.一元二次方程x2+x﹣1=0的解是.14.若关于x的一元二次方程x2+2x+k﹣1=0有两个实数根,则k的取值范围是.15.若关于x的方程(k﹣5)x2+2kx+k+2=0有实数根,则k的范围是;若有两个不相等的实数根,则k的范围是.16.关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为.17.已知关于x的方程x2+2x+m=0没有实数根,那么m的取值范围是.18.已知关于x的一元二次方程x2﹣4x+2=0的两个实数根分别为x1和x2,则x1x2+x1+x2的值为.19.如果m,n是一元二次方程x2﹣x=3的两个实数根,那么多项式2n2﹣mn+2m=.20.已知关于x的一元二次方程x2﹣2x﹣3=0的两个实数根分别为α、β,则(α+3)(β+3)=.21.设x1,x2是一元二次方程x2﹣2x﹣1=0的两个实数根,则(x1﹣1)(x2﹣1)的值为.22.已知x1,x2是关于x的一元二次方程x2﹣(k+6)x+3k=0的两个实数根,且x1﹣x2=,则k=.23.已知a、b是方程x2+3x+1=0的两根,则a2+4a+b﹣3=.24.设a、β是方程x2﹣x+2024=0的两个实数根,则α2+αβ+β2的值为.25.已知x1,x2是方程x2﹣x﹣11=0的两个实数根,则代数式的值是.26.关于x的方程x2﹣(2k﹣1)x+k2=0的两个实数根分别为x1,x2,若(x1﹣1)(x2﹣1)=5,则k的值为.27.已知关于x的一元二次方程(a﹣2)x2+2x+a2﹣4=0的一个根为x=0,则它的另一个根为.28.已知关于x的方程x2+2x﹣a=0的一个根为2,则另一个根是.29.若a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则a2+2b﹣ab的值是.30.设x1,x2是方程x2﹣2x﹣35=0的两个实根,则代数式的值为.31.已知方程x2﹣2x﹣3=0的两个实数根为x1、x2,则代数式x1+x2﹣x1x2的值为.32.已知方程2t2﹣t﹣4=0有两个不相等的实数根α、β,则=.33.若m、n是关于x的一元二次方程x2﹣2022x+2023=0的两根,则代数式(m2﹣2021m+2022)(n2﹣2021n+2022)的值是.34.设x1,x2是方程x2﹣x﹣2023=0的两实数根,则+x2﹣2025=.35.已知α、β是方程x2﹣2x﹣1=0的两个根,则α2+2β=.36.如果α、β是一元二次方程x2+3x﹣6=0的两个根,则α2+4α+β+2021的值是.37.已知一元二次方程8x2﹣2x﹣15=0的解为x1,x2,则的值为.38.若a,b是方程x2+2x﹣4=0的两个根,则代数式a2+3a+b=.39.设x1、x2是方程x2+mx﹣2=0的两个根,且x1+x2=3x1x2,则m=.40.关于x的一元二次方程x2+kx+k+1=0的两根分别为x1,x2,且x+x=1,则k的值为.41.设x1,x2是一元二次方程x2﹣mx﹣6=0的两个根,则x1+x2=1,则|x1﹣x2|=.42.已知x1、x2是关于x的方程x2﹣2x+k﹣3=0的两实数根,且,则k的值为.43.关于x的一元二次方程x2﹣3x+m=0有实数根α、β,且α2+β2=17,则m的值是.44.某公司今年一月盈利30万元,三月盈利36.3万元,从一月到三月,每月盈利的增长率都相同,设月平均增长率为x,根据题意可列方程为.45.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率都为x,根据题意可列方程.46.某乡镇2021年旅游总收入为50万元,到2023年旅游总收入达60.5万元.若每年的平均增长率相同,则年平均增长率是.47.如图,在一块长30m,宽20m的矩形花园基地上修建两横一纵三条等宽的道路,剩余空地种植花苗,若种植花苗的面积为522m2,则道路的宽为m.48.在学校劳动实践基地里有一块长20米、宽10米的长方形菜地,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道(如图中阴影部分所示),剩下部分种植蔬菜,已知种植蔬菜的面积为171平方米,则小道的宽为米.49.在一幅长40cm,宽20cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是1600cm2,设金色纸边的宽为x cm,依题意可列方程为.50.如图,某校准备用54米的围栏修建一边靠墙的矩形花园ABCD(AB<BC),已知墙体的最大可用长度为28米,如果该矩形花园的面积为360平方米,则AB的长为米.51.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),墙对面有一个2米宽的门(EF),另外三边用木栏围成,木栏长30m.若养鸡场面积为120m2,设AB=x m,则列方程得.52.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为扩大销量,增加利润,超市准备适当降价,据测算,每箱每降价1元平均每天可多售出20箱,若要使每天销售饮料获利1440元,则每箱应降价元.53.某品牌服装专营店平均每天可销售该品牌服装20件,每件可盈利44元.若每件降价1元,则每天可多售出5件.若要平均每天盈利1600元,则应降价元.54.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,若想让顾客得到实惠的同时每天利润为480元,则每个口罩应该涨价元.55.某市举行中学生足球联赛,每两个队之间都要进行一场比赛,共要比赛66场.若有x支球队参赛,则可列方程.56.某校组织了一次篮球赛,赛制为单循环形式(每两队比赛一场),设有x支球队,共比赛15场.根据题意可列方程.57.一个微信群里共有x个好友,每个好友都分别给群里的其他好友发一条信息,共发信息756条,则可列方程.58.一个两位数,个位上的数字比十位上的数字大3,这个两位数等于它的个位数字的平方,则这个两位数是.59.一个两位数,个位与十位上的数字之和为8,把这个两位数的个位数字与十位数字对调,得到一个新的两位数,所得的新两位数与原数的乘积为1855,则原两位数是.60.有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为.。

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷一.单项选择题(共15小题,每小题3分,共45分)1.下列方程中,是一元二次方程的是( )A .3(1+x )2=3x 2+7B .3(1+x )2=x (3x +7)C .px 2+x ﹣4=x (px ﹣1)D .2x 2=02.若关于x 的方程mx m ﹣1+(m ﹣3)x +5=0是一元二次方程,那么m 的值为( )A .m =3B .m =2C .m =1D .m ≠03.一元二次方程2x 2﹣2x =1的一次项系数和常数项依次是( )A .﹣2和﹣1B .﹣2和1C .2和﹣1D .2和14.如果关于x 的一元二次方程(a ﹣2)x 2+3x +|a |﹣2=0的常数项为0,那么a 的值一定是( )A .2B .﹣2C .2或﹣2D .05.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m +2022的值等于( )A .2024B .2022C .2023D .20216.已知x =﹣1是一元二次方程x 2+mx =3的一个解,则m 的值是( )A .0或2B .2C .0D .﹣27.方程x 2=4的解是( )A .±√2B .√2C .±2D .28.一元二次方程x 2﹣3=0的根是( )A .x =±√3B .x =√3C .x =3D .x =09.用配方法解方程x 2+7x ﹣5=0,变形后的结果正确的是( )A .(x +72)2=694 B .(x +72)2=294 C .(x −72)2=694 D .(x −72)2=29410.用配方法解方程x 2+4x ﹣1=0,配方后的方程是( )A .(x +2)2=5B .(x ﹣2)2=3C .(x ﹣2)2=5D .(x +2)2=311.对于实数a ,b ,定义运算“※”:a ※b =a 2﹣2b ,例如:5※1=52﹣2×1=23.若x ※x =﹣1,则x 的值为( )A .1B .0C .0或1D .1或﹣112.如果a是一元二次方程x2﹣3x﹣5=0的较小的根,那么下面对a的估值一定正确的是()A.﹣1.5<a<﹣1B.2<a<3C.﹣4<a<﹣3D.4<a<513.方程(x+2)(x﹣3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣314.一元二次方程(x﹣1)(x﹣2)=0的一个解是x=2,则另一个解是()A.x=3B.x=2C.x=1D.无法判断15.如果y为实数,且满足等式(y2+m2)2﹣2(y2+m2)=24,那么5(y2+m2)的值一定是()A.6B.30C.36D.12二.填空题(共10小题,每小题3分,共30分)16.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是________.17.将一元二次方程2x2=5x﹣3化成一般形式之后,若二次项的系数是2,则一次项系数为________.18.关于x的方程x2+kx+2=0的一个根是1,则k=________.19.方程x2﹣5=0的根是.20.下面是某同学解方程x2+6x﹣16=0的部分运算过程:解:移项,得x2+6x=16,…第一步配方,得x2+6x+9=16+9,…第二步即(x+3)2=25,…第三步两边开平方,得x+3=5,…第四步①该同学的解答从第________步开始出错.②请写出正确的解答过程.21.如果用公式法解关于x的一元二次方程,得到x=−9±√92−4×3×1,那么该一元二次方2×3程是________.22.方程x2=x的解是________.23.实数x、y满足(x2+y2)(x2+y2﹣1)=12,则x2+y2的值为________.24.一元二次方程x2+5x+1=0的根的判别式的值是________.25.写出一个一元二次方程的一般式,使它同时满足以下两个要求:①二次项系数为2,②两根分别为3和−1:________.2三.解答题(共4小题,共75分)26.已知关于x的一元二次方程(m﹣1)x2﹣5x+m2﹣3m+2=0的常数项为0,求m的值.27.已知m是方程2x2﹣7x+1=0的一个根,求代数式m(2m﹣7)+5的值.28.(1)用适当的方法解方程:81(1﹣x)2=64.(2)请你结合生活经验,设计一个问题,使它能利用建立方程模型“100(1﹣x)2=81”来解决.你设计的问题是:.29.阅读材料,并回答问题.小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:解:2x2﹣8x+5=0.2x2﹣8x=﹣5.①.②x2−4x=−52+4.③x2−4x+4=−52.④(x−2)2=32.⑤x−2=√62.⑥x=2+√62问题:(1)上述过程中,从________步开始出现了错误(填序号).(2)发生错误的原因是:__________.(3)写出这个方程的解:__________.。

第21章一元二次方程考点练习(有答案)


根是﹣3,1.小明看错了一次项系数 P,得到方程的两个根是 5,﹣4,则原来的方程是( ) A .x2+2x﹣3=0 B .x2+2x﹣20=0 C .x2﹣2x﹣20=0 D .x2﹣2x﹣3=0
19.(2021 枣庄)若等腰三角形的一边长是 4,另两边的长是关于 x 的方程 x2﹣6x+n=0 的两
25.已知关于 x 的一元二次方程(a+c)x2+2bx+(a-c)=0,其中 a,b,c,分别为△ABC 三
边长. (1)如果 x=-1 是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根.
的最大值是( )
A .1 B . 2 C . 3 D .2
13.(2020 潍坊)关于 x 的一元二次方程 x2 (k 3)x 1 k 0 根的情况,下列说法正确
的是( ) A. 有两个不相等的实数根 C. 无实数根
B. 有两个相等的实数根 D. 无法确定
3
14.(2021 枣庄、泰安)已知关于 x 的一元二次方程 kx2﹣(2k﹣1)x+k﹣2=0 有两个不相 等的实数根,则实数 k 的取值范围是( )
个根,则 k 的值为( )
A. 3
B. 4 C. 3 或 4
D. 7
5.(2020 张家界) 已知等腰三角形的两边长分别是一元二次方程 x2-6x+8=0 的两根,则该
等腰三角形的底边长为(

A .2 B .4 C .8
D .2 或 4
6.(2021 雅安) 若直角三角形的两边长分别是方程 x2-7x+12=0 的两根,则该直角三角形的

中考数学专题练习 一元二次方程(含解析)

一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元一次方程;当m 时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b= .4.x2+3x+ =(x+ )2;x2﹣+2=(x )2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ,q= .7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= .9.当t 时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则= .二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m ≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+ =(x+ )2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t ≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则= .【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。

一元二次方程考点基础知识过关限时训练(中考第一轮总复习)

一元二次方程考点基础知识过关限时训练(中考第一轮总复习)(建议时间60分钟)一.选择题1.一元二次方程2340x x -+=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有一个实数根D .有两个不相等的实数根2.下列关于x 的方程中,是一元二次方程的为( )A .20ax bx c ++=B .211x x -= C .210x -= D .2350x y +-=3.下列方程中,有两个不相等的实数根的是( )A .220x x -=B .2210x x -+=C .220x +=D .2230x x -+=4.若关于x 的方程2(2)210a x x +--=是一元二次方程,则a 的取值范围是( )A .0a ≠B .2a ≠-C .3a -D .3a -且2a ≠-5.用配方法解一元二次方程26100x x +-=,此方程可变形为( )A .2(3)19x +=B .2(3)19x -=C .2(2)1x +=D .2(3)1x -=6.方程2120x x +-=的两根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相同的实数根D .不能确定 7.下列方程是一元二次方程的是( )A .20x =B .21y x +=C .210x +=D .11x x += 8.一元二次方程220x x k -+=有两个不相等的实数根,则实数k 的取值范围是( )A .1k <B .1kC .1k >D .1k9.如图,长方形花圃ABCD 面积为24m ,它的一边AD 利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m .EF 处开一门,宽度为1m .设AB 的长度是xm ,根据题意,下面所列方程正确的是( )A .(52)4x x -=B .(512)4x x +-=C .(521)4x x --=D .(2.5)4x x -=10.一元二次方程2243x x +=的根的情况是( )A .有两个不相等的实数根B .只有一个实数根C .有两个相等的实数根D .没有实数根11.若关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,则实数m 的取值范围是( )A .0m >B .12m > C .12m < D .0m <12.用配方法解一元二次方程2430x x -+=时,配方正确的是( )A .2(2)1x +=B .2(2)7x +=C .2(2)7x -=D .2(2)1x -=13.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(1)6x -=C .2(3)9x +=D .2(2)9x -=14. 2022年北京冬奥会女子冰壶比赛,有若干支队伍参加了单循环比赛(每两队之间都赛一场),单循环比赛共进行了45场,共有多少支队伍参加比赛?设共有x 支队伍参加比赛,则所列方程为( )A .(1)45x x +=B .(1)452x x +=C .(1)45x x -=D .(1)452x x -= 15.若关于x 的方程240x x c ++=有两个相等的实数根,则c 的值是( )A .4B .4-C .16D .16-16.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A B .3 C .6 D .917.若关于x 的一元二次方程260x x a +-=有两个不相等的实数根,则a 的取值范围是( )A .9a >-B .9a <-C .9a -D .9a -18.关于x 的一元二次方程22210x mx m ++-=根的情况,下列说法正确的是( )A .有两个不相等的实数根B .必有两个正根C .必有两个负根D .必有一个实数根为1x =-19.已知x m =是方程2210x x +-=的一个根,则2243(m m +-= )A .2-B .1-C .1D .220.用配方法解一元二次方程2250x x --=时,将它化为2()x a b +=的形式,则a b +的值为( )A .3B .4C .5D .621.关于x 的一元二次方程2(0)ax bx c ac +=≠一个实数根为2022,则方程2cx bx a +=一定有实数根( )A .2022B .12022C .2022-D .12022- 22.如果关于x 的方程27(3)30m m x x ---+-是关于x 的一元二次方程,那么m 的值为( )A .3±B .3C .3-D .都不对23.下列方程中,一元二次方程的是( )A .23(4)x x x -=+B .230x x -= C .10xy x -+= D .22310x x --=24.若关于x 的方程2(1)210a x ax -+-=是一元二次方程,则a 的取值范围为( )A .1a ≠B .1a >C .1a <D .0a ≠25.下列方程一定是一元二次方程的是( )A .270xy -= B .20x ++= C .220ax x += D .22(2)1x x +=-26.一元二次方程2410x x ++=配方后可化为( )27.关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是( )A .8B .9C .10D .1128.下列各数:4-,3-,2-,3,4,6.其中是一元二次方程2120x x +-=的解是( )A .2-,6B .3-,4C .3,4D .4-,329.已知一元二次方程240x x m --=有一个根为3,则m 值为( )A .3-B .2C .2-D .330.用配方法解方程221x x +=,变形后的结果正确的是( )A .2(1)2x -=B .2(1)0x -=C .2(1)0x +=D .2(1)2x +=31.用配方法解一元二次方程2210x x --=的过程中,配方正确的是( )A .2(1)1x +=B .2(1)2x -=C .2(1)2x +=D .2(1)4x -=32.若关于x 的一元二次方程22(1)0a x a a +--=有一个根是1x =-,则a 的值为( )A .1-B .0C .1D .1-或133.用配方法解方程2850x x -+=时,原方程应变形为( )A .2(8)21x -=B .2(8)11x -=C .2(4)21x -=D .2(4)11x -=34.关于x 的方程220ax ax c -+=的一个解为11x =-,则该方程的另一个解是()A .23x =B .21x =C .22x =-D .23x =-35.关于x 的一元二次方程2(3)20x k x k +--=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定 36.用配方法解方程2250x x --=时,原方程应变形为( )37.用配方法解方程2430x x -+=,下列变形正确的是( )A .2(2)7x -=-B .2(2)1x +=C .2(2)1x +=-D .2(2)1x -=38.已知关于x 的方程260x kx +-=的一个根为2x =,则实数k 的值为( )A .1B .1-C .2D .2-二.填空题39.已知1x 、2x 是一元二次方程22350x x +-=的两个根,则12x x += ,12x x = . 40.一种型号的电脑,原来每台售价7500元,经过两次降价后,现在每台售价为4800元,如果每次降价的百分率相同,设每次降价百分率为x ,那么根据题意可列出方程: .41.已知关于x 的一元二次方程230x mx +-=的一个根是3,则该方程的另一个根是 .42.方程(8)7x x -=-的根是 .43.已知4M m =-,23N m m =-.则M 与N 的大小关系为M N (填>、<或)=.44.已知2410ax x +-=是关于x 的一元二次方程,那么a 的取值范围为 .45.若一元二次方程2560x x +-=的两个根是1x ,2x .则12x x ⋅的值是 .46.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌的新能源汽车相继投放市场,我国新能源汽车近几年销售量全球第一,2018年某款新能源车销售量为15万辆,销售量逐年增加,到2020年销售量为21.6万辆,则这款新能源汽车销售量的年平均增长率是 .47.若m 、n 是方程2310x x --=的两个实数根,则m n +的值为 .48.已知关于x 的方程2()0(a x m p a ++=、m 、p 为常数,0)a ≠的解是11x =,23x =-.那么方程2(3)0a x m p +++=的解为 .49.已知1x ,2x 是方程24510x x -+=的两个根.则代数式1211x x +的值是 . 50.若关于x 的一元二次方程250x x a -+=的一个根是3.则a 的值为 .三.解答题51.请用指定的方法解下列方程:(1)2304x x --=(配方法);(2)3(1)2(1)x x x -=-(因式分解法).52.解方程:(1)2420x x --= (2)(2)(3)12x x --= (3)2(1)90x +-=(4)2(2)1y y -= (5)22(3)3(3)x x +=+ (6)2310x x --=(7)2(5)2(5)0x x x -+-= (8)2210x x --= (9)23210x x +-=53.(1)解方程:21090x x -+=(配方法).(2)关于x 的一元二次方程220(0)ax bx a -+=≠有两个相等的实数根,请写出一组满足条件的a ,b 的值,并求出此时方程的根.。

中考数学复习 一元二次方程专练 因式分解解一元二次方

分解因式法解一元二次方程1.3(x﹣2)2﹣x(x﹣2)=0,2.3x(x+2)=5(x+2)3.2x2﹣8x=04.x2﹣3x﹣4=0.5.x2﹣2x﹣3=0.6.x(x﹣3)﹣4(3﹣x)=0,7. 3(x﹣2)2=x(x﹣2);8. 2x2﹣5x﹣3=09. (3x﹣1)2=(x+1)211.4+4(1+x)+4(1+x)2=19 12.x2﹣4x﹣5=013. 3(5﹣x)2=2(5﹣x)14.(x﹣3)2=2(3﹣x).15.2x2+x﹣6=0.16.2x2﹣x﹣1=0;17. 3x(x﹣1)=2(x﹣1)2.18.x(x﹣5)+4x=019. x2﹣2x=020.(x﹣3)2+2x(x﹣3)=0;21.x2﹣3x=0;22.(x﹣2)2=(2x+3)2 23.3x2﹣11x﹣4=0.24.2x(x﹣1)﹣x+1=0 25. 2x2+x﹣3=026.x2﹣2x﹣15=0;27. 2x(x﹣3)+x=3.28. x(x﹣3)=15﹣5x;29.(x﹣1)2﹣2(x﹣1)=030.x(x﹣2)﹣x+2=0;31. 2x2﹣3x﹣5=0.32..4x2﹣x﹣1=3x﹣2,33.34.(x﹣3)2﹣2(x﹣1)=x﹣7.35. 3x(x﹣2)﹣2(x﹣2)=036. 3x2﹣x﹣2=0;37. (x﹣6)2﹣(3﹣2x)2=0.38.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)39.(2x+1)2=2(2x+1)40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).41.x2﹣x﹣6=0,42.x2﹣8(x+6)=043.2x2﹣6x=0.44.(x﹣3)(x+1)=545.2x2﹣8x=0;46.x2+2x﹣15=047. 2x2﹣5x﹣7=0 48. 2y(y﹣3)=4(y﹣3)49. x2﹣7x﹣18=050. 3x2+8x﹣3=051. 2x(x﹣3)=9﹣3x 52.x2﹣4x=553. ﹣8x2+10x=054.3x2+4x﹣7=0,55. 3x2﹣5x+2=056. 2(x﹣3)2=x2﹣3x57.x2=3x;58. (3x﹣2)2=(2x﹣3)259. (y﹣2)2+2y(y﹣2)=060.2y(y+2)=y+2.61. 5x2+3x=062.(3x﹣2)2=(2x﹣3)263. x(x﹣3)=5(x﹣3);64. (2x+3)2﹣5(2x+3)+4=0.65. (2x﹣7)2﹣5(2x﹣7)+4=0 66. (3x﹣1)2=x2+6x+967.(2x+2)2=3(2x+2)(x﹣1)68.(x+7)(x﹣3)+4x(x+1)=069.2x(x+3)﹣3(x+3)=070. x﹣2=x(x﹣2)71. x2+8x﹣9=072.x(2x﹣5)=4x﹣10.73.(2x﹣5)2﹣(x+4)2=0 74.2(x﹣1)2=x2﹣175.76. 4x(2x﹣1)=3(2x﹣1);77. 2x2+x﹣1=0.78. (3x﹣2)(x+4)=(3x﹣2)(5x﹣1);79. (x+1)(x+3)=15.80. x2﹣5x﹣6=081. x2﹣2x=9982. (x﹣3)2﹣4x+12=083. 4(x+1)2=9(x﹣2)284. x2=2x85. (x+4)2=5(x+4)87. 16(x﹣1)2=22588. 4x2﹣4x+1=x2﹣6x+989. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)290. (x﹣2)2=(3﹣2x)2.91. (x+2)2﹣10(x+2)+25=092.x2﹣2(p﹣q)x﹣4pq=0.93.x2+10x+21=0,94.2(x ﹣2)2=3(x ﹣2)95. 3(x ﹣5)2=2(5﹣x ), 96. ,97. 5x 2﹣4x ﹣12=0, 98. (x ﹣)=5x (﹣x ),99.9(x ﹣2)2﹣4(x+1)2=0. 100.101.x 2﹣8x+15=0;103. 6x 2﹣x ﹣12=0. 104. 2x 2﹣x ﹣6=0105. ﹣x 2+6x ﹣5=0106. (x ﹣5)2=(2x ﹣1)(5﹣x )107. (x+1)(x+2)=3x+6.108. x 2﹣9=0,109. x 2+3x ﹣4=0,110. x 2﹣3x+2=0,111. 4(3x ﹣1)2=25(2x+1)2.112. (3x+5)2﹣4(3x+5)+3=0113. (3x+2)(x+3)=x+14114. 3(x+1)2=(x+1)115.(x ﹣2)2﹣4=0116.(x ﹣3)2+2x (x ﹣3)=0117.(3x ﹣1)2=(x+1)2118.(x+5)2﹣2(x+5)﹣8=0.119. x 2﹣8x=9120. (x ﹣2)2=(2x+3)2.121. x 2﹣3=3(x+1);122. (y ﹣3)2+3(y ﹣3)+2=0123. 7x (5x+2)=6(5x+2)124.6(x+4)2﹣(x+4)﹣2=0125. x 2﹣(3m ﹣1)x+2m 2﹣m=0,126.x 2﹣2x ﹣224=0. 127.128.5x (x ﹣3)﹣(x ﹣3)(x+1)=0.129.x 2﹣11x+28=0130. 4y 2﹣25=0;131.(2x+3)2﹣36=0;132. x2﹣3x+2=0;133. 2t2﹣7t﹣4=0;134. 5y(y﹣1)=2(y﹣1)135. x2+(1+2)x+3+=0;136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.137.x2﹣3|x|﹣4=0分解因式法解一元二次方程136题参考答案:1.3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,解得:x1=2,x2=3;2.3x(x+2)=5(x+2)原方程可化为3x(x+2)﹣5(x+2)=0,(3x﹣5)(x+2)=0,解得x1=﹣2,3.2x2﹣8x=0因式分解,得2x(x﹣4)=0,于是得,2x=0或x﹣4=0,4. x2﹣3x﹣4=0.因式分解,得(x﹣4)(x+1)=0,于是得,x﹣4=0或x+1=0,解得:x1=4,x2=﹣15.x2﹣2x﹣3=0.原方程可以变形为(x﹣3)(x+1)=0 x﹣3=0,x+1=0∴x1=3,x2=﹣1.6.x(x﹣3)﹣4(3﹣x)=0,x﹣3=0或x+4=0,解得:x1=3,x2=﹣4;7. 3(x﹣2)2=x(x﹣2);整理得3(x﹣2)2﹣x(x﹣2)=0即(x﹣2)(x﹣3)=0x1=2,x2=38. 2x2﹣5x﹣3=0(2x+1)(x﹣3)=0x1=﹣0.5,x2=39. (3x﹣1)2=(x+1)2原方程可化为:(3x﹣1)2﹣(x+1)2=0,(3x﹣1+x+1)(3x﹣1﹣x﹣1)=0,∴4x=0或2x﹣2=0,解得:x1=0,x2=1;10. x(x﹣6)=2(x﹣8)x2﹣6x=2x﹣16x2﹣8x+16=0(x﹣4)2=0x1=x2=411.4+4(1+x)+4(1+x)2=19原式可变为4(1+x)2+4(1+x)﹣15=0 [2(1+x)﹣3][2(1+x)+5]=0x1=,x2=﹣12.x2﹣4x﹣5=0(x﹣5)(x+1)=0x﹣5=0或x+1=0x1=5,x2=﹣113. 3(5﹣x)2=2(5﹣x)原方程可变形为:3(5﹣x)2﹣2(5﹣x)=0(5﹣x)[3(5﹣x)﹣2]=0(5﹣x)(13﹣3x)=0则x1=5,x2=14.(x﹣3)2=2(3﹣x).原式可变为(x﹣3)2﹣2(3﹣x)=0(x﹣3)(x﹣1)=0x1=3,x2=115.2x2+x﹣6=0.2x2+x﹣6=0 x+2=0或2x﹣3=0∴x1=﹣2,x2=.16.2x2﹣x﹣1=0;原方程可化为:(x﹣1)(2x+1)=0,x﹣1=0或2x+1=0,解得:x1=1,x2=﹣.17. 3x(x﹣1)=2(x﹣1)2.原方程可化为:3x(x﹣1)﹣2(x﹣1)2=0,(x﹣1)(3x﹣2x+2)=0,x﹣1=0或x+2=0,解得:x1=1,x2=﹣218.x(x﹣5)+4x=0即x(x﹣5+4)=0x(x﹣1)=0∴x1=0,x2=119. x2﹣2x=0x(x﹣2)=0∴x=0或x﹣2=0∴x1=0,x2=2.20.(x﹣3)2+2x(x﹣3)=0;原方程可化为:(x﹣3)(x﹣3+2x)=0(x﹣3)(x﹣1)=0x1=3,x2=1.21.x2﹣3x=0;x(x﹣3)=0∴x1=0,x2=322.(x﹣2)2=(2x+3)2(x﹣2)2=(2x+3)2即(x﹣2)2﹣(2x+3)2=0(3x+1)(x+5)=0x1=﹣5,x2=23.3x2﹣11x﹣4=0.把方程3x2﹣11x﹣4=0即(x﹣4)(3x+1)=0,解得x1=4,x2=.24.2x(x﹣1)﹣x+1=0原方程变形为:2x(x﹣1)﹣(x﹣1)=0∴(x﹣1)(2x﹣1)=0解得x1=1,x2=;25. 2x2+x﹣3=0原方程变形为:(x﹣1)(2x+3)=0∴x1=1,x2=26.x2﹣2x﹣15=0;原式可化为:(x﹣5)(x+3)=0得x1=5,x2=﹣327. 2x(x﹣3)+x=3.原式可化为:(x﹣3)(2x+1)=0得,x2=328. x(x﹣3)=15﹣5x;x(x﹣3)=﹣5(x﹣3)(x﹣3)(x+5)=0x1=3,x2=﹣529.(x﹣1)2﹣2(x﹣1)=0(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=330.x(x﹣2)﹣x+2=0;原方程可化为:x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,解得:x1=2,x2=1;31. 2x2﹣3x﹣5=0.原方程可化为:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,解得:x1=,x2=﹣132..∵4x2﹣x﹣1=3x﹣2,∴4x2﹣4x+1=0即(2x﹣1)2=0,解得33.解:∴∴移项,合并同类项得,(x﹣3)2﹣3x+9=0,即,(x﹣3)2﹣3(x﹣3)=0,因式分解得,(x﹣3﹣3)(x﹣3)=0则x﹣3=0或(x﹣6)=0,解得,x1=3,x2=6.35. 3x(x﹣2)﹣2(x﹣2)=0(x﹣2)(3x﹣2)=0x1=2,x2=;36. 3x2﹣x﹣2=0;原方程变形得,(3x+2)(x﹣1)=0∴,x2=1;37. (x﹣6)2﹣(3﹣2x)2=0.原方程变形得,(x﹣6+3﹣2x)(x﹣6﹣3+2x)=0(x+3)(3x﹣9)=0∴x1=3,x2=﹣338.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)(x﹣3)2+5(x﹣3)=0(x﹣3)(x+2)=0∴x1=3,x2=﹣2.39.(2x+1)2=2(2x+1)原方程可化为:(2x+1)2﹣2(2x+1)=0,(2x+1)(2x+1﹣2)=0,(2x+1)(2x﹣1)=0,解得:x1=﹣,x2=.40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.41.∵x2﹣x﹣6=0,∴(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得x1=3,x2=﹣2.42.x2﹣8(x+6)=0原方程化为x2﹣8x﹣48=0(x+4)(x﹣12)=0解得x1=﹣4,x2=12.原方程变形为2x(x﹣3)=0∴2x=0或x﹣3=0∴x1=0,x2=344.(x﹣3)(x+1)=5x2﹣2x﹣8=0,(x﹣4)(x+2)=0∴x1=4,x2=﹣2.45.2x2﹣8x=0;因式分解,得2x(x﹣4)=0,2x=0或x﹣4=0,解得,x=0或x=4;46.x2+2x﹣15=0(x+5)(x﹣3)=0x+5=0或x﹣3=0∴x1=﹣5,x2=3;47. 2x2﹣5x﹣7=0因式分解得(x+1)(2x﹣7)=0解得:,x2=﹣1;48. 2y(y﹣3)=4(y﹣3)2y(y﹣3)﹣4(y﹣3)=0(y﹣3)(2y﹣4)=0(2分)∴y1=3,y2=249. x2﹣7x﹣18=0解:(x﹣9)(x+2)=0x﹣9=0或x+2=0∴x1=9,x2=﹣250. 3x2+8x﹣3=0解:方程可以化为(x+3)(3x﹣1)=0 ∴x+3=0或3x﹣1=0即x1=﹣3,x2=.51. 2x(x﹣3)=9﹣3x2x(x﹣3)﹣(9﹣3x)=02x(x﹣3)+3(x﹣3)=0(x﹣3)(2x+3)=0x1=3,x2=﹣52.x2﹣4x=5x2﹣4x﹣5=0(x﹣5)(x+1)=0 ∴x﹣5=0,x+1=0∴原方程的解为:x1=5,x2=﹣1.53. ﹣8x2+10x=0x(10﹣8x)=0∴x1=0,x2=54.3x2+4x﹣7=0,(x﹣1)(3x+7)=0,x﹣1=0或3x+7=0,解得:55. 3x2﹣5x+2=0原式变形为:(3x﹣2)(x﹣1)=0∴x1=1,x2=56. 2(x﹣3)2=x2﹣3x原方程变形为:2(x﹣3)2=x(x﹣3)(x﹣3)[2(x﹣3)﹣x]=0(x﹣3)(x﹣6)=0∴x1=3,x2=657.(1)x2=3x;移项得,x2﹣3x=0,因式分解得,x(x﹣3)=0,解得,x1=0,x2=3;58. (3x﹣2)2=(2x﹣3)2解:3x﹣2=±(2x﹣3)3x﹣2=2x﹣3或3x﹣2=﹣(2x﹣3)解得:x1=﹣1,x2=1;59. (y﹣2)2+2y(y﹣2)=0解:(y﹣2)(y﹣2+2y)=0解得:y1=2,y2=60..2y(y+2)=y+2.原方程变形为:2y(y+2)﹣(y+2)=0,即(y+2)(2y﹣1)=0,解得y1=﹣2,y2=.61. 5x2+3x=0x(5x+3)=0,即:x=0或5x+3=0,∴x1=0,x2=﹣.62. (3x ﹣2)2=(2x ﹣3)2(3x ﹣2)2﹣(2x ﹣3)2=0, (3x ﹣2+2x ﹣3)(3x ﹣2﹣2x+3)=0, 5(x ﹣1)(x+1)=0, 即:x ﹣1=0或x+1=0 ∴x 1=1,x 2=﹣163. x (x ﹣3)=5(x ﹣3); x (x ﹣3)﹣5(x ﹣3)=0, (x ﹣3)(x ﹣5)=0, ∴x 1=3,x 2=5;64. (2x+3)2﹣5(2x+3)+4=0.(2x+3)2﹣5(2x+3)+4=0 (2x+3﹣4)(2x+3﹣1)=0 (2x ﹣1)(x+1)=0, ∴x 1=,x 2=﹣165. (2x ﹣7)2﹣5(2x ﹣7)+4=0 (2x ﹣7﹣4)(2x ﹣7﹣1)=0;x 2=466. (3x ﹣1)2=x 2+6x+9(3x ﹣1)2﹣(x ﹣3)2=0 即(2x+1)(x ﹣2)=0 x 1=2,x 2=﹣0.567.(2x+2)2=3(2x+2)(x ﹣1)(2x+2)2﹣3(2x+2)(x ﹣1)=0 即(2x+2)【2x+2﹣3(x ﹣1)】=0 ∴(x ﹣5)(x+1)=0 x 1=﹣1,x 2=568.(x+7)(x ﹣3)+4x (x+1)=0 化简:(x+7)(x ﹣3)+4x (x+1)=0整理得,5x 2+8x ﹣21=0, 因式分解得,(5x ﹣7)(x+3)=0, 即5x ﹣7=0或x+3=0, 所以x 1=,x 2=﹣3.69..2x (x+3)﹣3(x+3)=0 根据题意,原方程可化为:(x+3)(2x ﹣3)=0, ∴方程的解为:x 1=,x 2=﹣370. x ﹣2=x (x ﹣2)即x ﹣2﹣x (x ﹣2)=0 (x ﹣2)(1﹣x )=0 x 1=2,x 2=1;71. x 2+8x ﹣9=0 (x+9)(x ﹣1)=0 x 1=﹣9,x 2=172.x (2x ﹣5)=4x ﹣10. 原方程可变形为:x (2x ﹣5)﹣2(2x ﹣5)=0, (2x ﹣5)(x ﹣2)=0, 2x ﹣5=0或x ﹣2=0; 解得x 1=,x 2=2.74.(2x ﹣5)2﹣(x+4)2=0 因式分解,得[(2x ﹣5)+(x+4)][(2x ﹣5)﹣(x+4)]=0, 整理得,(3x ﹣1)(x ﹣9)=0 解得,x 1=,x 2=9.74.2(x ﹣1)2=x 2﹣1原方程即为2(x ﹣1)2﹣(x 2﹣1)=0,2(x ﹣1)2﹣(x+1)(x ﹣1)=0, (x ﹣1)[2(x ﹣1)﹣(x+1)]=0, (x ﹣1)(x ﹣3)=0, x 1=1,x 2=3; 75.(x ﹣1)(x ﹣+3)=0, ∴x 1=1,x 2=-376. 4x (2x ﹣1)=3(2x ﹣1);原方程可化为:4x (2x ﹣1)﹣3(2x ﹣1)=0, (2x ﹣1)(4x ﹣3)=0, 2x ﹣1=0或4x ﹣3=0, 解得:,;77. 2x 2+x ﹣1=0. 原方程可化为:(2x ﹣1)(x+1)=0, 2x ﹣1=0或x+1=0, 解得:,x 2=﹣1.78. (3x ﹣2)(x+4)=(3x ﹣2)(5x ﹣1); 解:(3x ﹣2)(x+4)﹣(3x ﹣2)(5x ﹣1)=0 (3x ﹣2)[(x+4)﹣(5x ﹣1)]=0 (3x ﹣2)(﹣4x+5)=0 3x ﹣2=0或﹣4x+5=0;79. (x+1)(x+3)=15.方程整理得:x2+4x﹣12=0( x+6)(x﹣2)=0x1=﹣6,x2=2.80. x2﹣5x﹣6=0解:(x﹣6)(x+1)=0,x﹣6=0或x+1=0,∴原方程的解是x1=6,x2=﹣1.81. x2﹣2x=99解:(x﹣11)(x+9)=0,x﹣11=0或x+9=0,∴原方程的解是x1=11,x2=﹣9.82. (x﹣3)2﹣4x+12=0解:(x﹣3)2﹣4(x﹣3)=0,(x﹣7)(x﹣3)=0,x﹣3=0或x﹣7=0,∴原方程的解是x1=3,x2=7.83. 4(x+1)2=9(x﹣2)2解:(2x+2)2=(3x﹣6)2,(2x+2+3x﹣6)(2x+2﹣3x+6)=0,即:(5x﹣4)(8﹣x)=0,x=8或x=,∴原方程的解是84. x2=2x移项,得x2﹣2x=0,因式分解,得x(x﹣2)=0,所以x=0或x=2.85. (x+4)2=5(x+4)移项,得,(x+4)2﹣5(x+4)=0,因式分解得,(x+4)[(x+4)﹣5]=0,x+4=0或x﹣1=0,解得,x1=﹣4,x2=187. 16(x﹣1)2=22516(x﹣1)2﹣152=0,所以[4(x﹣1)+15][4(x﹣1)﹣15]=0,即4x+11=0,4x﹣19=0,得x1=﹣,x2=.88. 4x2﹣4x+1=x2﹣6x+9方程变为(2x﹣1)2﹣(x﹣3)2=0,所以[(2x﹣1)+(x﹣3)][(2x﹣1)﹣(x﹣3)]=0,即3x﹣4=0,x+2=0,得x1=,x2=﹣2.89. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)2原方程变为[3(x+1)]2﹣[2(x﹣1)]2=0,所以[3(x+1)+2(x﹣1)][3(x+1)﹣2(x﹣1)]=0,即(5x+1)(x+5)=0,得x1=﹣,x2=﹣5.90. (x﹣2)2=(3﹣2x)2.(x﹣2)2﹣(3﹣2x)2=0,(x﹣2+3﹣2x)(x﹣2﹣3+2x)=0,(1﹣x)(3x﹣5)=0,所以x1=1,x2=91. (x+2)2﹣10(x+2)+25=0因式分解得,[(x+2)﹣5]2=0,解得,x1=x2=392.x2﹣2(p﹣q)x﹣4pq=0.∵x2﹣2(p﹣q)x﹣4pq=0∴(x﹣2p)(x+2q)=0,∴x1=2p,x2=﹣2q.93.x2+10x+21=0,把左边分解因式得:(x+3)(x+7)=0,则:x+3=0,x+7=0,解得:x1=﹣3,x2=﹣7.94.2(x﹣2)2=3(x﹣2)∵2(x﹣2)2=3(x﹣2),∴(x﹣2)(2x﹣4﹣3)=0,即x﹣2=0或2x﹣7=0,解得:x1=2,x2=;95. 3(x﹣5)2=2(5﹣x),变形得:3(5﹣x)2=2(5﹣x),移项得:3(5﹣x)2﹣2(5﹣x)=0,分解因式得:(5﹣x)(13﹣3x)=0,则:5﹣x=0,13﹣3x=0,解得:x1=5,x2=;96. ,分解因式得:(x ﹣)(x ﹣)=0,则x ﹣=0,x ﹣=0,解得:x1=,x2=.97. 5x2﹣4x﹣12=0,(5x+6)(x﹣2)=0,5x+6=0,x﹣2=0,x1=﹣,x2=2.98. (x ﹣)=5x (﹣x),(x ﹣)+5x(x ﹣)=0,(x ﹣)(1+5x)=0,x ﹣=0,1+5x=0,x1=,x2=﹣.99.9(x﹣2)2﹣4(x+1)2=0.9(x﹣2)2﹣4(x+1)2=0(3x﹣6+2x+2)(3x﹣6﹣2x﹣2)=0,整理得:(5x﹣4)(x﹣8)=0,解方程得:x1=,x2=8100..x(x﹣2)=2(x+6),x2﹣2x=2x+12,x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x1=6,x2=﹣2.∴原方程的根为x1=6,x2=﹣2101.(2)x2﹣8x+15=0;把左边分解因式得:(x﹣3)(x﹣5)=0,则x﹣3=0,x﹣5=0,解得:x1=5,x2=3;102. ;移项得:y2﹣2y+2=0,(y ﹣)2=0,两边开方得:y ﹣=0,则y1=y2=;103. 6x2﹣x﹣12=0.由原方程,得(2x﹣3)(3x+4)=0,解得,x=,或x=﹣104. 2x2﹣x﹣6=0 原方程化为(2x+3)(x﹣2)=0,解得x1=﹣,x2=2;105. ﹣x2+6x﹣5=0原方程化为x2﹣6x+5=0分解因式,得(x﹣1)(x﹣5)=0,解得x1=1,x2=5;106. (x﹣5)2=(2x﹣1)(5﹣x)移项,得(x﹣5)2+(2x﹣1)(x﹣5)=0,提公因式,得(x﹣5)(x﹣5+2x﹣1)=0,解得x1=5,x2=2107. (x+1)(x+2)=3x+6.∵(x+1)(x+2)=3x+6,∴(x+1)(x+2)=3(x+2),∴(x+1)(x+2)﹣3(x+2)=0,∴(x+2)(x+1﹣3)=0,∴x+2=0或x+1﹣3=0∴x1=﹣2,x2=2108. x2﹣9=0,x2=9,解得:x1=3,x2=﹣3,109. x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1,x2=﹣4,110. x2﹣3x+2=0,(x﹣1)(x﹣2)=0,解得:x1=1,x2=2111. 4(3x﹣1)2 =25(2x+1)2.∵4(3x﹣1)2﹣25(2x+1)2=0,∴[2(3x﹣1)﹣5(2x+1)][2(3x﹣1)+5(2x+1)]=0,∴2(3x﹣1)﹣5(2x+1)=0或2(3x﹣1)+5(2x+1)=0,∴x1=﹣,x2=﹣.112. (3x+5)2﹣4(3x+5)+3=0设3x+5=y,则原方程变为y2﹣4y+3=0,∴(y﹣1)(y﹣3)=0,解得,y=1或y=3;①当y=1时,3x+5=1,解得x=﹣;②当y=3时,3x+5=3,解得,x=﹣;∴原方程的解是x=﹣,或x=﹣;113. (3x+2)(x+3)=x+14 由原方程,得(x+4)(3x﹣2)=0,解得x=﹣4,或x=;114. 3(x+1)2=(x+1)移项得,3(x+1)2﹣(x+1)=0,提公因式得,(x+1)(3x+3﹣1)=0,即x+1=0或3x+3﹣1=0,解得x1=﹣1,x2=﹣115.(x﹣2)2﹣4=0∵(x﹣2﹣2)(x﹣2+2)=0,∴x﹣2﹣2=0或x﹣2+2=0,∴x1=4,x2=0;116.(x﹣3)2+2x(x﹣3)=0∵(x﹣3)(x﹣3+2x)=0,∴x﹣3=0或x﹣3+2x=0,∴x1=3,x2=1;117.(3x﹣1)2=(x+1)2∵3x﹣1=±(x+1),即3x﹣1=x+1或3x﹣1=﹣(x+1),∴x1=1,x2=0;118.(x+5)2﹣2(x+5)﹣8=0.∵[(x+5)﹣4][(x+5)+2]=0,∴(x+5)﹣4=0或(x+5)+2=0,∴x1=﹣1,x2=﹣7.119. x2﹣8x=9变形为:x2﹣8x﹣9=0,(x﹣9)(x+1)=0,则:x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;120. (x﹣2)2=(2x+3)2.变形为:(x﹣2)2﹣(2x+3)2=0,(x﹣2+2x+3)(x﹣2﹣2x﹣3)=0,(3x+1)(﹣x﹣5)=0,则:3x+1=0,﹣x﹣5=0,解得:x1=﹣,x2=﹣5.121. x2﹣3=3(x+1);整理得x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,∴x+1=0或x﹣4=0,∴x1=﹣1,x2=4;122. (y﹣3)2+3(y﹣3)+2=0 ∵(y﹣3+2)(y﹣3+1)=0,∴y﹣3+2=0或y﹣3+1=0,∴y1=1,y2=2;123. 7x(5x+2)=6(5x+2)∵7x(5x+2)﹣6(5x+2)=0,∴(5x+2)(7x﹣6)=0,∴5x+2=0或7x﹣6=0,∴x1=﹣,x2=124.(3)6(x+4)2﹣(x+4)﹣2=06(x+4)2﹣(x+4)﹣2=0,[3(x+4)﹣2][2(x+4)+1]=0,(3x+4)(2x+7)=0,3x+4=0,2x+7=0,解得:x1=﹣,x2=﹣;125. x2﹣(3m﹣1)x+2m2﹣m=0,(x﹣m)[x﹣(2m﹣1)]=0,x﹣m=0,x﹣(2m﹣1)=0,解得:x1=m,x2=2m﹣1126.x2﹣2x﹣224=0.x2﹣2x﹣224=0(x﹣16)(x+14)=0,解得:x1=16;x2=﹣14.127.方程两边同时乘以2,得(x+3)2=4(x+2)2,移项,得(x+3)2﹣4(x+2)2,=0,(x+3+4x+8)(x+3﹣4x﹣8)=0,即5x+11=0或﹣3x﹣5=0,解得x1=﹣,x2=﹣;128.5x(x﹣3)﹣(x﹣3)(x+1)=0.∵(x﹣3)(5x﹣x﹣1)=0,∴x﹣3=0或5x﹣x﹣1=0,∴x1=3,x2=∴x1=4,x2=﹣4.129.x2﹣11x+28=0x2﹣11x+28=0,(x﹣4)(x﹣7)=0,x﹣4=0,x﹣7=0,x1=4,x2=7130. 4y2﹣25=0;(2y+5)(2y﹣5)=0,所以y1=﹣,y2=;131.(2x+3)2﹣36=0;(2x+3)2﹣36=0;(2x+3+6)(2x+3﹣6)=0,所以x1=﹣,x2=;132. x2﹣3x+2=0;(x﹣1)(x﹣2)=0,所以x1=1,x2=2;133. 2t2﹣7t﹣4=0;(t﹣4)(2t+1)=0,所以t1=4,t2=﹣;134. 5y(y﹣1)=2(y﹣1)方程变形得:5y(y﹣1)﹣2(y﹣1)=0,因式分解得:(y﹣1)(5y﹣2)=0,可得y﹣1=0或5x﹣2=0,解得:y1=1,y2=.135. x2+(1+2)x+3+=0;(x+)(x+1+)=0x+=0或x+1+=0∴x1=﹣,x2=﹣1﹣.136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.原方程整理得:x2﹣5x﹣24=0(x﹣8)(x+3)=0∴x1=8,x2=﹣3.137.x2﹣3|x|﹣4=0|x|2﹣3|x|﹣4=0(|x|﹣4)(|x|+1)=0|x|﹣4=0|x|+1≠0∴|x|=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程复习(中考考点训练)A1、(2011甘肃兰州)下列方程中是关于x 的一元二次方程的是( )A .2210x x+= B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=A1、(2011四川南充市) 方程(x +1)(x -2)=x +1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,3 A2、(2011山东滨州)若x=2是关于x 的方程2250x x a --+=的一个根,则a 的值为______ B3、(2010河北省)已知x = 1是一元二次方程02=++n mx x的一个根,求 222n mn m++的值B4、(2011山东济宁)已知关于x 的方程x 2+bx +a =0有一个根是-a (a ≠0),则a -b 的值为A1、(2011四川成都)已知关于x 的一元二次方程)0(02≠=++m k nx mx 有两个实数根,则下列关于mk 4n 2-的判断正确的是 ( )(A) 042<-mk n(B) 042=-mk n (C) 042>-mk n (D) 042≥-mk nA2、(2011江苏苏州)下列四个结论中,正确的是 ( )A.方程x +x 1=-2有两个不相等的实数根B.方程x +x 1=1有两个不相等的实数根C.方程x +x1=2有两个不相等的实数根 D.方程x +x1=a (其中a 为常数,且|a|>2)有两个不相等的实数根A3、(2010年成都)若关于x 的一元二次方程2420x x k ++=有实数根,则k 的取值范围是 ,k 的非负整数值是A4、(北京) 已知关于x 的一元二次方程x 2-4x +m -1=0有两个相等的实数根,求m 的值及方程的根B5、(2011重庆江津)已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是变式训练:(2010年兰州)已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是(2010,安徽芜湖)关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足C6、(2011.潍坊)关于x 的方程x 2+2kx+k-1=0的根的情况描述正确的是( )A 、k 为任何实数,方程都没有实数根B 、k 为任何实数,方程都有两个不相等的实数根C 、k 为任何实数,方程都有两个相等的实数根D 、根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种A1、(2011江西)已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是 A2、(苏州2010中考)若一元二次方程x 2-(a+2)x+2a=0的两个实数根分别是3、b ,求a+b 的值A3、(2010山东烟台)方程x 2-2x-1=0的两个实数根分别为x 1,x 2,求(x 1-1)(x 2-1)的值A4、(2011江苏苏州)已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,求代数式(a -b )(a +b -2)+ab 的值. A5、(2011湖北荆州)关于x 的方程0)1(2)13(2=+++-a x a ax有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,求a 的值.A6、(2011四川南充市)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2(1)求k 的取值范围; (2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值.B7、(2011山东德州)若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________. C8、(2010广东中山)已知一元二次方程022=+-m x x(1)若方程有两个实数根,求m 的范围; (2)若方程的两个实数根为x 1,x 2,且3321=+x x ,求m 的值C9、(2010·绵阳)已知关于x 的一元二次方程x 2 = 2(1-m )x -m 2 的两实数根为x 1,x 2.(1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值.一、增长率问题:求解增长率问题的关键是正确理解增长率的含义。

一般地,如果某种量原来是a ,每次以相同的增长率(或减少率)x 增长(或减少),经过n 次后的量便是a(1+x)n (或a(1-x)n )1、(2010年兰州)上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是 A .128)% 1(1682=+a B .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a2、(2011山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A.()22891256x -= B.()22561289x -=C. 289(1-2x)=256D.256(1-2x)=2893、(2010台州市)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为4、(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普 通家庭,成为居民消费 新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为150万辆,而截止到2009年底,全市的汽车拥有量已达216 万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.第1题图5、(2011湖北襄阳,22,6分)汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?6、(广东)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份的营业额的平均月增长率。

7、(2010安徽)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/2m 下降到5月份的12600元/2m ⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0 )⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2m ?请说明理由。

8、(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?9、 (2011湖北宜昌,22,10分)随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008 年的月工资为2000 元,在2010 年时他的月工资增加到2420 元,他2011年的月工资按2008 到2010 年的月工资的平均增长率继续增长.(1)尹进2011年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6 月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242 元,于是他用这242 元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?二、图形面积 1、(2011江苏宿迁,16,3分)如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m 2,则AB 的长度是 m (可利用的围墙长度超过6m ).2、(2010哈尔滨)体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD .设边AB 的长为x (单位:米),矩形ABCD 的面积为S (单位:平方米). (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)若矩形ABCD 的面积为50平方米,且AB <AD ,请求出此时AB 的长。

3、(2010山东济南)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.CDBDF第4题图4、(2011.潍坊)已知线段AB 的条为a,以AB 为边在AB 的下方作正方形ACDB 。

取AB 边上一点E ,以AE 为边在AB 的上方作正方形AENM ,过E 作EF 垂直于CD ,垂足为F 。

若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为三、销售盈利问题:1、 (2011浙江衢州)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株? 小明的解法如下:解:设每盆花苗增加x 株,则每盆花苗有()3x +株,平均单株盈利为()30.5x -元,由题意, 得()()330.510x x +-=. 化简,整理,的2320x x -+=. 解这个方程,得121, 2.x x ==答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系: 请用一种与小明不相同的方法求解上述问题。

2、 (2011浙江义乌,19,6分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件. 设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?3、(2010年浙江省绍兴市)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?。

相关文档
最新文档