2020年中考一元二次方程专题训练题(附答案)
一元二次方程中考试题(含答案)

一元二次方程测试题一.选择题1.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=162.某学校准备修建一个面积为200m 2的矩形花圃,它的长比宽多10m ,设花圃的宽为x m ,则可列方程为【 】A .x (x -10)=200B .2x +2(x -10)=200C .x (x +10)=200D .2x +2(x +10)=2003. 若一元二次方程022=++m x x 有实数解,则m 的取值范围是 ( )A. 1-≤mB. 1≤mC. 4≤mD.21≤m 4. 已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A .a>2B .a<2C .a<2且a ≠1D .a<-241.5. 某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( )A . 168(1+x )2=128B . 168(1﹣x )2=128C . 168(1﹣2x )=128D . 168(1﹣x 2)=1286. 若方程2360x x m -+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是( )7.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ). A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解8.已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个实数根9.如果三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )A .B . 5C .D . 4 10.已知一元二次方程062=+-c x x 有一个根为2,则另一根为( )11.若关于x 的一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,则2013﹣a ﹣b 的值是( )A . 2018B . 2008C . 2014D . 201218.二.填空题12一元二次方程0322=--x x 的解是13. 已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是14. 已知03522=--x x n m 是方程和的两根,则=+nm 11 . 15.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是16.若关于x 的方程22(2)0ax a x a +++=有实数解,那么实数a 的取值范围是_____________三.解答题1.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售2.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款3.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长..4. 已知一元二次方程x 2-(2k+1)x +k 2+k=0 .(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.5. 用配方法解关于x 的一元二次方程ax 2+bx+c=0.6.已知:关于x 的方程kx 2-(3k -1)x +2(k -1)=0(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根x 1,x 2,且│x 1-x 2│=2,求k 的值.7.已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。
九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
2020中考数学 一元二次方程(包含答案)

22020 中考数学 一元二次方程(含答案)A 组 基础题组一、选择题1.用配方法解一元二次方程 x 2-6x-10=0 时,下列变形正确的是()A.(x+3)2=1B.(x-3)2=1C.(x+3)2=19D.(x-3)2=192.如果 x 2-x-1=(x+1)0,那么 x 的值为()A.2 或-1B.0 或 1C.2D.-13.一元二次方程 x 2-4x=12 的根是( )A.x 1=2,x 2=-6B.x 1=-2,x 2=6C.x 1=-2,x 2=-6D.x 1=2,x 2=64.已知关于 x 的一元二次方程 x 2+2x-(m-2)=0 有实数根,则 m 的取值范围是( )A.m>1B.m<1C.m≥1D.m≤15.若 1-√3是方程 x 2-2x+c=0 的一个根,则 c 的值为()A.-2B.4√3-2C.3-√3D.1+√36.关于 x 的一元二次方程(k+1)x 2-2x+1=0 有两个实数根,则 k 的取值范围是( )A.k≥0B.k≤0C.k<0 且 k≠-1D.k≤0 且 k≠-17.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为 x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x 2)D.100(1+2x)二、填空题8.方程 2x 2-3x-1=0 的两个根分别为 x 1,x 2,则x 1 +x 2 =.9.某加工厂九月份加工了 10 吨干果,十一月份加工了 13 吨干果.设该厂加工干果质量的月平均增长率为 x,根据题意可列方程为.10.如果关于 x 的一元二次方程 kx 2-3x-1=0 有两个不相等的实数根,那么 k 的取值范围是.A.x 1+x 2=-52三、解答题11.张晓为学校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过 10 件,则单价为 80 元;如果一次性购买多于 10 件,那么每增加 1 件,购买的所有服装的单价降低 2 元,但单价不得低于 50 元.按此优惠条件,张晓一次性购买这种服装付了 1 200 元.请问他购买了多少件这种服装.B 组 提升题组一、选择题1.已知一元二次方程 2x 2-5x+1=0 的两个根分别为 x 1、x 2,下列结论正确的是()2B.x 1x 2=1C.x 1,x 2 都是有理数D.x 1,x 2 都是正数2.已知关于 x 的一元二次方程 mx 2+2x-1=0 有两个不相等的实数根,则 m 的取值范围是()A.m<-1B.m>1C.m<1 且 m≠0D.m>-1 且 m≠0二、解答题3.已知关于 x 的一元二次方程 x 2+(2x+1)x+k 2=0 有两个不相等的实数根.(1)求 k 的取值范围;(2)设方程的两个实数根分别为 x 1,x 2,当 k=1 时,求x 1 +x 2 的值.-4.随着互联网的迅速发展,某购物网站的年销售额从 2013 年的 200 万元增长到 2015 年的392 万元.求该购物网站平均每年销售额增长的百分率.5.为积极响应新旧动能转换,提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为 30 万元,经过市场调研发现,每台设备售价为 40 万元时,年销售量为600 台;每台设备售价为 45 万元时,年销售量为 550 台.假定该设备的年销售量 y(单位:台)和销售单价 x(单位:万元)成一次函数关系.(1)求年销售量 y 与销售单价 x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于 70 万元,如果该公司想获得 10 000 万元的年利润,则该设备的销售单价应是多少万元?参考答案A 组 基础题组一、选择题1.D 方程移项得 x 2-6x=10,配方得 x 2-6x+9=19,即(x-3)2=19,故选 D.2.C 原方程等价于 x 2-x-2=0,则 a=1,b=-1,c=-2,Δ=(-1)2-4×1×(-2)=9,所以 x=-b±√b 2 4ac=1±√9=1±3, 2a2 2∴x 1+x 2=- = ,x 1·x 2= =- ,b3c13 113222∴x1 +x2 =(x 1+x 2) -2x 1·x 2=( ) -2×(- )=.2(-3) -4 × k × (-1) >0,所以 x 1=2,x 2=-1(舍去),故选 C.3.B 方程整理得 x 2-4x-12=0,分解因式得(x+2)(x-6)=0,解得 x 1=-2,x 2=6.故选 B.4.C ∵关于 x 的一元二次方程 x 2+2x-(m-2)=0 有实数根,∴Δ=b 2-4ac=22-4×1×[-(m-2)]≥0,解得 m≥1.故选 C.5.A ∵关于 x 的方程 x 2-2x+c=0 的一个根是 1-√3,∴(1-√3)2-2(1-√3)+c=0,解得 c=-2.故选 A.6.D 根据题意得 k+1≠0 且 Δ=(-2)2-4(k+1)≥0,解得 k≤0 且 k≠-1.故选 D.7.B若 月 平 均 增 长 率 为 x, 则 四 月 份 的 销 售 量 为 100(1+x) 支 , 五 月 份 的 销 售 量 为100(1+x)(1+x)支,即 100(1+x)2,故选 B.二、填空题8.答案134解析 ∵方程 2x 2-3x-1=0 的两个根分别为 x 1,x 2,a 2a22 2 2 49.答案 10(1+x)2=13解析 根据题意,可列方程为 10(1+x)2=13.10.答案 k>-9且 k≠04解析 ∵关于 x 的一元二次方程 kx 2-3x-1=0 有两个不相等的实数根,∴k≠0 且 Δ>0,k ≠ 0,即{解得 k>-9且 k≠0.4三、解答题x 1 + x 2 = ,51.D 由题意可得:{x 1x 2 = ,∵x 1x 2= >0,∴x 1、x 2同号,1又∵x 1+x2= >0,∴x 1,x 2 都是正数.5 即{m ≠ 0, x 1+x 2=- ,x 1x 2=,1129 3 911.解析 设他购买了 x 件服装,因为 80×10=800<1 200,所以列方程得:[80-2(x-10)]x=1 200,解得 x 1=20,x 2=30,当 x=20 时,80-2×(20-10)=60>50,符合题意;当 x=30 时,80-2×(30-10)=40<50,不符合题意,舍去.答:他购买了 20 件这种服装.B 组 提升题组一、选择题21222故选 D.Δ > 0,2.D 根据题意得{m ≠ 0,4 + 4m > 0, 解得 m>-1 且 m≠0.故选 D.二、解答题3.解析 (1)原方程可化为 3x 2+x+k 2=0,∵方程有两个不相等的实数根,∴Δ=12-4×3·k 2>0,解得-√3<k<√3.66(2)当方程 3x 2+x+1=0 的两个实数根分别为 x 1,x 2,k=1 时,33∴x 1 +x 2 =(x 1+x 2)2-2x 1x 2=1-2=-5.4.解析 设该购物网站平均每年销售额增长的百分率为 x,根据题意得 200(1+x)2=392,解得 x 1=0.4=40%,x 2=-2.4(不符合题意,舍去).答:该购物网站平均每年销售额增长的百分率为 40%.40k + b = 600, 45k + b = 550,5. 解 析(1) 设 年 销 售 量 y 与 销 售 单 价 x 的 函 数 关 系 式 为 y=kx+b(k≠0), 将(40,600),(45,550)代入 y=kx+b,得{k = -10,解得{b = 1 000,∴年销售量 y 与销售单价 x 的函数关系式为 y=-10x+1 000.(2)此设备的销售单价为 x 万元,则每台设备的利润为(x-30)万元,销售数量为(-10x+1 000)台,根据题意得(x-30)(-10x+1 000)=10 000,整理得 x 2-130x+4 000=0,解得 x 1=50,x 2=80.∵此设备的销售单价不得高于 70 万元,∴x=50.答:该设备的销售单价应是 50 万元.。
2020年中考数学复习二次函数和一元二次方程专题练习(部分有答案)

2020年中考数学复习二次函数与一元二次方程专题练习一、单选题1.将二次函数24y x x a =-+的图象向左平移1个单位长度,再向上平移1个单位长度,若得到的函数图象与直线2y =有两个交点,则a 的取值范围是( )A .3a <B .3a <C .5a <D .5a >2.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤43.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x在同一坐标系内的大致图象是( ) A . B . C . D .4.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 5.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x = C .11x =-,23x = D .13x =-,21x =6.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根; C .当1x >时,y 的值随x 值的增大而减小; D .当13x 时,()210.ax b x c +-+> 7.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点B 坐标为(3,0),对称轴为直线x =1.下列结论正确的是( )A .abc <0B .b 2<4acC .a +b +c >0D .当y <0时,﹣1<x <3 8.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点 9.已知抛物线265y x x =-+与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接AC ,BC ,则cos CAB ∠的值为( )A .12BC .2D 10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②m +n =3;③抛物线与x 轴的另一个交点是(﹣1,0);④方程ax 2+bx +c =3有两个相等的实数根;⑤当1≤x ≤4时,有y 2<y 1,其中正确的是( )A .①②③B .①②④C .①②⑤D .②④⑤二、填空题 11.已知二次函数2y x bx c =++的图象与x 轴的两个交点的横坐标分别为1x 、2x ,一元二次方程22140x b x ++=的两实根为3x 、4x ,且23143x x x x -=-=,则二次函数的顶点坐标为____________. 12.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是_____.13.抛物线22y ax ax =-与直线22y x a =-在同一平面直角坐标系中,若抛物线始终在直线的同一侧不与直线相交,则a 的取值范围是_____.14.已知:y 关于x 的函数22(21)1y k x k x =--+的图象与坐标轴只有两个不同的交点A 、B ,P 点坐标为(3,2),则PAB △的面积为_____.15.对于实数a ,b ,定义新运算“⊗”:a ⊗b= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.16.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 17.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_______.18.若抛物线y=x 2+bx-3的对称轴为直线2x =,则关于x 的方程250x bx +-=的解为_______. 19.已知关于x 的一元二次方程x 2+bx ﹣c =0无实数解,则抛物线y =﹣x 2﹣bx +c 经过____象限.20.如图,抛物线2815y x x =-+与x 轴交于A B 、两点,对称轴与x 轴交于点C ,点()0,2D -,点()06,-E ,点P 是平面内一动点,且满足=90,∠︒DPE M 是线段PB 的中点,连结CM .则线段CM 的最大值是________________.三、解答题21.已知点A (1,1)在抛物线y =x 2+(2m +1)x ﹣n ﹣1上(1)求m 、n 的关系式;(2)若该抛物线的顶点在x 轴上,求出它的解析式.22.己知函数223y ax x =--(a 是常数)(1)当1a =时,该函数图像与直线1y x =-有几个公共点?请说明理由;(2)若函数图像与x 轴只有一公共点,求a 的值.23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.24.已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.25.若一次函数y =mx +n 与反比例函数y =k x同时经过点P(x ,y)则称二次函数y =mx 2+nx -k 为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断y =2x -1与y =3x是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件t<n<8m ,并且一次函数y=(1+n)x+2m+2与反比例函数y =2020x 存在“共享函数”y=(m+t)x 2+(10m−t)x−2020,求m 的值.(3)若一次函数y =x +m 和反比例函数y =213m x+在自变量x 的值满足m ≤x ≤m +6的情况下,其“共享函数”的最小值为3,求其“共享函数”的解析式.26.在二次函数的学习中,教材有如下内容:例1 函数图象求一元二次方程212202x x --=的近似解(精确到0.1). 解:设有二次函数2122y x x =--,列表并作出它的图象(图1).观察抛物线和x 轴交点的位置,估计出交点的横坐标分别约为0.8-和4.8,所以得出方程精确到0.1的近似解为10.8x ≈-,2 4.8x ≈,利用二次函数2y ax bx c =++的图象求出一元二次方程20ax bx c ++=的解的方法称为图象法,这种方法常用来求方程的近似解.小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探宄方程32210x x -+=的近似解,做法如下:小聪的做法:令函数3221y x x =-+,列表并画出函数的图象,借助图象得到方程32210x x -+=的近似解. 小明的做法:因为0x ≠,所以先将方程32210x x -+=的两边同时除以x ,变形得到方程212x x x -=-,再令函数212y x x =-和21y x=-,列表并画出这两个函数的图象,借助图象得到方程32210x x -+=的近似解.请你选择小聪或小明的做法,求出方程32210x x -+=的近似解(精确到0.1).27.阅读材料:若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 也在抛物线1L 上(点A 与点B 不重合),我们称这样的两条抛物线1L 、2L 互为“友好”抛物线,如图1.解决问题:如图2,已知物线238:24L y x x =-+与y 轴交于点C .(1)若点D 与点C 关于抛物线3L 的对称轴对称,求点D 的坐标;(2)求出以点D 为顶点的3L 的“友好”抛物线4L 的解析式;(3)直接写出3L 与4L 中y 同时随x 增大而增大的自变量x 的取值范围.28.如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,﹣2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =﹣1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.参考答案1.C2.D3.D4.C5.C6.C7.D8.B9.D10.B11.325,24⎛⎫-- ⎪⎝⎭ 12.k <413.1a <或1a >14.1或1215.2.25或016.-1217.13x18.121,5x x =-=19.三、四.20.7221.(1)n =2m ;(2)y =x 2或y =x 2﹣4x +4. 22.(1)函数图像与直线有两个不同的公共点;(2)0a =或13a =-.23.(1)x 1=1,x 2=3;(2)1<x <3;(3)k <2.24.(1)y=﹣x 2+4x+5;(2)15.25.(1)存在共享函数,共享点的坐标为(1,3)--,3,22⎛⎫ ⎪⎝⎭;(2)2m =;(3)2429y x x =+-或2(9155y x x =---26.选择小明的作法,10.6x ≈-,21.0x ≈,3 1.6x ≈ 27.(1)点D 坐标为(4,4)(2)抛物线4L 的解析式为22(4)4y x =--+(3)24x ≤≤28.(1)y =14x 2+12x ﹣2;(2)58;(3)M 坐标为(205+)或(﹣285,45).。
中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)一、单选题(共12题;共24分)1.下列一元二次方程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.方程=0有两个相等的实数根,且满足=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.5.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.方程(x-1)•(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的方程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列方程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是()A. a≥B. 0<a≤C. - ≤a<0D. a≤-二、填空题(共6题;共12分)13.等腰三角形的腰和底边的长是方程x2-20x+91=0的两个根,则此三角形的周长为________.14.已知x=-1是方程x2+ax+4=0的一个根,则方程的另一个根为________ 。
中考数学专题练习 一元二次方程(含解析)

一元二次方程一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个2. x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=103.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣44.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,16.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或48.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.29.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对二、填空题11.方程3x2﹣5x=0的二次项系数是.12.5x2+5=26x化成一元二次方程的一般形式为.13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= ;如果a+b+c=0,则有一根为.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是.15.关于x的方程2x﹣3=0是一元二次方程,则m= .三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?一元二次方程参考答案与试题解析一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个【考点】一元二次方程的定义.【分析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.【解答】解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选B.【点评】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.2.x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=10【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】给方程左右两边都加上9,左边化为完全平方式,右边合并为一个常数,即可得到正确的选项.【解答】解:x2﹣6x=1,方程左右两边都加上9得:x2﹣6x+9=10,即(x﹣3)2=10.故选A【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程的二次项系数化为1,同时将常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣4【考点】解一元二次方程﹣因式分解法.【分析】首先把方程转化为一般形式,再利用因式分解法即可求解.【解答】解:(x﹣1)(x+3)=5,x2+3x﹣x﹣3﹣5=0,x2+2x﹣8=0,(x﹣2)(x+4)=0,解得x1=2,x2=﹣4.故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.5【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=1代入原方程,然后解关于m的一元一次方程即可.【解答】解:∵关于x的方程3x2﹣2x+m=0的一个根是﹣1,∴当x=﹣1时,由原方程,得3+2+m=0,解得m=﹣5;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.5.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,1【考点】解一元二次方程﹣公式法.【分析】先移项,化成一般形式,再得出答案即可.【解答】解:∵﹣x2+3x=1,∴﹣x2+3x﹣1=0,∴x2﹣3x+1=0,∴a=﹣1,b=3,c=﹣1(或a=1,b=﹣3,c=1),【点评】本题考查了解一元二次方程和一元二次方程的一般形式的应用,解此题的关键是能把方程化成一般形式.6.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】解x2=0得x1=x2=0;变形3x2=3x得x2﹣x=0,左边分解得到x(x﹣1)=0,则x1=0,x2=1.【解答】解:∵x2=0∴x1=x2=0;∵x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或4【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】先把等式左边分解因式得到(x﹣3y)(x﹣5y)=0,则x﹣3y=0或x﹣5y=0,即可得到x=3y 或x=5y.【解答】解:∵(x﹣3y)(x﹣5y)=0,∴x﹣3y=0或x﹣5y=0,∴x=3y或x=5y.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;二次根式的性质与化简.【分析】先将x=1代入方程x2﹣ax+1=0,可得关于a的方程,解方程求出a的值,再根据二次根式的性质化简即可.【解答】解:∵x=1是方程x2﹣ax+1=0的根,∴12﹣a×1+1=0,∴a=2,∴﹣=﹣=a﹣1﹣(3﹣a)=2a﹣4=2×2﹣4=0.故选B.【点评】本题主要考查了方程的解的定义,二次根式的性质与化简,解题关键是将已知的根代入方程,正确求出a的值.9.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式,可得(x+1)(x﹣1)=0,继而可求得答案.【解答】解:∵x(x+1)=x+1,∴x(x+1)﹣(x+1)=0,∴(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.故选C.【点评】此题考查了因式分解法解一元二次方程.此题难度不大,注意因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故选A.【点评】本题考查理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.二、填空题11.方程3x2﹣5x=0的二次项系数是 3 .【考点】一元二次方程的一般形式.【分析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.【点评】本题考查了一元二次方程的一般形式的应用,主要考查学生的理解能力.12.5x2+5=26x化成一元二次方程的一般形式为5x2﹣26x+5=0 .【考点】一元二次方程的一般形式.【专题】计算题.【分析】将方程右边的式子移项,并按照x的降幂排列,即可得到一元二次方程的一般形式.【解答】解:5x2+5=26x,移项得:5x2﹣26x+5=0.故答案为:5x2﹣26x+5=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a,b,c 为常数,且a≠0).13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= 0 ;如果a+b+c=0,则有一根为 1 .【考点】一元二次方程的解.【分析】由一元二次方程解的意义把方程的根x=﹣1代入方程,得到a﹣b+c=0;由a+b+c=0,可知a×12+b×1+c=0,故方程ax2+bx+c=0有一根为1.【解答】解:把x=﹣1代入一元二次方程ax2+bx+c=0得:a﹣b+c=0;如果a+b+c=0,那么a×12+b×1+c=0,所以方程ax2+bx+c=0有一根为1.故答案是:0;1.【点评】本题考查的是一元二次方程的解的定义,属于基础题型,比较简单.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是c=0 .【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义和根与系数的关系解答.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)的二次项系数是a,常数项是c,∴x1•x2=,又∵该方程有一根为零,∴x1•x2==0;∵a≠0,∴c=0.故答案为:0.【点评】本题主要考查了一元二次方程的解,在解答此题时,利用了根与系数的关系.15.关于x的方程2x﹣3=0是一元二次方程,则m= ±.【考点】一元二次方程的定义.【分析】根据一元二次方程的概念,可得出m2﹣1=2,解得m即可.【解答】解:∵关于x的方程2x﹣3=0是一元二次方程,∴m2﹣1=2,解得m=±.故答案为:.【点评】本题考查了一元二次方程的概念,二次项系数不为0,未知数的最高次数为2.三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)利用因式分解法求解即可;(3)先将方程整理为一般形式,再利用因式分解法求解;(4)利用因式分解法求解即可.【解答】解:(1)2x2﹣4x+1=0,这里a=2,b=﹣4,c=1,∵△=16﹣4×2×1=8,∴x==,∴x1=,x2=;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(3)(x﹣2)(x﹣3)=12,整理,得x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(4)9(x﹣3)2﹣4(x﹣2)2=0,[3(x﹣3)+2(x﹣2)][3(x﹣3)﹣2(x﹣2)]=0,(5x﹣13)(x﹣5)=0,解得x1=,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.【考点】解一元二次方程﹣公式法;配方法的应用.【专题】计算题.【分析】由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.【解答】解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.【点评】此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】首先设鸡场的长为x米,则宽为米,根据题意可得等量关系:鸡场的长×宽=130平方米,列出方程,解出x的值.【解答】解:设鸡场的长为x米,则宽为米,由题意得:x×=130,解得:x1=25,x2=13,∵墙长15米,25>15,∴25不合题意舍去,∴x=13,则: =10(米).答:鸡场的长为13米,则宽为10米.【点评】此题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,此题根据鸡场的面积列出方程即可.。
2020苏科版初三数学中考复习《一元二次方程》常考题(含解析)

2020苏科版初三数学中考复习《一元一次方程》常考题(含解析)一、一元二次方程的定义1.若方程(a -2)x 2-2018x+2019=0是关于x 的一元二次方程,则( ) A .a≠1 B .a≠-2C .a≠2D .a≠3【答案】C2.下列方程中是关于x 的一元二次方程的是( ) A .x =x 2﹣3 B .ax 2+bx +c =0 C .111x+= D .3x 2﹣2xy ﹣5y 2=0【答案】A3.关于x 的方程(m -1)x 2+(m+1)x+3m -1=0,当m_________时,是一元一次方程;当m_________时,是一元二次方程.【答案】=1 ≠14.方程(31)(23)1x x +-=中,二次项系数是____,一次项系数是____,常数项是____. 【答案】6 -7 -45.若关于x 的方程||(2)20m m x m --=是一元二次方程,求不等式(1)1m x m +->的解集. 【答案】1x <.6.方程11(2)(4)60m m xm x +--+++=。
(1)m 取何值时,方程是一元二次方程,并求此方程的解; (2)m 取何值时,方程是一元一次方程。
【答案】(1)m =-4,x =±1;(2)m =2或m =0或m =-2或m =1或m =-37.当m 为何值时,方程2(21)3(1)0m x mx m -+--=是关于x 的一元二次方程。
【答案】12m ≠二、解一元二次方程8.解下列方程:(1)x 2﹣2x ﹣99=0; (2)2x 2﹣3x ﹣2=0. (3)(1)(3)12x x -+= (4)235(21)0x x ++=(5)2481x = (6)2214x x ++= (7)2470x x --= (8)()2516x -=;(9)2410x x -+=. (10)()241360x --= (11)22240x x +-=【答案】(1)x=11或x=﹣9;(2)x=2或x=﹣12;(3) 125,3x x =-=;(4) 153x -+=,253x =-(6)9x 2=±(6)1231x x =-= (7)1222x x ==8)1219x x ==,;(9)1222x x ==10)14x =,22x =-;(11)14x =,26x =- 9、解方程32(1)2740x x x +-= 32(2)220x x x -+-=【答案】(1)x 1=0,x 2=-4,x 3=12;(2)x=2 10.利用因式分解法解下列方程(1)(x -2)2=(2x –3)2; (2)3(1)33x x x +=+;(3)x 2+3=0; (4)2(5)8(5)160x x ---+=.【答案】(1x 1=1,x 2=53;(2)x 1=–1,x 2=1;(3)x 1=x 2(4)x 1=x 2=9. 三、根的判别式解题(△=ac b 42-)11.关于x 的一元二次方程2(2)210m x x --+=有实数解,那么m 的取值范围是( ) A .3m < B ..3m …C .3m …D .3m …且2m ≠【答案】D12.若关于x 的一元二次方程2240kx kx -+=有两个相等的实数根,则k 的值为( ) A .0或4 B .4或8C .0D .4【答案】D13.已知,,a b c 是ABC ∆的三边长,且关于x 的方程222222()()0x a b x a b c +--+-=有两个相等的实数根,则ABC ∆是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .锐角三角形【答案】C14.已知关于x 的一元二次方程x 2﹣2kx +6=0有两个相等的实数根,则k 的值为( )A .B .C .2或3D 【答案】B15.关于x 的方程2(23)10mx m x m --+-=有两个实数根,则m 的取值范围是( ) A .98m £B .98m <C .908m m ≤≠且 D .908m m <≠且 【答案】C16.已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程的一个根是1,求另一个根及k 的值. 【答案】(1)当14k ≤时,原方程有两个实数根;(2)另一个根为0,k 的值为0.17.关于x 的方程2(6)260a x x --+=有实数根,求整数a 的最大值. 【答案】整数a 的最大值为6.四、配方法的应用18.若一元二次方程250x bx -+-=配方后为2(3)x k -=,则,b k 的值分别是( ) A .6,4 B .6,5C .6,5-D .64-,【答案】A19.不论x 取什么实数,225x x ++的值一定是一个正数,你能说明理由吗? 【答案】见解析20.已知223730216b a a b -+-+=,求a -的值.【答案】12a -=-.五、已知方程的根,求其它(此类题通常把方程的根代入方程计算)21.若一元二次方程26-0x kx +=的一个根是2x =,则原方程的另一个根是( ) A .3x = B .3x =-C .4x =D .4x =-【答案】A22.若a 、b 是关于x 的一元二次方程x 2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a 、b 、4,则n 的值为( ) A .8 B .7C .8或7D .9或8【答案】C23.已知m 是一元二次方程240x x --=的一个根 , 则代数式22m m +-的值是_____ 【答案】2-.24.若x=a 是方程x 2﹣x ﹣2015=0的根,则代数式2a 2﹣2a ﹣2015值为 ________ 【答案】201525.若关于x 的一元二次方程mx 2+(m -1)x -10=0有一个根为2,则m 的值是______. 【答案】226.若x=a 是方程x 2 +x−1=0的一个实数根,则代数式3a 2+3a−5的值是______. 【答案】−2.27.在等腰ABC ∆中,A B C ∠∠∠、、的对边分别为a b c 、、,已知3,a b =和c 是关于x 的方程21202x mx m ++-=的两个实数根,则ABC ∆的周长是__________.【答案】375或728.已知1x =是方程210x mx -+=【答案】0六、根与系数的关系(acx x a b x x =⋅-=+2121,)29.已知α、β是一元二次方程x 2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____. 【答案】130.一元二次方程x 2﹣3x ﹣2=0的两根为x 1,x 2,则x 12+3x 2+x 1x 2﹣2的值为_____. 【答案】731.已知m ,n 是方程x 2﹣x ﹣2018=0的两个实数根,则m 2+n 的值为_____. 【答案】2019;32.(1)利用求根公式计算,结合①①①你能得出什么猜想?①方程x 2+2x+1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________. ①方程x 2-3x -1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________. ①方程3x 2+4x -7=0的根为x 1=_______,x 2=________,x 1+x 2=________,x 1·x 2=________.(2) 利用求根公式计算:一元二次方程ax 2+bx+c =0(a≠0,且b 2-4ac≥0)的两根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.(3)利用上面的结论解决下面的问题:设x 1、x 2是方程2x 2+3x -1=0的两个根,根据上面的结论,求下列各式的值:①1211+x x ; ①2212+x x . 【答案】(1)两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数;① -1;-1;-2;1;① ;3;-1;① 73-;1;43-;73-;(2) 2b a -+;2b a-;b a -;c a ;(3)1232x x +=-,1212x x ⋅=-.①3;①134. 33.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2+k =0. (1)求证:方程有两个不相等的实数根;(2)若①ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5, ①若①ABC 是以BC 为斜边的直角三角形,求k 的值. ①若①ABC 是等腰三角形,求k 的值.【答案】(1)见解析;(2)①3k =,①k 的值为5或4.七、灵活创新题34.已知a 、b 、c 21(3)0b c +++=,则方程 2a 0x bx c ++= 的根为( ) A .-1,0.5 B .1,1.5C .-1,1.5D .1, -0.5【答案】C35.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( )A .a b c ==B .a b =C .b c =D .a c =【答案】D36.已知2P m m =-,2Q m =-,其中m 为任意实数,则P 与Q 的大小关系为( ) A .P Q > B .P Q = C .P Q <D .无法确定【答案】A37.如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请问一元二次方程x 2﹣6x +8=0是倍根方程吗?如果是,请说明理由. (2)若一元二次方程x 2+bx +c =0是倍根方程,且方程有一个根为2,求b 、c 的值. 【答案】(1)该方程是倍根方程,理由见解析;(2)当方程根为1,2时, b =﹣3,c =2;当方程根为2,4时b =﹣6,c =8.八、方程解应用题38.如图所示,某小区规划在一个长AD=40 m、宽AB=26 m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行(如图),其余部分种草。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考一元二次方程专题训练题(附答案)
一、选择题
1.若x 1,x 2(x 1<x 2)是方程(x ﹣a )(x ﹣b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )
A .x 1<x 2<a <b
B .x 1<a <x 2<b
C .x 1<a <b <x 2
D .a <x 1<b <x 2
2.已知a 是实数,则一元二次方程2x +ax ﹣4=0的根的情况是( )
A .没有实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .根据a 的值来确定
3.餐桌桌面是长为160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm ,则所列方程为( )
A .(160+x )(100+x )=160×100×2
B .(160+2x)( 100+2x) =160×100×2
C .(160+x )(100+x )=160×100
D .2(160x+100x)=160×100
4.若方程32x -4x-4=0的两个实数根分别为1x ,2x ,则12x x + =( ) A .-4 B .3 C .−43 D .
43
5.已知关于x 的一元二次方程22343mx x x +-=有两个不相等的实数根,则m 的值可以是( )
A.4
B.3
C.2
D.0
6.一元二次方程0)2(=-x x 的解是( )
A .x 1=1,x 2=2
B .0=x
C .2=x
D .x 1=0,x 2=2
7.判断一元二次方程x 2﹣2x+1=0的根的情况是( )
A .只有一个实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .没有实数根
8.用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为( ).
A .(x+1)2=6
B .(x+2)2=9
C .(x ﹣1)2=6
D .(x ﹣2)2=9
9.若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为( )
A .﹣2
B .2
C .4
D .﹣3
10.若x 1,x 2是方程x 2=4的两根,则x 1+x 2的值是( )
A .0
B .2
C .4
D .8
11.某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次.设每月的平均增长率为x ,则可列方程为( )
A .25(1+x )2=64
B .25(1﹣x )2=64
C .64(1+x )2=25
D .64(1﹣x )2=25
12.三角形的两边长分别为3和6,第三边的长是方程x 2-6x+8=0的一个根,则这个三角形
的周长是( )
A .9
B .11
C .13
D .14
二、填空题
13.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且3S ABC =∆,这二次方程的常数项是_____.
14.若m 、n (m <n )是关于x 的方程(x ﹣a )(x ﹣b )+2=0的两根,且a <b ,则a ,b ,m ,n 的大小关系用“<”连接的结果是 .
15.写出一个以-1和―2为两根的一元二次方程(二次项系数为1)__________________。
16.若一元二次方程ax 2=b (ab >0)的两个根分别是m+1与2m ﹣4,则a
b = . 17.为进一步发展基础教育,自2014年以来,某区加大了教育经费的投入,2014年该区投入教育经费7000万元,2016年投入教育经费8470万元.设该区这两年投入教育经费的年
平均增长率为x ,则可列方程为 .
18.方程x 2−16=0的根是_______; 方程 (x +1)(x −2)=0的根是______________;
三、计算题
19.解方程:
(1)(2)(3)12x x --= (2)231y +=
20.若x=0 是关于x 的一元二次方程 0823)2(2
2=-+++-m m x x m 的一个解,求实数m 的值和另一个根。
四、解答题
21.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x 元,,商场一天可获利润y 元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y 与x 之间的函数关系式,结合题意写出当x 取何值时,商场获利润不少于2160元?
22.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了迎接“双11”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件。
(1)降价前商场每月销售该商品的利润是多少元?
(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
答案
1.C .
2.C
3.B .
4.D
5.A
6.D
7.B
8.C.
9.A 10.A 11.A 12.C
13.6 14.a <m <n <b 15.2x +3x+2=0 16.4 17.7000(1+x )2
=8470
18. ±4, -1,2 19.(1)、6,121=-=x x ;(2)、3321=
=y y 20.m=-4,另一个根为2
1 21.(1)2000元;(2)①一天要获利润2160元,则每件商品应降价2元或8元;②当2≤x ≤8 时 商场获利润不少于2160元
22.(1)4800元;(2)60元.。