勾股定理
勾股定理的内容

勾股定理的内容勾股定理,又称勾股定理,是古代数学中的一个重要定理。
在直角三角形中,直角三角形的两条直角边的平方和等于斜边的平方。
其数学表达形式为:a^2 + b^2 = c^2其中a、b、c分别代表直角三角形的两条直角边和斜边。
起源与发展勾股定理虽然现在被称为勾股定理,但最早是在《周髀算经》中发现的,成为世界上最早的几何著作之一。
据传,勾股定理是周公提出的,故得名“周公定理”。
后来被《算经》作者张丘建列入《增衍之术》中,并首次用文字表达了这一定理。
在中国古代,勾股定理的应用非常广泛,不仅用于地测和农业,还被运用在建筑和军事领域。
随着数学的发展,勾股定理也在世界各地广泛传播,并成为数学中的重要定理之一。
数学证明勾股定理的证明有多种方法,其中最著名的是毕达哥拉斯的证明。
毕达哥拉斯定理利用几何形状和平行移动来证明直角三角形的两个边的平方和等于斜边的平方。
这一证明方法被后人发扬光大,成为数学学科中的一个经典证明。
应用场景勾股定理在现代生活中的应用也非常广泛。
例如,在建筑领域中,利用勾股定理可以计算建筑物的结构稳定性;在工程设计中,可以测量距离和角度;在电子领域中,可以应用于信号传输和数据处理等方面。
总的来说,勾股定理是数学中的一个重要定理,不仅对几何学有重要意义,还在现代科学技术中有着广泛的应用。
结语通过对勾股定理的介绍,我们可以看到它在数学史上的重要地位和广泛应用。
了解勾股定理不仅有助于我们理解数学知识的深层含义,还可以帮助我们应用数学知识解决现实生活中的问题。
在学习数学的过程中,我们应该对勾股定理有更多的了解和探索,进一步探索数学世界的奥秘。
勾股定理

板块一 勾股定理1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、 弦——斜边。
CAB cba勾股定理3.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
4.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
板块一、勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c = ; (2)如果68a b ==,,则c = ; (3)如果512a b ==,,则c = ; (4)如果1520a b ==,,则c = .【例3】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为【例4】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .【例5】 已知直角三角形的两边长分别为3、4,求第三边长.【例6】 已知直角三角形两边x ,y 的长满足240x -,则第三边长为______________.【例7】 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20【例8】 如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为【例9】 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y > C .x y < D .不确定CA【例10】 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)68【例11】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.8【例12】 若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为【例13】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例14】 如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为CBA【例15】 已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,求EC 的长.【例16】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【例17】 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3CBA【例18】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )cbaCBAA. a b c <<B. c a b <<C. c b a <<D. b a c <<【例19】 设,,,a b c d 都是正数。
勾股定理

勾股定理勾股定理,又称商高定理,西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean theorem或Pythagoras's theorem)是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。
据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
在中国,相传于商代就由商高发现,记载在一本名为《周髀算经》的古书中。
而三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
直角边的平方和等于斜边的平方勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么A2+ b2= c2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
一种证明方法的图示:左右两正方形面积相等,各扣除四块蓝色三角形后面积仍相等勾股定理勾股定理的美妙证明证明[广西梁卷明的证法]:如图1,分别以AC、CB、BA为边长作正方形ACNM、正方形CBSQ、正方形BAPR,则易知⊿ABC≌⊿RBS,从而点Q 必在SR上,又把梯形ABNM沿BR方向平移,使点B与点R重合,则梯形ABNM平移至梯形PRQT的位置;显然⊿RSB≌⊿PTA, 如图2,再把⊿RSB沿BA方向平移,使点B与点A重合,则⊿RSB必与⊿PTA重合!故有:正方形ACNM的面积+正方形CBSQ的面积=正方形BAPR的面积,即得: a的平方 + b的平方 = c的平方.勾股定理【梁卷明证法】勾股定理 - 勾股数组勾股数组是满足勾股定理a2+ b2= c2的正整数组(a,b,c),其中的a,b,c称为勾股数。
例如(3,4,5)就是一组勾股数组。
任意一组勾股数(a,b,c)可以表示为如下形式:a = m−n,b = 2mn,c = m + n,其中勾股定理。
勾股定理公元前500-200年,《周髀算经》的图解《勾股圆方图》勾股定理 - 参考资料勾股定理 - 历史上的勾股定理定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方。
勾股定理

勾股定理勾股定理在西方又称“毕达哥拉斯定理”,就是指三角形两直角边的平方和等于斜边的平方。
中国古代称两直角边为勾(一般指较短直角边)和股、斜边为弦,所以也称此定理为勾股定理。
我国最早的数学文献《周髀算经》(约成书于公元前157年前)中记述了周公(击武王弟弟)与古代数学家商高的一段对话,首先提出了勾股形的问题。
商高说:“故折矩,以为勾广三,股修四,径隅五”。
意思说,如果直角三角形两直角边长是3和4,那么它的斜边必定是5。
这是勾股定理的一个特例。
商高时代,约比古希腊数学家毕达哥拉斯早500年。
我国对于勾股定理的证明,最早的形式见于公元3世纪吴国人赵爽(字君卿)所著《勾股圆方图注》,在这篇短文中,赵爽用割补法画了一张所谓的“弦图”(见图),其中每一个直角三角形称为“朱实”,中间的一个小正方形叫“中黄实”,以弦为边的正方形ABEF 叫“弦实”。
由于四个朱实加上一个中黄实就等于弦实,所以有下式成立:4×21ab+(b-a ) 2=c 2 化简后即得a 2+b 2=c 2这个证法通过图形的分割、移补,精霖总结了我国东汉以前在勾股定理方面的光辉成就。
赵爽的证法与印度数学家婆斯伽罗在公元1150年的证法相似,婆氏也曾作出类似的图形。
世界上对勾股定理的证明方法很多,1940年有人出了一本勾股定理证明专集,其中收集了365种证法,当然,证法还不止这些。
1876年,加菲尔德(1881年任美国总统)想出了一个相当精采的证明: 如图,梯形面积=2b a ×(a+b ) =21(a 2+2ab+ b 2). 又可得梯形面积=21c 2+21ab+21ab =21(c 2+2ab ) 比较两式,可得a 2+b 2=c 2 。
勾股定理

一、勾股定理基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c=⨯+=+ 大正方形面积为222()2S a b a a b b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在A B C ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c为三边的三角形是锐角三角形;cba HG FEDCBAbacbac cabcab a bcc baED CBA②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理详解

勾股定理详解勾股定理定义及公式勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组程a²+ b²= c²的正整数组(a,b,c)。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a和b,斜边为c,那a²+b²=c²。
勾股定理逆定理勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。
如果a²+b²>c²,则△ABC是锐角三角形。
如果a²+b²<c²,则△ABC是钝角三角形。
勾股定理的证明据不完全统计,勾股定理的证明方法已经多达400多种了。
下面我便向大家介绍几种十分著名的证明方法。
【证法1】赵爽“勾股圆方图”第一种方法:边长为c的正方形可以看作是由4个直角边分别为a、b,斜边为c的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为c的正方形可以看作是由4个直角边分别为a、b,斜边为c的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为(b-a)的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
【证法2】课本的证明做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4×1/2ab=c²+4×1/2ab,整理得a²+b²=c²【证法3】1876年美国总统Garfield证明以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于2/1ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD ≌RtΔCBE,∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º,∴∠AED + ∠BEC = 90º.∴∠DEC = 180º―90º= 90º.∴ΔDEC是一个等腰直角三角形,它的面积等于1/2c².又∵∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于1/2(a+b)².∴1/2(a+b)²=2×1/2ab+1/2c².∴a²+b²=c².【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的公式

勾股定理的公式
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理公式是a的平方加上b的平方等于c的平方。
如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a^2+b^2=c^2。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理知识点总结

勾股定理知识点总结勾股定理是数学中一个著名的定理,也是初中数学学习的重点内容之一。
它描述了直角三角形中三条边的关系,并且可以应用于解决许多与三角形和几何有关的问题。
本文将对勾股定理的相关知识点进行总结和探讨。
一、勾股定理的表述和公式勾股定理的表述是:“直角三角形斜边上的正方形面积等于其他两边上的正方形面积之和。
”这就是我们通常所说的勾股定理。
勾股定理的公式可以表示为:a² + b² = c²其中,a、b代表直角三角形的两条直角边,c代表直角三角形的斜边。
二、勾股定理的证明勾股定理的证明有多种方法,在此我们以几何证明和代数证明为例进行说明。
几何证明:通过图形的构造和推理来证明勾股定理。
一种常见的几何证明方法是构造以a、b、c为边长的正方形,然后计算正方形的面积,从而证明等式成立。
代数证明:通过数学计算和变换来证明勾股定理。
一种常见的代数证明方法是将直角三角形的三条边的平方进行计算,然后将其相加和化简,最终得到等式成立的结果。
三、勾股定理的应用勾股定理不仅仅是一个数学定理,还有着广泛的应用。
1. 解决三角形的边长和角度问题:通过勾股定理,我们可以已知两条边长来求解第三条边长,或者已知两条边长和一个角度来求解其他角度。
2. 判断三角形的形状:我们可以利用勾股定理来判断一个三角形是直角三角形、锐角三角形还是钝角三角形,从而进一步研究和分析三角形的性质。
3. 解决几何问题:勾股定理还可以应用于解决一些几何问题,例如求解两条直线的交点坐标、求解平面图形的面积、判断是否存在重合图形等等。
四、勾股定理的推广除了直角三角形,勾股定理还可以推广到其他形状的图形。
1. 平方和定理:平方和定理是勾股定理的推广,它描述了非直角三角形中三条边平方的关系。
2. 多边形的对角线:在多边形中,通过某个顶点可以连接其他顶点,形成对角线。
对角线之间的关系也可以通过勾股定理进行研究和计算。
3. 空间中的勾股定理:在空间几何中,勾股定理可以推广到三维空间,描述直角棱柱、直角锥等图形的三条棱或边之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章练习卷(勾股定理)
班级__________ 姓名____________
座号__________ 评分
_____________
一、填空题
1、在Rt△ ABC 中,/ C=90°,(1 )若a=6,b=8,则c= ______ ;2)若c=13 ,b=12,则a= _________ (3 )若a=21 , c=28,则b= ___________ ;
2、在Rt△ ABC中,/ C=90°,若a=3,则另一直角边b与斜边c的关系是_________________________ ;
3、在等腰直角三角形中,一边长为10cm,则另外两边分别为___________________________________ ;
4、在Rt△ ABC 中,/ ACB=90 °, CD 丄AB 于D, AC=6 , AB=10 ,贝V BC= , BD= ____ , AD= ___
5、在等腰直角三角形中,斜边长为50cm,则它的面积为________________________ ;
6、若一直角三角形的一直角边与斜边的比为2: 3,且斜边长是20,则此三角形的面积是____________
7、在直角三角形中,三边长分别为6、8、x,则x= ___________________ ;
8、等腰三角形腰和底边的比是3: 2,若底边长为6,则底边上的高是
一、选择题
9、以下各组数为三角形的三边,则不是直角三角形的是(
C、-、2、
2
A、13、12、5
B、25、24、8
10、一直角三角形的斜边比一直角边大4,另一直角边长为2
8,
5、2一11、7
则斜边长为(
C、10
D、12
11、下列三角形中,一定是直角三角形的有()
①有两个内角互余的三角形;②三边长为m2n2、③三边的比为3: 4: 5的三角形;④三个内角的比是2nm、m2n2(m>n>0)的三角形;
1 : 2: 3的三角形;
A、1个
B、2个
C、3个
D、4个
12、已知在△ ABC中,AB=AC , AD丄BC于D,则下列正确的是(
A、BC<AB
B、/ B+ / CAD =90 0
C、AD>BD
)
D、/ B> / BAD
13、若三角形的三边长分别为a、b、c,且a2+b2>c2,则这个三角形一定是()
A、锐角三角形
B、直角三角形
14、直角三角形的周长为12cm,斜边长为
A、12cm2
B、10cm2
三、解答题
15、如图,在△ ABC中,CD丄AB于D ,
5cm,则其面积为()
C、8cm2
D、6cm2
若AD=2BD , AC=3 , BC=2,求BD 的长。
C、钝角三角形
D、不能确定
D
16、已知△ ABC 与厶 A'BC 中,/ C=Z C ' =90°,/ A= / A
BC=6 , AC=8 ,△ A'B'C 的周长为
72,求△ ABC 的各边长。
ACB= / ADC=90 °,AC= .. 6,AD=2,请问当 AB 为何值时,这
两个直角三角形相似?
边形ABCD 的面积。
20、已知在△ ABC 中,BC=9 , AB=17 , AC=10 , AD 丄 BC ,求 AD 的长。
C
D
17、如图,在两直角三角形中,/
18、如图,在四边形 ABCD 中,AB=AD=8 , / A=60°,/ D=150°,,已知四边形的周长为
32
,求四
19、在平静的湖面上,有一支红莲,高出水面 1m , —阵风吹来,红莲吹到一边,花朵齐及水面,
已知红莲移动的水平距离为
2m ,求这里的水深是多少米?。