全息照相感想和看法
全息影像实践课心得体会

随着科技的不断发展,全息影像技术逐渐走进我们的生活,成为展示、传播信息的一种新型手段。
我有幸参加了学校举办的全息影像实践课,通过这次课程的学习和实践,我对全息影像技术有了更深入的了解,同时也收获了许多宝贵的经验和感悟。
一、课程概述本次全息影像实践课主要分为理论学习和实践操作两个部分。
理论部分主要介绍了全息影像的基本原理、发展历程、应用领域等;实践操作部分则通过实际操作,让我们亲身体验全息影像的生成、展示过程。
二、学习心得1. 全息影像技术的原理全息影像技术是基于光的干涉和衍射原理。
通过将物体反射的光波与参考光波叠加,形成干涉条纹,再经过透镜或其他光学元件,使干涉条纹重新发生衍射,从而形成全息图像。
这种技术可以实现三维图像的实时显示,具有极高的信息密度和真实感。
2. 全息影像技术的发展历程全息影像技术自20世纪40年代诞生以来,经历了从理论研究到实际应用的漫长过程。
从早期的激光全息到现在的数字全息,全息影像技术不断取得突破。
随着计算机技术的发展,全息影像技术已经广泛应用于广告、影视、娱乐、教育等领域。
3. 全息影像技术的应用领域全息影像技术在各个领域都有广泛的应用。
在教育领域,全息影像可以用于展示生物、地理等学科的实物模型,提高学生的学习兴趣和效果;在广告领域,全息影像可以用于展示产品,增强广告的吸引力和传播效果;在娱乐领域,全息演唱会、全息舞台剧等新兴业态为观众带来了前所未有的视听体验。
三、实践操作体会1. 实践操作过程在实践操作环节,我们首先学习了全息影像的生成原理,然后通过实验设备亲自动手制作全息图像。
具体操作步骤如下:(1)选择合适的实验材料,如透明胶片、激光笔、全息干板等。
(2)将透明胶片固定在全息干板上,调整激光笔的位置,使激光束垂直照射到透明胶片上。
(3)将物体放置在透明胶片前,调整物体与胶片之间的距离,使物体反射的光波与激光束发生干涉。
(4)将干涉条纹记录在全息干板上,经过显影、定影等处理,即可得到全息图像。
全息照相实验报告

一、实验目的1. 了解全息照相的基本原理及其应用领域。
2. 掌握全息照相的拍摄方法和实验技术。
3. 通过实验观察全息图的记录和再现过程,理解全息成像的原理。
4. 分析实验结果,探讨全息照相技术的优缺点及其在相关领域的应用前景。
二、实验仪器1. 防震光学平台2. 氦氖激光器3. 高频滤波器4. 扩束透镜(两个)5. 分束器6. 反射镜(两个)7. 全息型干版8. 显影液和定影液9. 暗房设备三、实验原理全息照相是一种利用光的干涉和衍射原理进行三维成像的技术。
其基本原理如下:1. 全息记录:将物体发出的光波(物光波)与参考光波进行干涉,在感光材料(全息干版)上记录下干涉条纹,这些条纹称为全息图。
2. 全息再现:将全息图置于适当的照明条件下,通过衍射原理,使全息图中的干涉条纹重新产生干涉,从而再现物体的三维图像。
四、实验步骤1. 搭建实验装置:按照实验原理图搭建全息照相实验装置,包括光源、分束器、反射镜、扩束透镜、全息干版等。
2. 拍摄全息图:将物体放置于全息干版前,调整光源和反射镜的位置,使物光波和参考光波进行干涉。
使用相机拍摄干涉条纹,得到全息图。
3. 冲洗全息图:将拍摄得到的全息图放入显影液中浸泡,待显影完成后,取出放入定影液中定影。
4. 观察全息再现:将冲洗好的全息图放置于适当的位置,调整光源和反射镜的位置,观察全息再现的物体图像。
五、实验结果与分析1. 全息图的记录:通过实验,成功记录了物体的全息图,观察到的干涉条纹清晰可见。
2. 全息图的再现:调整光源和反射镜的位置后,成功再现了物体的三维图像,观察到的图像具有立体感和真实感。
六、实验总结1. 全息照相技术具有记录物体三维信息的能力,能够再现物体的立体图像,具有广泛的应用前景。
2. 全息照相实验操作较为复杂,需要精确控制实验装置和光源,才能获得高质量的全息图。
3. 全息照相技术在光学、医学、生物、材料等领域具有广泛的应用,如全息存储、全息显示、全息测量等。
全息照相实验报告

全息照相实验报告这是一个关于全息照相实验的报告。
全息照相是一种非常特殊的照相技术,它可以记录物体表面的光波干涉图像。
与传统的照像技术不同,全息照相不仅可以记录物体的形态、颜色和亮度等信息,还可以记录物体的立体信息。
这是一种非常有趣的技术,并且在许多领域都有应用。
这次实验我们选择了一个简单的物体:一个三角锥。
我们用激光器照射三角锥,然后通过一系列光学元件,使得反射光波穿过一个干涉仪,形成一个干涉图像。
然后我们将照相底片放入干涉图像中,让它记录下干涉图像的信息。
经过大约5分钟的曝光,我们取出照相底片,将它进行显影和定影的处理,最终得到了一张全息照相的照片。
这张照片上不仅记录了三角锥的形态、颜色和亮度信息,还记录了它的立体信息。
如果我们将这张照片放入一个专门的全息观察器中观察,我们就可以看到一个非常逼真的三维图像。
这是因为当我们观察照片时,光波穿过了照相底片,并在重建过程中再次干涉,使得我们看到了一个虚拟的三维图像。
这种全息照相的应用非常广泛。
它可以用于制造透镜、探测微小变化、重建生物分子和细胞的三维图像等。
此外,它还可以用于制造全息贺卡、全息商标等实用产品。
然而,全息照相也存在一些局限性。
首先,它需要使用激光器等非常昂贵的器材,并需要非常精确的光学调节。
其次,它需要长时间曝光,并且对环境中的震动、光强等干扰很敏感。
最后,全息照相的照片只能使用同样的光源观察,否则会失去记录的信息。
总的来说,全息照相是一种非常有趣和实用的技术。
虽然它存在一些局限性,但随着技术的不断进步,我们相信它一定会在更多的领域得到应用。
全息照相原理及特点浅述

全息照相原理及特点浅述
全息照相是一种利用光的干涉原理来记录物体三维形态的技术。
它的
原理是将物体的光波和参考光波在光敏材料上叠加,形成干涉条纹,
通过光学处理和显影,可以获得物体的全息图像。
全息照相的特点主要有以下几个方面:
1. 三维效果好:全息照相可以记录物体的全息图像,包括物体的形状、大小、深度等信息,因此可以呈现出非常逼真的三维效果。
2. 高分辨率:全息照相可以获得非常高的分辨率,可以记录物体的微
小细节,因此在科学研究和工程设计等领域有广泛的应用。
3. 可重复使用:全息照相的光敏材料可以重复使用,因此可以多次记
录和重现物体的全息图像。
4. 光学处理简单:全息照相的光学处理相对简单,只需要使用一些基
本的光学元件,如透镜、分束器等,就可以完成全息图像的记录和重现。
5. 应用广泛:全息照相在科学研究、工程设计、艺术创作等领域都有
广泛的应用,如在生物医学领域可以用于记录细胞和组织的三维结构,而在工程设计领域可以用于制造高精度的零部件和模具。
总之,全息照相是一种非常有用的技术,它可以记录和重现物体的三
维形态,具有高分辨率、可重复使用、光学处理简单等特点,因此在
各个领域都有广泛的应用前景。
全息照相大学物理实验总结6篇

全息照相大学物理实验总结6篇第1篇示例:全息照相是一种利用光的干涉原理来记录和重现三维物体形态的技术。
在物理实验中,全息照相常常被用来展示光的波动性质、干涉现象以及光的衍射特性。
通过对全息照相的实验,我们可以更好地理解光的性质和物理规律。
在进行全息照相实验时,我们首先需要准备一块全息记录板和一个激光光源。
将三维物体放置在激光的光路上,并将全息记录板放置在物体后方适当的位置上。
然后打开激光光源,让光线照射到物体上,经过反射或透射后,光线通过全息记录板并记录下物体的三维信息。
实验中最重要的部分是照相过程,通过调整全息记录板和光源的位置,确保光线正确定位并记录下物体的干涉模式。
照相完成后,我们可以用激光光源再次照射全息记录板,这时会出现全息照相的重现效果,即我们可以看到物体的三维形态在全息图上精确还原。
通过全息照相实验,我们可以观察到光的波动性质。
根据干涉原理,当激光光线照射到物体表面时,光线会发生干涉现象,形成明暗交替的干涉条纹。
这些干涉条纹记录下了物体的表面形态信息,进而被全息记录板保存下来。
在重现过程中,光线再次照射到全息记录板上,干涉条纹会产生叠加效应,使得物体的立体形态得以重现。
全息照相还可以展示光的衍射特性。
当光线通过物体的边缘或孔隙时,会发生衍射现象,产生波纹状的光斑。
这些衍射图样也会被全息记录板记录下来,使得在全息图中可以清晰地看到物体的细微结构和表面特征。
全息照相是一种非常精密和高级的光学技术,通过实验可以更好地理解光的波动性质、干涉现象和衍射特性。
通过对全息照相的学习和实践,我们可以更深入地了解光的行为规律,为日后的光学研究和应用打下坚实的基础。
希望以上内容能对大家有所帮助,谢谢阅读!第2篇示例:全息照相大学物理实验总结全息照相是一种利用光的干涉原理来记录物体三维形状的技术,广泛应用于科学研究、医学成像、艺术创作等领域。
在物理学实验中,全息照相也是一个重要的实验项目,通过全息照相实验可以深入理解光的波动性和干涉原理,提高学生对光学现象的认识和理解。
全息照相大学物理实验总结_实验教师年度工作总结

全息照相大学物理实验总结_实验教师年度工作总结我设计了一系列全息照相实验,涵盖了从基础理论到高级应用的多个方面。
在实验中,我注重让学生自己动手实验,亲身体验实验的过程,培养他们的实际操作能力。
在第一次实验课中,我引导学生使用全息照相仪器和激光器进行简单的全息照相实验,并通过实验结果解释了全息照相的原理。
而在后续的实验中,我设计了更加复杂的实验项目,如全息干涉实验、全息照相应用等,以帮助学生更深入地理解全息照相的原理。
我注重学生的实验数据分析能力的培养。
在实验课程中,我要求学生及时记录实验数据,并进行数据处理。
在实验后,我组织了讨论,引导学生对实验数据进行分析和解释,并提出他们的独立见解。
通过这样的实践,学生们不仅对全息照相的原理有了更深入的理解,还锻炼了他们的科学思维和实验数据分析能力。
我还通过组织实验报告的撰写,培养了学生的科研能力和综合素质。
在每个实验结束后,我要求学生撰写实验报告,详细介绍实验的目的、原理、实验过程和结果分析等内容。
在撰写实验报告的过程中,学生们不仅深入思考实验问题,还需要查阅相关资料和进行数据分析。
通过这样的实践,学生们提高了自己的科研能力和综合素质,为以后的科研工作打下了基础。
在本学期的实验教学中,我也发现了一些存在的问题和不足之处。
由于实验设备和仪器的限制,学生们在实验过程中遇到了一些困难,如设备使用不熟练、实验数据的稳定性等。
这些问题对学生的实验体验造成了一定的影响。
实验内容的设计有时过于复杂,导致有些学生难以理解和完成实验任务。
在今后的实验教学中,我需要更加注重实验设备和仪器的维护,并根据学生的实际情况调整实验内容,使实验更加符合学生的学习需求。
通过本学期的全息照相实验教学,学生们不仅学会了基本的实验技能,还深入了解了全息照相的原理和应用。
通过实验数据的分析和实验报告的撰写,学生们提高了自己的科研能力和综合素质。
也有一些问题和不足之处需要改进。
在今后的教学工作中,我将进一步改进实验教学方法,提高学生的实验技能和实验思维,使实验教学更加高效和有益。
对全息照相的心得体会

对全息照相的心得体会全息照相是一种利用激光技术制作出具有全息效果的照片的特殊摄影技术。
全息照相可以实现对物体具有立体、真实、全方位的记录和再现,因此在科学研究、艺术创作、商业应用等领域发挥着重要的作用。
在学习和实践全息照相的过程中,我深感全息照相带给人们的震撼和惊艳。
首先,全息照相的技术原理和制作过程让我印象深刻。
全息照相使用激光光源,将光束分为物体光和参考光,物体光照射在被摄物体上,经过反射或透射后形成物体波,参考光则直接照射在全息板上,经计算机处理形成参考波。
物体波和参考波叠加在一起形成干涉图样,记录在全息版上。
在重现时,将参考光重新照射到全息版上,干涉图样重新发生,产生视觉上的立体效果。
整个过程需要非常精确的光路调整和实验操作,对于摄影师来说是一种全新的技术挑战。
其次,全息照相带来的视觉效果令人惊叹。
全息照片呈现出的立体图像给人一种身临其境的感觉,让人仿佛能够触摸到被摄物体的表面细节。
与传统照片不同,全息照片具有立体感和深度感,通过不同的角度观察,可以看到不同的景象和细节,这种视觉效果对于物体的展示和传达信息起到了重要作用。
无论是科学实验中捕捉和记录微观结构,还是艺术创作中展现想象力和创造力,全息照相都是一种非常有力的工具。
另外,全息照相的应用领域非常广泛。
在科学研究中,全息照相可以记录和研究物体的三维结构,如微观生物的形态、晶体的形状等,为科学家提供了更多的数据和细节,推动了科学的发展。
在艺术创作中,全息照相可以实现艺术家想象力的立体表达,为观众带来更加生动和震撼的艺术体验。
在商业应用中,全息照相被广泛用于商品的展示和广告宣传,通过立体的效果吸引消费者的注意力,提高销售效果。
可以说,全息照相已经成为了现代社会不可或缺的一部分。
最后,全息照相的学习和实践对我个人的成长和认知产生了积极的影响。
在学习过程中,我不仅加深了对光学原理的理解,还提高了实验操作和调试技术的能力。
通过实践,我深入了解了全息照相技术的制作过程,掌握了正确的操作方法和注意事项。
全息照相大学物理实验总结8篇

全息照相大学物理实验总结8篇篇1引言全息照相技术是一种利用光的干涉和衍射原理记录和再现物体三维图像的技术。
在大学物理实验中,我们通过实验操作,对全息照相技术有了更深入的了解和掌握。
本文将对全息照相的实验过程进行总结,并分析实验结果及结论。
一、实验原理全息照相的原理是利用光的干涉和衍射原理,通过记录物体发出的光波的振幅和相位信息,再利用这些信息还原出物体的三维图像。
在实验中,我们需要使用激光器发出激光,照射到物体上,物体反射的光波会携带物体的振幅和相位信息。
这些信息会被记录在全息胶片上,形成全息图。
二、实验步骤1. 准备实验器材:包括激光器、全息胶片、支架、物体(如字母表、小物件等)。
2. 安装激光器:将激光器固定在支架上,调整激光器的角度和位置,使其发出的激光能够照射到物体上。
3. 放置全息胶片:将全息胶片放置在激光器和物体之间,调整全息胶片的位置和角度,使其能够记录物体发出的光波信息。
4. 照射物体:打开激光器,照射物体,使物体反射的光波照射到全息胶片上。
5. 记录全息图:当全息胶片记录足够的光波信息后,关闭激光器,并将全息胶片取出保存。
6. 再现图像:将全息胶片放置在再现台上,利用激光器发出的再现光照射全息胶片,即可观察到物体的三维图像。
三、实验结果及分析1. 全息图记录结果:通过实验操作,我们成功记录了物体的光波信息,形成了全息图。
全息图上的条纹清晰可见,分布均匀。
2. 再现图像结果:当我们使用再现光照射全息胶片时,能够清晰地观察到物体的三维图像。
图像的立体感强,细节清晰可见。
3. 实验误差分析:在实验过程中,可能存在一些误差因素影响实验结果。
例如,激光器的角度和位置调整不准确可能导致光波信息记录不完整;全息胶片的位置和角度调整不准确可能导致图像变形或模糊等。
因此,在实验过程中需要仔细调整实验器材的位置和角度,以获得最佳的实验结果。
四、结论与展望通过本次全息照相大学物理实验,我们深入了解了全息照相技术的原理和实验过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全息照相实验的体会前段时间我做了全息照相的实验,体会颇深。
我了解了全息技术的发展历史和实际应用,全息照相的特点和基本原理,我知道怎么搭设实验光路,还逐步掌握了拍摄全息照片的技术,学会了全息照片的再现方法。
在实验中,首先我就在如何搭设光路图上出现了问题,我搭设的光路图总是不能将反射光集中在一起,最后才发现时光路中几个反射镜之间的距离出现了问题。
在对光的时候我的底片架和被摄物不能全部得到均匀照明,最后还是在同学的帮助下才弄好。
拍照片的时候是比较好奇和兴奋的,因为我从来没在全部黑暗的情况下做过实验,我的实验仪器的激光强度不够,所以我用了比大家多5秒的时间来曝光,在洗照片的时候等待是焦急的,我们都想快点看看我们的实验成果,我也不例外。
照片洗好后,老师让我们先自己看自己的玻璃片,我先是看不出来,有点失望,后来才发现时自己的方法出现了问题。
之后我看到了自己拍摄的三维图样还是有点成就感的,老师也说我拍的不错。
玻璃片我带回来的,现在还在我书桌的抽屉里面。
全息照相由英国物理学家盖柏于1948年提出,用一个合适的相干参考波与一个物体的散射波叠加,则可以将此散射波的振幅和相位的分布以干涉图样的形式记录在感光板上,所记录的干涉图样称为全息图。
如移出被摄物体,用相干光照射全息图,透射光的一部分就能重新模拟出原物的散射波前,于是重现一个非常逼真的三维图像。
1960年激光的出现促进了全息照相术的发展,全息技术得到了不断完善。
盖伯为此荣获1971年诺贝尔物理学奖。
解释一下全息的含义:它是指物体发出的全部光信息。
全息照相通过记录物体表面漫反射光的相位和振幅信息,使全息照相与普通照相区别开来。
所有光都有明暗强度、颜色、方向三种属性,而黑白照相只能记录光的强弱变化,而后来的彩色照片除了能记录光的明暗强弱外,还能记录光的波长变化,从而反映出颜色的不同。
激光的出现,使可以记录光的方向的三维全息照相成为可能。
普通照相是利用几何光学的原理,非相干光通过一系列透镜反射折射成像,形成点点对应的关系。
因此,如果相片失去一角,像的那部分信息也会永远失去,在平面上永不再现。
由于只是记录明暗强度的关系,因此,照片上遮挡的部分也永不再现。
全息照相则是利用光的干涉和衍射原理,记录光波本身和实物与参考光的相对位相,即物体表面漫射的光波与参考光波的干涉图。
与普通照相不同的是,全息片上每一点都记录了物体所有漫射光的信息,因此即便是挡住全息图的一部分,也能观察到完整物体的相。
当然,全息相无法用肉眼直接观察,当用一束与参考光波长方向完全相同的再现光照射时便可以看到物体各个侧面的立体像。
由于全息照相立体性强,形象逼真,可以在展览会上取得良好效果。
已有利于珍贵艺术品资料的收藏。
激光方防伪技术也许是大家听说最多的全息照相应用,其实除了传统方面的应用之外,激光照相有广阔的应用前景。
全息照相的应用从信息储存到图像识别,从干涉计量到无损检测,从物体表面的研究到振动分析,渗透到军事以及工农业生产的各个领域,甚至进入我们的日常生活,如产品商标,书籍装帧以及小工艺品等。
首先在军事上全息照相技术有着广阔的应用前景。
一般的雷达探测技术只能判断物体的方位、距离,而如果应用红外线超声波全息,则可以得到目标的三维立体图像,这种技术也可用于水下目标的探测,代替雷达。
然而在水中、空中存在的扰动很大,如何向实验室中一样,减少外来因素的干扰,将成为该突破的关键。
如果全息技术能够用于电影或电视技术,那将带来人民生活的一场变革。
目前的立体电影是利用光的偏振原理实现的,如果通过全息照相,将物体在屏幕上显示出来,则在观众面前展示的将是有纵深的一幅立体的画面。
在医学方面,全息技术也是前景广阔。
利用全息拍摄的人体器官照片,将会代替x射线用来检查人体器官有无病变,此原理同样可用于工业机械零件探伤。
此外,在保密方面,出了已有的激光防伪技术外,高保密性能的加密模压全息图将是继激光全息防伪技术后新的发展,甚至我们除了制作三维全息图外,还可以制造随时间等变化的四维、五维全息图,取得更好的防伪和保密效果。
正是鉴于全息照相的的以上特点,相信在将来的诸多领域中,都会让我们看到全息照相的身影。
篇二:全息照相实验心得体会全息照相实验心得体会全息照相术是利用干涉和衍射的原理将物体发射的光波以干涉条纹的形式记录下来,再在一定的条件下再现,形成与原物体完全相似的空间像。
由于它记录的是物体原来光波的全部信息(振幅和位相),像十分逼真并具有立体效果,所以叫全息照相。
根据记录和再现方式的不同,全息术可分为多种类型,如菲涅耳全息、像全息、彩虹全息、合成全息等等。
我们所做的全息照相实验的原理是菲涅耳全息照相。
菲涅耳全息的特点是记录平面位于物体衍射光场的菲涅耳衍射区,物光由物体直接照到底片上,而无需变换透镜或成像透镜。
实验原理见大学物理实验第三册实验3.5.1全息术。
如图(1)所示布置光路。
分束板采用反射率为5%的平晶,扩束镜用40χ显微镜。
选择漫反射性比较好的物体作为拍摄三维全息照相的物体。
调好光路,使参考光与物光束的光强比为2:1~10:1,放上全息干板曝光,曝光后经适当冲洗,就完成了。
再现的方法是将干板放在原光路中,把分束镜换成全反射镜,拿走物体,向着干板后原物体所在的方向看去就可以看到与原物体相似的明亮的像。
n 实验体会在做实验时要注意,布置光路时要调节光学元件的高低和位置使激光束的高低与台面平行,并使参、物光的光程基本相等,二者的光程差控制在3cm之内.还有为了保证记录是线性的,应使参考光光强大于物光光强,照射到全息干版上的参考光和物光光强之比以2∶1至5∶1为好,否则拍出来后再现时会很模糊。
还要注意投射到干板上的物光与参考光之间的夹角要略小于45度,以便观察时避开直射强光,夹角可以在25~45度之间选择.再有就是要调节物体使其反射的最亮的部分落在干板上,否则也很难成功,我拍摄时就是由于没有注意到这一点所以第一次没有拍出来。
拍摄时还要注意每一光学元件都不能有任何微小移动或振动,轻微的振动或气流扰动只要使光程差发生波长数量级的变化,条纹都会模糊不清,因此拍摄时不能乱动.曝光时间和冲洗时间也要把握好,曝光的时间在10秒左右,显影时间也不要过长,只要底片变灰了就行,千万不能变黑了,定影3分钟,所有的时间要严格掌握才能保证成功.还有冲洗时可以用紫光或绿光灯,但千万不要被红光照到,否则就前功尽弃了.n 实验扩展l 物光扩展拍摄大体积物体三维的全息图----激光全息照相景深扩展方法之一物体三维的全息照相是以干涉条纹的形式记录下物光波的信息,只有和参考光波干涉的物信息才能记录下来,没有和参考光干涉的物信息将损失掉。
当被拍摄物体的尺寸大于激光器的相干长度是,从物体上各点漫射出的物光的光程和参考光的光程差就不会都小于激光器的相干长度,即并非物体上各个物点漫射出的物光波都能与参考光波相干叠加,而只有局部物点漫射的物光波才与参考光波相干涉形成全息图。
全息图上只记录了这一部分物信息,再现时,就只能重现这一部分物光波,使再现像局部模糊甚至出现暗区。
为了尽量减少丢失物体的信息,采用物光扩展的方法把物光分成两束或更多束,从不同方向分段照明物体。
例如图(2)的双光束照明,有反射镜m5反射的光波充分照明被拍摄物体的左半部分,这一部分的各个物点漫反射的物光波的光程与参考光的光程差都小于激光器的相干长度,被拍摄物体的左半部分的全部信息都以干涉的形式记录下来了。
同理由m3反射的光波充分照明被拍摄物的右半部分,右半部分的全部信息也都以干涉的形式记录下来。
整个被拍摄物的全部信息完整地被记录而没有损失掉。
再现时就不会出现局部模糊和暗区,得到清晰完整的再现像。
l 参考光扩展拍大景深物体组三维的全息图——激光全息照相景深扩展方法之二在激光器的相干长度较短的情况下,具有较大景深的物体,其各个物点漫射的物光波与选定的参考光波的光程差常常不能都同时落在相干长度之内,对于那些不能满足相干条件的物点,需要选择另一束参考光,即对原来的参考光进行光程补偿,使补偿后的光程差重新落在相干长度之内。
例如图(3),由bs2和m2、m3组成的三角形光路,使其中一部分参考光增大了光程。
这一部分增大了光程的参考光r’’可与光程最长的那部分物光(o3上漫射来的光)相干涉,而不通过三角形光路的参考光与光程较短的那一部分物光(从o1、o2上漫射来的光)相干涉(o1、o2间距离小于激光器的相干长度)。
这样,整个物体组的全部信息被记录下来了。
篇三:全息照相大学物理实验总结大学物理实验总结——全息照相个人心得通过大学物理实验的课程学习,将物理理论与实践结合在一起,在这过程中能够发现很多的乐趣。
实际的实验操作,使我对一些物理知识、现象有了更深入的认识,也激发起我对物理实验的兴趣和对物理现象探索的渴望。
给我印象深刻的实验有很多,如迈克耳孙干涉仪测波长实验、衍射光栅实验、霍尔效应实验等。
而全息照相立体效果十分有趣,是物理学中一道别样的风景。
全息照相的原理其实很简单,利用干涉方法记录了物体抵达摄影底片时光波的振幅与相位的全部信息。
它记录的不是物体的几何信息,而是物光与另一束与之相干的参考光抵达照相底片的干涉条纹。
所以,全息照片上一般看不到原物体的像,必须用原来的参考光照明,才能看到原物体的立体像,这被称为全息底片的再现。
从全息照相和全反镜普通照相对比中,我们可以很容易发现全息照相的特别之处。
普通照相通常是通过照相机物镜成像,在感光底片平面上将物体发出的或它散射的光波(通常称为物光)的强度分布(即振幅分布)记录底片下来,由于底片上的全息图的光路感光物质只对光的强度有响应,对相位分布不起作用,所以在照相过程中把光波的相位分布这个重要的信息丢失了。
因而,在所得到的照片中,物体的三维特征消失了。
全息技术则完全不同,由全息术所产生的像是完全逼真的立体像(因为同时记录下了物光的强度分布和相位分布,即全部信息),当以不同的角度观察时,就象观察一个真实的物体一样,能够看到像的不同侧面,也能在不同的距离聚焦。
实验过程中使用到的仪器主要有:激光全息实验台, he-ne激光器,光开关及曝光定时器;其它需要的是:分束镜一个,扩束镜两个,全反射镜两个,被摄物体及放置物体的底座,全息干版及底架以及暗室效果。
拍好全息照相除了掌握它的原理步骤外,还有很多的关键点值得我们注意:(1) 具有一定功率的相干光源;具有稳定的操作平台;要有合适的光路;(2)搭光路时要注意光斑是否均匀;物光和参考光在屏上要重叠,放置干版时要与该位置一致;(3) 搭好光路后要检查光程差是否接近零、物光和参考光的夹角是否适当(30°至50°)、以及物屏距离是否合适(10至15cm)、各元件间的距离尽可能拉大些;(4) 装底片时,药膜面不能装反;曝光时,不得走动,不能用手触摸光学元件的光学面,不要随意搬动和取下被摄物;激光器开启后,不要中途关闭、直到实验完毕。