河南师范大学2013年硕士研究生入学考试611数学分析考研真题
2013考研数一真题及解析

【答案】1 − 1 e
【解析】
f
(y)
=
e− y, y > 0, 0, y ≤ 0,
{ { { ∫∫ P
Y
≤ a +1Y
> a} =
P
Y
> P
a,Y Y>
≤a
a}
+
1}
=
a +1
a +∞
f ( y)dy f ( y)dy
=
e−a
− e−(a+1) e−a
=1− 1 e
a
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证
1
f (x)d
0x
0
x = 2 f (x)
x
1 0
−2
1 0
x f ′(x)dx
= 2 f (1) − 2∫1 ln(x +1) xdx = −2∫1 ln(x +1) dx = −4∫1ln(x +1)d x
0x
0x
0
∫ ∫
= −4 ln(x +1)
x
1 0
−
1
x
dx = −4 ln 2 + 4
【答案】A
【解析】曲面在点 (0,1,-1) 处的法向量为
→
n =(Fx′,Fy′,Fz′) (0,1,-1) =(2x-y sin (xy)+1,-x sin (xy)+z,y) (0,1,-1) =(1,-1,1) 故曲面在点 (0,1,-1) 处的切面方程为 1⋅ (x-0)-(y-1)+(z+1)=0, 即 x − y + z = −2 ,选 A
2013年考研数学一真题及答案全集解析

2013考研数学一真题及答案解析目录第一章总论............................................................. 错误!未定义书签。
1.1项目提要........................................................... 错误!未定义书签。
1.2结论与建议....................................................... 错误!未定义书签。
1.3编制依据 .......................................................... 错误!未定义书签。
第二章项目建设背景与必要性............................. 错误!未定义书签。
2.1项目背景........................................................... 错误!未定义书签。
2.2项目建设必要性 .............................................. 错误!未定义书签。
第三章市场与需求预测......................................... 错误!未定义书签。
3.1优质粮食供求形势分析 .................................. 错误!未定义书签。
3.2本区域市场需求预测 ...................................... 错误!未定义书签。
3.3服务功能 .......................................................... 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策.............. 错误!未定义书签。
2013年考研数学真题及参考答案(数学二)

π
2
, 则当 x → 0 时, α ( x ) 是
【 】 .
(A) 比 x 高阶的无穷小 (C) 与 x 同阶但不等价的无穷小 【答案】 答案】C.
(B) 比 x 低阶的无穷小 (D) 与 x 等价的无穷小
【考点】 考点】计算极限的方法:常用的等价无穷小.
【解析】 解析】 x sin α ( x) = cos x − 1 ~ −
(D) I 4 > 0
【解析】 解析】在第 II 象限除原点外被积函数 y − x > 0 ,因此 I 2 > 0 . 【评注】 评注】在第 IV 象限除原点外被积函数 y − x < 0 ,因此 I 4 < 0 ; 在第 I 象限和第 III 象限,根据轮换对称性得
I1 = I 3 = 0 .
(7)设 A, B, C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则 (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价 (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价 【答案】 答案】B. 【考点】 考点】向量组的线性表示方法. 【解析】 解析】将矩阵 A 和 C 按列分块,设 A = (α1 , α 2 ,⋯ , α n ) , B = (bij ) , C = (γ 1 , γ 2 ,⋯ , γ n ) . ①由 AB = C 组线性表示; 【 】 . (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价 (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
π
6
≤θ ≤
π
6
),则 L 所围平面图形的面积为
.
【答案】 答案】
π
12
.
【考点】 考点】计算极坐标曲线所围图形的面积.
2013年考研数学一真题及答案解析

2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。
1.1项目提要......................................................... 错误!未定义书签。
1.2结论与建议..................................................... 错误!未定义书签。
1.3编制依据 ........................................................ 错误!未定义书签。
第二章项目建设背景与必要性........................... 错误!未定义书签。
2.1项目背景......................................................... 错误!未定义书签。
2.2项目建设必要性 ............................................ 错误!未定义书签。
第三章市场与需求预测....................................... 错误!未定义书签。
3.1优质粮食供求形势分析 ................................ 错误!未定义书签。
3.2本区域市场需求预测 .................................... 错误!未定义书签。
3.3服务功能 ........................................................ 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。
第四章项目承担单位情况................................... 错误!未定义书签。
2013年全国硕士研究生入学统一考试农学门类联考数学真题及详解【圣才出品】

j .
又T
1 n n i1
X2 i 1
n
n
X
2 i
2
i 1
i 1
X
i
X
j
,故
ET
2 2
22
2 .
二、填空题:9~14 小题,每小题 4 分,共 24 分.
sin
kx
,
x
0
f (x) 3x
9.设函数
e3x cos 3x, x 0 在 x=0 处连续,则常数 k=
.
积为
.
【答案】 2 2
【解析】由题意知,平面图形的面积
S
sin x cos x dx
0
4 (cos x sin x)dx
0
(sin x cos x)dx 2 4
2
12.设函数
z
1 exy
2y
,则
z y
(1, 1)
.
1 【答案】 e2 2
z 【解析】由题意知, y
ex y (ex y
3.曲线 y f (x) 如图所示,函数 f (x) 具有连续的 2 阶导数,且 f (a) 1,则积分
a x f (x)dx
0
( ).
A.a-b
B.b-a
C.a+b
D.ab
【答案】C
【解析】由上图可知 f 0 b, f a 0 ,则
a xf '' (x)dx 0
a 0
xd
f
' (x)
0
【解析】
2
2
00
2
20 1 0
3 3 0
0 3 0
0033 0 0 33
4 0 4 4 4 4
2013年考研数学一真题与解析完整版

2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=- 切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数一真题答案解析

一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。