北京54坐标系
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。
北京54坐标系

北京54坐标系
北京54坐标系(BJZ54)是指北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
虽然后来建立了1980西安坐标系,但时至今日,北京54坐标系仍然是在我国使用较为广泛的坐标系。
1954年北京坐标系的历史:
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
什么是北京54坐标系

什么是北京54坐标系1.概述北京54坐标系(BJZ54)是指北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
2.坐标历史新中国成立以后,全国范围内开展了正规的、全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时政治环境是“一边倒”地亲近苏联,所以采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系。
于1954年完成测定工作,故命名为“1954年北京坐标系”。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的大地原点不在北京,而是在前苏联的普尔科沃(Pulkovo)。
普尔科沃天文台3.椭球参数椭球坐标参数如下:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3;第一偏心率平方 =0.006693421622。
北京54椭球4.坐标特点①属于参心大地坐标系;②采用克拉索夫斯基椭球的两个几何参数;③大地原点在原苏联的普尔科沃;④采用多点定位法进行椭球定位;⑤高程基准为1954年青岛验潮站求出的黄海平均海水面;⑥高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
1957年鄂尔多斯航测像片判读5.坐标局限性在当时,北京54坐标系满足了我国测绘事业发展的急需,此后很长一段时间内,也为国家经济建设做出了应有的贡献。
但是随着测绘新理论、新技术的不断发展,北京54坐标系的缺点也愈加明显。
最大的问题就是精度不够、误差较大。
原因是北京54坐标系所采用的克拉索夫斯基椭球参数误差较大,与现代精确值相比长半轴大了约109m。
并且,参考椭球面与我国似大地水准面符合较差,存在着自西向东明显的系统倾斜,东部地区最大差值达60余米。
自然资源部公告6.同别的坐标系之间的转换在实际运用的过程中,往往会涉及到北京54坐标系同别的坐标系之间的转换,这一点,可以使用水经注万能地图下载器,在导出的时候可以选择北京54等各种坐标系,如下图所示。
北京54坐标系

北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统1990]。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。
那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WZ),尺度变化(DM )。
要求得七参数就需要在一个地区需要3 个以上的已知点。
如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X 平移,Y 平移,Z 平移,而将X 旋转,Y 旋转,Z 旋转,尺度变化面DM视为0 。
定义添加北京54坐标系

定义添加北京54坐标系北京54坐标系是中国地理坐标系的一种,也是一种地理投影坐标系。
它以北京市为中央子午线,用于描述中国大陆的平面坐标系统,主要用于测绘和地理信息系统。
北京54坐标系的起源可以追溯到1954年,当时中国根据从苏联引进的克拉索夫斯基椭球和高斯投影的方法,进行了一次新的测量和测绘。
这次测量得到的坐标系统成为北京54坐标系,成为中国测绘和地理信息系统的标准。
北京54坐标系采用高斯投影方法,将地球表面的经纬度坐标投影到平面上。
它以中央子午线为基准,东经为正,西经为负,纬度值在北半球为正,南半球为负。
北京54坐标系使用大地坐标,即将地球椭球体上的点投影到平面上,因此在测绘和地理信息系统中具有较高的精度。
北京54坐标系的椭球面采用克拉索夫斯基椭球,其参数为:椭球长半轴a = 6378245米椭球短半轴b = 6356863.0188米椭球扁率f = (a - b) / a = 1 / 298.3北京54坐标系的投影方式为高斯投影,在中国大陆范围内被划分为3个投影带,每个投影带的纬度带宽为3度,分别是:第一投影带:北纬25度到28度第二投影带:北纬28度到31度第三投影带:北纬31度到34度北京54坐标系的坐标单位是米,而不仅仅是经纬度的度分秒。
它采用平面坐标系,在计算和处理坐标时,可以采用直角坐标系的运算方法,而不需要考虑地球的曲率和投影的变形。
北京54坐标系的适用范围是中国大陆,由于中国大陆地理范围较大,为了提高测绘精度,中国还建立了其他地理坐标系,如西安80坐标系和2000国家大地坐标系。
这些坐标系在不同的领域和需求中使用,以满足中国地理信息系统的需要。
总之,北京54坐标系是中国地理坐标系的一种,它以北京市为中央子午线,采用高斯投影方法,使用平面坐标表示地球表面的点坐标。
它是中国测绘和地理信息系统的标准之一,在中国大陆范围内广泛应用于测绘、地理信息系统等领域。
北京-54坐标系参数简单叙述

d.采用多点定位法进行椭球定位;
e.高程基准为 1954年青岛验潮站求出的黄海平均海水面;
f.高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。按我国天文水路线推算而得。
2坐标参数编辑椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3。
3缺点编辑自 P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:
1、 椭球参数有较大误差。克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m。
2、 参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。
新中国成立以后,我国大地测量进入了全面发展时期,在全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
它是将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为:
a.属参心大地坐标系;
b.采用克拉索夫斯基椭球的两个几何参数;
北京54坐标和2000坐标的介绍

一、北京54坐标介绍北京54坐标是我国大陆地图测绘所采用的坐标系,它是根据1954年北京天文观测基地的大地测量结果建立的,也被称为“北京1954年国际坐标系”。
这个坐标系被广泛应用于我国境内的大部分地图制图和地理信息系统中。
1. 采用北京54坐标系的地图在我国大陆地图制图中,许多地图采用了北京54坐标系,包括一般的城市道路地图、农村村镇地图、山区地图以及航空制图和航海图等。
2. 特点和精度北京54坐标系基于1954年的大地测量数据建立,相对于WGS 84坐标系存在一定的偏移。
但在我国境内,由于以本地为基础进行地图制图和测量,北京54坐标系的精度仍然可以满足大部分工程和测绘要求。
二、2000坐标介绍2000坐标系是我国大陆地图测绘所采用的另一个坐标系,它是基于WGS 84全球定位系统的坐标系,也被称为“国家2000年大地坐标系”。
1. 采用2000坐标系的地图随着全球定位系统在我国的广泛应用,越来越多的地图开始采用2000坐标系,特别是在GPS定位和导航系统中,2000坐标系已经成为主流。
2. 特点和精度2000坐标系相对于北京54坐标系更加精确和准确,特别是在国际上广泛应用的WGS 84基准上,2000坐标系几乎可以无需进行任何转换即可直接使用。
在一些需要高精度和国际对接的工程测绘和地理信息系统中,2000坐标系已经成为首选。
三、北京54坐标和2000坐标的比较1. 坐标系的基准点北京54坐标系是基于1954年北京天文观测基地建立的大地测量数据,而2000坐标系是基于全球定位系统WGS 84基准建立的坐标系。
2. 坐标系的精度由于基准点和建立时间的不同,北京54坐标系相对于WGS 84存在一定的偏移,因此在国际对接和精度要求较高的工程中需要进行坐标转换;而2000坐标系直接基于WGS 84建立,精度更高,特别适用于国际对接和高精度测绘需求。
3. 应用范围北京54坐标系广泛应用于我国大陆地图制图和地理信息系统中,而2000坐标系逐渐成为国际上通用的坐标系标准,在GPS导航、国际测绘和地理信息系统等领域得到广泛应用。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统1990]。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
54国家坐标系:建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。
因此,P54可归结为:a.属参心大地坐标系;b.采用克拉索夫斯基椭球的两个几何参数;c.大地原点在原苏联的普尔科沃;d.采用多点定位法进行椭球定位;e.高程基准为1956年青岛验潮站求出的黄海平均海水面;f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。
1954北京坐标系参考椭球基本几何参数长半轴a=6378245m短半轴b=6356863.0188m扁率α=1/298.3第一偏心率平方=0.006693421622966第二偏心率平方=0.006738525414683西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
80国家坐标系:采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。
C80是为了进行全国天文大地网整体平差而建立的。
根据椭球定位的基本原理,在建立C80坐标系时有以下先决条件:(1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;(2)C80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与Z轴垂直指向经度0方向;Y轴与Z、X轴成右手坐标系;(3)椭球参数采用IUG 1975年大会推荐的参数因而可得C80椭球两个最常用的几何参数为:长半轴a=6378140±5(m)短半轴b=6356755.2882m扁率α=1/298.257第一偏心率平方=0.00669438499959第二偏心率平方=0.00673950181947椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。
(4)多点定位;(5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。
西安80坐标系与北京54坐标系之间的转换西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。
那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WZ),尺度变化(DM )。
要求得七参数就需要在一个地区需要 3 个以上的已知点。
如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X 平移,Y 平移,Z 平移,而将X 旋转,Y 旋转,Z 旋转,尺度变化面DM视为0 。
方法如下(MAPGIS平台中):第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z);第二步:将三个点的坐标对全部转换以弧度为单位。
(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来)第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。
如果求出转换系数后,记录下来。
第四步:编辑坐标转换系数。
(菜单:投影转换/编辑坐标转换系数。
)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。
进行转换时系统会自动调用曾编辑过的坐标转换系数。
举个例子,野外采集gps数据,数据是用大地坐标表示的,也就是用经纬度和高程表示。
而采集的数据要在地图上显示出来,就需要将经纬度转化为平面坐标,也就是通常说的x,y 坐标。
因为我国地形图一般采用高斯投影,所以通常转化成高斯平面坐标显示到地图上。
而在经纬度向平面坐标转化的过程中,需要用到椭球参数,因此要考虑所选的坐标系,我国常用的坐标系有北京54,西安80,WGS-84坐标系,不同的坐标系对应的椭球体是不一样的,这里你可能会不明白根椭球体有啥关系,是这样的,我们所说的地理数据都是为了描述大地水准面上的某一个点,而大地水准面是不规则的,我们用一个规定的椭球面去拟合这个水准面,用椭球面上的点来近似表示地球上的点。
每个国家地理情况不同,采用的椭球体也不尽相同。
北京54坐标系采用的是克拉索夫斯基(Krassovsky)椭球体,而西安80采用的是IAG 75地球椭球体北京54坐标系与西安80坐标系的转换及常用坐标系参数西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。
那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WZ),尺度变化(DM )。
要求得七参数就需要在一个地区需要 3 个以上的已知点。
如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X 平移,Y 平移,Z 平移,而将X 旋转,Y 旋转,Z 旋转,尺度变化面DM视为0 。
西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。
那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WZ),尺度变化(DM )。
要求得七参数就需要在一个地区需要 3 个以上的已知点。
如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X 平移,Y 平移,Z 平移,而将X 旋转,Y 旋转,Z 旋转,尺度变化面DM视为0 。
方法如下:第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对;第二步:求公共点求操作系数(菜单:投影转换/坐标系转换)。
如果求出转换系数后,记录下来。
第三步:编辑坐标转换系数。
(菜单:投影转换/编辑坐标转换系数。
)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数(长度单位选米角度单位选弧度)。
进行转换时系统会自动调用曾编辑过的坐标转换系数。
GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。
现就上述几种坐标系进行简单介绍,供大家参阅,并提供各坐标系的基本参数,以便大家在使用过程中自定义坐标系。
1、1984世界大地坐标系WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。
WGS-84坐标系的定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。
X轴指向BIH定义的零度子午面和CTP赤道的交点,Y轴和Z,X轴构成右手坐标系。
WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数:长半轴a=6378137m;扁率f=1:298.257223563。
WGS-84大地坐标系WGS-84(World Geodetic System,1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向BIH 1984.0定义的协议地球极(CTP)方向,X轴指向BIH 1984.0 的零子午面和CTP赤道的交点。
Y轴与Z、X轴构成右手坐标系(如图所示)。
WGs-84椭球及有关常数:对应于WGS-8大地坐标系有一个WGS-84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。
下面给出WGS-84椭球两个最常用的几何常数:长半轴:6378137± 2(m)短半轴b=6356752.3142m扁率α=1/298.257223563第一偏心率平方=0.00669437999013第二偏心率平方=0.00673949674223常用的一些椭球及参数海福特椭球(1910)我国52年以前基准椭球a=6378388m b=6356911.9461279m a=0.33670033670北京54坐标系基准椭球a=6378245m b=6356863.018773m a=0.33523298692 1975年I.U.G.G推荐椭球(国际大地测量协会1975)西安80坐标系基准椭球a=6378140m b=6356755.2881575m a=0.0033528131778WGS-84椭球(GPS全球定位系统椭球、17届国际大地测量协会)WGS-84 GPS 基准椭球a=6378137m b=6356752.3142451m a=0.00335281006247.一般来讲,GPS直接提供的坐标(B,L,H)是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。