solid5

合集下载

第3章 ANSYS 前处理技术

第3章 ANSYS 前处理技术

第3章ANSYS 的前处理技术3.1有限单元类型的选取有限元类型选取指令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPRDefines a local element type from the element library.ITYPEArbitrary local element type number. Defaults to 1 + currentmaximum.EnameElement name (or number) as given in the element library in Chapter4 of the ANSYS Elements Reference. The name consists of a categoryprefix and a unique number, such as BEAM3. The category prefix of the name (BEAM for the example) may be omitted but is displayed upon output for clarity. If Ename = 0, the element is defined as a null element.KOP1, KOP2, KOP3, KOP4, KOP5, KOP6KEYOPT values (1 through 6) for this element, as described in the ANSYS Elements Reference.INOPRIf 1, suppress all element solution printout for this element type 举例:PLANE13 has a 2-D magnetic, thermal, electrical, piezoelectric, and structural field capability with limited coupling between the fields. PLANE13 is defined by four nodes with up to four degrees of freedom per node. The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves. PLANE13 has large deflection and stress stiffening capabilities. When used in purely structural analyses, PLANE13 also has large strain capabilities. See PLANE13 in the ANSYS, Inc. Theory Reference for more details about this element. Other coupled-field elements are SOLID5, SOLID98, and SOLID62.KEYOPT(1)Element degrees of freedom:0-- AZ degree of freedom2-- TEMP degree of freedom3-- UX, UY degrees of freedom4-- UX, UY, TEMP, AZ degrees of freedom6-- VOLT, AZ degrees of freedom7-- UX, UY, VOLT degrees of freedomKEYOPT(2)Extra shapes:0-- Include extra shapes1-- Do not include extra shapesKEYOPT(3)Element behavior:0-- Plane strain (with structural degrees of freedom)1-- Axisymmetric2-- Plane stress (with structural degrees of freedom)KEYOPT(4)Element coordinate system defined:0--Element coordinate system is parallel to the global coordinate system1-- Element coordinate system is based on the element I-J side KEYOPT(5)Extra element output:0-- Basic element printout1-- Repeat basic solution for all integration points2-- Nodal stress printout3.2 点、线、面的产生方法3.2.1 电磁铁磁场分析步骤1:画出欲求解电磁场物体的结构图步骤2:求关键点(能决定物体形状的点的坐标)/PREP7 !开始前处理程序/UNITS, SI !选取国际单位EMUNIT, MKS !选取(米、千克、秒)电磁单位制LOCAL,11,0 !选取直角坐标系统LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 Defines a local coordinate system by a location and orientation. DATABASE: Coordinate SystemKCNArbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.KCSCoordinate system type:0 or CART —Cartesian1 or CYLIN —Cylindrical (circular or elliptical)2 or SPHE —Spherical (or spheroidal)3 or TORO —ToroidalXC, YC, ZCLocation (in the global Cartesian coordinate system) of the origin of the new coordinate system.THXYFirst rotation about local Z (positive X toward Y).THYZSecond rotation about local X (positive Y toward Z).THZXThird rotation about local Y (positive Z toward X).PAR1Used for elliptical, spheroidal, or toroidal systems. If KCS = 1 or 2, PAR1is the ratio of the ellipse Y-axis radius to X-axis radius (defaults to 1.0 (circle)). If KCS = 3, PAR1 is the major radius of the torus.PAR2Used for spheroidal systems. If KCS = 2, PAR2 = ratio of ellipse Z-axis radius to X-axis radius (defaults to 1.0 (circle)).x 1步骤3: 由点联线LSTR, 1, 2 ! L1 第一条线(Straight line)LSTR, 2, 3LSTR, 3, 4LSTR, 4, 1LSTR, 5, 6 ! L5LSTR, 6, 7LSTR, 7, 8LSTR, 8, 5LSTR, 9, 10LSTR, 10, 11 ! L10LSTR, 11, 12LSTR, 12, 9LSTR, 6, 13LSTR, 13, 14LSTR, 14, 15 ! L15 LSTR, 15, 10LSTR, 11, 16LSTR, 16, 17LSTR, 17, 18LSTR, 18, 7 ! L20 LSTR, 19, 20LSTR, 20, 21LSTR, 21, 22LSTR, 22, 19LSTR, 14, 19 ! L25 LSTR, 15, 16LSTR, 17, 22 ! L27步骤4: 指定线段剖分单元边长(根据磁场分析精度的需要) LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIVSpecifies the divisions and spacing ratio on unmeshed lines.NL1Number of the line to be modified. If ALL, modify all selected lines [LSEL]. If NL1= P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.SIZEIf NDIV is blank, SIZE is the division (element edge) length. The number of divisions is automatically calculated from the linelength (rounded upward to next integer). If SIZE is zero (or blank), use ANGSIZ or NDIV.ANGSIZThe division arc (in degrees) spanned by the element edge (except for straight lines, which always result in one division).NDIVIf positive, NDIV is the number of element divisions per line.SPACESpacing ratio. If positive, nominal ratio of last division size to first division size (if > 1.0, sizes increase, if < 1.0, sizesdecrease). If negative, |SPACE| is nominal ratio of centerdivision(s) size to end divisions size. Ratio defaults to 1.0(uniform spacing). For layer-meshing, a value of 1.0 normally is used. If SPACE= FREE, ratio is determined by other considerationsKFORCKFORC 0-3 are used only with NL1 = ALL. Specifies which selected lines are to be modified.0—Modify only selected lines having undefined (zero) divisions.1—Modify all selected lines.2—Modify only selected lines having fewer divisions (including zero) than specified with this command.3—Modify only selected lines having more divisions than specified with this command.4—Modify only nonzero settings for SIZE, ANGSIZ, NDIV, SPACE, LAYER1, and LAYER2. If KFORC= 4, blank or 0 settings remain unchanged.LAYER1Layer-meshing control parameter. Distance which defines thethickness of the inner mesh layer, LAYER1. Elements in this layer are uniformly-sized with edge lengths equal to the specifiedelement size for the line (either through SIZE or line-length/NDIV).A positive value for LAYER1 is interpreted as an absolute length,while a negative value in interpreted as a multiplier on thespecified element size for the line. As a general rule, theresulting thickness of the inner mesh layer should be greater than or equal to the specified element size for the line. If LAYER1 = OFF, layer-meshing control settings are cleared for the selected lines. The default value is 0.0LAYER2Layer-meshing control parameter. Distance which defines thethickness of the outer mesh layer, LAYER2. Elements in this layer transition in size from those in LAYER1to the global element size.A positive value of LAYER2 is interpreted as an absolute length,while a negative value is interpreted as a mesh transition factor.A value of LAYER2 = -2 would indicate that elements shouldapproximately double in size as the mesh progresses normal to LAYER1.The default value is 0.0.KYNDIV0, No, and Off means that SmartSizing cannot override specifieddivisions and spacing ratios. Mapped mesh fails if divisions do not match. This defines the specification as “hard”.1, Yes, and On means that SmartSizing can override specifieddivisions and spacing ratios for curvature or proximity. Mapped meshing can override divisions to obtain required matchingdivisions. This defines the specification as“ soft”.一般采用将线段指定划分为多少个单元, 即只用下述指令中的红色部分, 其他部分不管.LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV根据对电磁铁磁场分布的定性分析, 可确定各线段有限元网格剖分的稀密程度。

基于ANSYS的超声搅拌摩擦焊系统设计与仿真

基于ANSYS的超声搅拌摩擦焊系统设计与仿真

基于ANSYS的超声搅拌摩擦焊系统设计与仿真夏罗生【摘要】According to FSW technology in the plate welding seam which is easy to appear problems such as osteoporosis in deep welding, put forward the ultrasonic vibration energy into FSW area, design the ultrasound friction stir welding device. Using ANSYS software multi-physical coupling function, coupling the structure field and the field coupling, establishing the whole ultrasound friction stir welding system finite element calculation model and the modal analysis harmonious response analysis. The numerical results show that the resonance frequency of 19.494 kHz, and then the actual measurement of the resonant frequency is close to 19. 56 kHz. In 1 000 V sinusoidal voltage applied, the vibration of the maximum output vibration displacement occurred in about 20 kHz for frequency, amplitude is about 72 microns, and meet the design requirements.%针对搅拌摩擦焊技术在厚板焊接时焊缝深层易出现组织疏松等焊接缺陷的问题,提出将超声振动能量导入到搅拌摩擦焊缝区,设计了超声搅拌摩擦焊接装置.利用ANSYS软件的多物理场耦合功能,将结构场与电场进行耦合,建立了整个超声搅拌摩擦焊系统的有限元计算模型并进行了模态分析和谐响应分析.计算结果表明,其共振频率为19.494 kHz,与后来实际测量的共振频率19.56kHz接近.在施加1 000 V的正弦电压时,其振动输出端的最大振动位移发生在频率为20 kHz左右,振幅约为72 μm,满足设计要求.【期刊名称】《制造技术与机床》【年(卷),期】2012(000)010【总页数】4页(P29-31,36)【关键词】超声振动;搅拌摩擦焊;结构设计;ANSYS;仿真【作者】夏罗生【作者单位】张家界航空工业职业技术学院,湖南张家界427000【正文语种】中文【中图分类】TG453搅拌摩擦焊技术(FSW)是一项可持续发展的绿色环保清洁战略技术,在高速轨道列车、航空航天飞行器、高速舰船快艇、汽车等轻型化结构以及各种铝合金型材拼焊结构制造中,已经显示出良好的技术和经济效益[1-4]。

Solid Edge ST5安装教程

Solid Edge ST5安装教程

安装步骤:1.鼠标右击【Solid Edge ST5】选择【解压到Solid Edge ST5】。

2.双击打开解压后的【Solid Edge ST5】文件夹。

3.双击打开【setup】文件夹。

4.双击打开【Standard Parts Administration】文件夹。

5.双击打开【ISSetupPrerequisites】文件夹。

6.双击打开【Microsoft SQL Server2008Express SP1(x86&x64Wow)】文件夹。

7.鼠标右击【SQLEXPR_x86_CHS.exe】选择【以管理员身份运行】。

8.正在配置。

9.点击【安装】。

10.点击【全新SQL Server独立安装或向现有安装添加功能】。

11.点击【确定】。

12.点击【下一步】。

13.勾选【我接受许可条款】,然后点击【下一步】。

14.点击【安装】。

15.正在安装中。

16.点击【下一步】。

17.点击【全选】,然后点击【…】更改【共享功能目录】,建议选择除C 盘之外的其它磁盘内,可以在E盘或其它磁盘内的【Program Files(X86)】文件夹内新建一个【Microsoft SQL Server】文件夹,然后点击【下一步】。

18.点击【…】更改【实例根目录】,选择第17步中在除C盘之外的其它磁盘内的【ProgramFiles(X86)】文件夹中新建的【Microsoft SQL Server】文件夹,然后点击【下一步】。

19.点击【下一步】。

20.点击【账户名】下的下拉按钮,然后选择第一项(NT AUTHORITY\NET…),然后点击【下一步】。

21.点击【添加当前用户】,然后点击【下一步】。

23.点击【下一步】。

25.正在安装。

27.点击【关闭】。

28.点击右上角的【❌】关闭此界面。

29.双击打开安装包解压后的【Solid Edge ST5】文件夹里面的【setup】文件夹。

30.鼠标右击【autostart.exe】选择【以管理员身份运行】。

Solid-原则

Solid-原则

开闭原则的讨论
软件实体应该是可扩展,而不可修改的。也就是说,对扩展是 开放的,而对修改是封闭的。这个原则是诸多面向对象编程原 则中最抽象、最难理解的一个。
对扩展开放,意味着有新的需求或变化时,可以对现有代码进 行扩展,以适应新的情况。
对修改封闭,意味着类一旦设计完成,就可以独立完成其工作, 而不要对类进行任何修改。
SOLID
I 接口隔离原则 :接口隔离原则 认为“多个特 定客户端接口要好于一个宽泛用途的接口”的 概念。
SOLID
D 依赖反转原则: 依赖反转原则 认为一个方 法应该遵从“依赖于抽象而不是一个实例” 的概念。依赖注入是该原则的一种实现方式。
单一功能原则的讨论
当需要修改某个类的时候原因有且只有一个(THERE SHOULD NEVER BE MORE THAN ONE REASON FOR A CLASS TO CHANGE)。换句话说就是让一个类只做一种类 型责任,当这个类需要承担其他类型的责任的时候,就需要分解这个类。在所有 的SOLID原则中,这是大多数开发人员感到最能完全理解的一条。严格来说,这也 可能是违反最频繁的一条原则了。 单一责任原则可以看作是低耦合、高内聚在面向对象原则上的引申,将责任定义 为引起变化的原因,以提高内聚性来减少引起变化的原因。责任过多,可能引 起 它变化的原因就越多,这将导致责任依赖,相互之间就产生影响,从而极大的损 伤其内聚性和耦合度。单一责任,通常意味着单一的功能,因此不要为一个模块 实 现过多的功能点,以保证实体只有一个引起它变化的原因。
于是,问题变为:"那么,如果我需要修改这个基类的工作方式,那应当怎么 做呢?"OCP的另一部分中给出这一答案;基类应当开放,可进行扩充。在这 里,扩充是指创建一个由此基类继承而来的派生类,它可以扩充或重载基类 功能,以提供使用者所需要的特定功能。这样,使用者就能使用类的修改版 本,而不会影响到类的其他使用者。使用者还可以在将来更轻松地使用基类 的升级版本,因为他们不用担心丢失自己的修改内容。

SOLIDWORD软件

SOLIDWORD软件

SOLIDWORD软件SolidWorks百科名⽚SolidWorks为达索系统(Dassault Systemes S.A)下的⼦公司,专门负责研发与销售机械设计软件的视窗产品。

达索公司是负责系统性的软件供应,并为制造⼚商提供具有Inter net整合能⼒的⽀援服务。

该集团提供涵盖整个产品⽣命周期的系统,包括设计、⼯程、制造和产品数据管理等各个领域中的最佳软件系统,著名的CATIAV5就出⾃该公司之⼿,⽬前达索的CAD产品市场占有率居世界前列。

SolidWorks详细简介SolidWorks公司成⽴于1993年,由PTC公司的技术副总裁与CV公司的副总裁发起,总部位于马萨诸塞州的康克尔郡(Concord,Massa chusetts)内,当初所赋予的任务是希望在每⼀个⼯程师的桌⾯上提供⼀套具有⽣产⼒的实体模型设计系统。

从1995年推出第⼀套SolidWorks三维机械设计软件⾄今,它已经拥有位于全球的办事处,并经由300家经销商在全球140个国家进⾏销售与分销该产品。

SolidWorks软件是世界上第⼀个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为CA D/CAM产业中获利最⾼的公司。

良好的财务状况和⽤户⽀持使得SolidWorks每年都有数⼗乃⾄数百项的技术创新,公司也获得了很多荣誉。

该系统在1995-1999年获得全球微机平台CAD系统评⽐第⼀名;从1995年⾄今,已经累计获得⼗七项国际⼤奖,其中仅从1999年起,美国权威的CAD专业杂志CADENCE连续4年授予So lidWorks最佳编辑奖,以表彰SolidWorks的创新、活⼒和简明。

⾄此,SolidWorks 所遵循的易⽤、稳定和创新三⼤原则得到了全⾯的落实和证明,使⽤它,设计师⼤⼤缩短了设计时间,产品快速、⾼效地投向了市场。

由于SolidWorks出⾊的技术和市场表现,不仅成为CAD⾏业的⼀颗耀眼的明星,也成为华尔街青睐的对象。

巴斯夫表面活性剂资料

巴斯夫表面活性剂资料

Surfactants and polyalkylene glycolsAdding value forthe Detergent andFormulator industriesNonionic surfactantsProduct Alcohol Active Cloud Physical Viscosity HLBcontent point form [mPa·s] value[%] [°C] [23 °C]Lutensol® A … N types (C12C14Fatty alcohol ethoxylates)Lutensol A 4 N + 4 EO approx. 100 approx. 62 / E Liquid approx. 50 approx. 9 Lutensol A 7 N + 7 EO approx. 100 approx. 56 / A Liquid approx. 150 approx. 12 Lutensol A 79 N + 7 EO approx. 90 approx. 56 / A Liquid approx. 120 approx. 12 Lutensol A 8 + 8 EO approx. 90 approx. 52 / A Liquid approx. 100 approx. 13Lutensol® AT types (C16C18Fatty alcohol ethoxylates)Lutensol AT 11 + 11 EO approx. 100 approx. 87 / A Solid approx. 30 (60 °C) approx. 13 Lutensol AT 18 + 18 EO approx. 100 approx. 92 / B Solid approx. 40 (60 °C) approx. 15 Lutensol AT 18 Solution + 18 EO approx. 20 approx. 92 / B Liquid approx. 30 approx. 15 Lutensol AT 25 Powder + 25 EO approx. 100 approx. 95 / B Powder approx. 70 (60 °C) approx. 16 Lutensol AT 25 E + 25 EO approx. 100 approx. 95 / B Solid approx. 70 (60 °C) approx. 16 Lutensol AT 25 Flakes + 25 EO approx. 100 approx. 95 / B Flakes approx. 70 (60 °C) approx. 16 Lutensol AT 50 Powder + 50 EO approx. 100 approx. 92 / B Powder approx. 150 (60 °C) approx. 18 Lutensol AT 50 E + 50 EO approx. 100 approx. 92 / B Solid approx. 150 (60 °C) approx. 18 Lutensol AT 50 Flakes + 50 EO approx. 100 approx. 92 / B Flakes approx. 150 (60 °C) approx. 18 Lutensol AT 80 Powder + 80 EO approx. 100 approx. 87 / B Powder approx. 400 (60 °C) approx. 18.5 Lutensol AT 80 E + 80 EO approx. 100 approx. 87 / B Solid approx. 400 (60 °C) approx. 18.5 Lutensol AT 80 Flakes + 80 EO approx. 100 approx. 87 / B Flakes approx. 400 (60 °C) approx. 18.5Lutensol® AO types (C13C15Oxo alcohol ethoxylates)Lutensol AO 3 + 3 EO approx. 100 approx. 45 / E Liquid approx. 40 approx. 8 Lutensol AO 5 + 5 EO approx. 100 approx. 62 / E Liquid approx. 80 approx. 10 Lutensol AO 7 + 7 EO approx. 100 approx. 43 / A Liquid approx. 100 approx. 12 Lutensol AO 79 + 7 EO approx. 90 approx. 43 / A Liquid approx. 100 approx. 12 Lutensol AO 8 + 8 EO approx. 100 approx. 52 / A Paste approx. 30 (60 °C) approx. 12.5 Lutensol AO 89 + 8 EO approx. 90 approx. 52 / A Liquid approx. 110 approx. 12.5 Lutensol AO 11 + 11 EO approx. 100 approx. 86 / A Paste approx. 30 (60 °C) approx. 14 Lutensol AO 30 + 30 EO approx. 100 approx. 91 / B Solid approx. 60 (60 °C) approx. 17 Lutensol AO 3109 + 3 / + 10 EO approx. 90 approx. 73 / E Liquid approx. 140 approx. 11.5Lutensol® TO types (C13 Oxo alcohol ethoxylates)Lutensol TO 2 + 2 EO approx. 100 approx. 37 / D Liquid approx. 30 approx. 7 Lutensol TO 3 + 3 EO approx. 100 approx. 40 / E Liquid approx. 50 approx. 8 Lutensol TO 5 + 5 EO approx. 100 approx. 62 / E Liquid approx. 80 approx. 10.5 Lutensol TO 6 + 6 EO approx. 100 approx. 67 / E Liquid approx. 80 approx. 11 Lutensol TO 65 + 6.5 EO approx. 100 approx. 68 / E Liquid approx. 100 approx. 11.5 Lutensol TO 7 + 7 EO approx. 100 approx. 70 / E Liquid approx. 100 approx. 12 Lutensol TO 79 + 7 EO approx. 90 approx. 70 / E Liquid approx. 110 approx. 12 Lutensol TO 8 + 8 EO approx. 100 approx. 60 / A Liquid approx. 150 approx. 13 Lutensol TO 89 + 8 EO approx. 90 approx. 60 / A Liquid approx. 120 approx. 13 Lutensol TO 10 + 10 EO approx. 100 approx. 70 / A Paste approx. 30 (60 °C) approx. 13.5 Lutensol TO 109 + 10 EO approx. 85 approx. 70 / A Liquid approx. 150 approx. 13.5 Lutensol TO 11 + 11 EO approx. 100 approx. 70 / B Paste approx. 30 (60 °C) approx. 14 Lutensol TO 12 + 12 EO approx. 100 approx. 75 / B Solid approx. 40 (60 °C) approx. 14.5 Lutensol TO 129 + 12 EO approx. 85 approx. 75 / B Liquid approx. 200 approx. 14.5 Lutensol TO 15 + 15 EO approx. 100 approx. 80 / B Solid approx. 50 (60 °C) approx. 15.5 Lutensol TO 20 + 20 EO approx. 100 approx. 86 / B Solid approx. 60 (60 °C) approx. 16.5 Lutensol TO 389 + 3 / + 8 EO approx. 90 approx. 70 / E Liquid approx. 100 approx. 12Product Alcohol Active Cloud Physical Viscosity HLBcontent point form [mPa·s] value[%] [°C] [23 °C]Lutensol® XP types (C10-Guerbet alcohol ethoxylate)Lutensol XP 30 + 3 EO approx. 100 approx. 31 / E Liquid approx. 25 approx. 9 Lutensol XP 40 + 4 EO approx. 100 approx. 44 / E Liquid approx. 90 approx. 10.5 Lutensol XP 50 + 5 EO approx. 100 approx. 56 / E Liquid approx. 90 approx. 11.5 Lutensol XP 60 + 6 EO approx. 100 approx. 62 / E Liquid approx. 140 approx. 12.5 Lutensol XP 69 + 6 EO approx. 85 approx. 62 / E Liquid approx. 70 approx. 12.5 Lutensol XP 70 + 7 EO approx. 100 approx. 68 / E Liquid approx. 290 approx. 13 Lutensol XP 79 + 7 EO approx. 85 approx. 68 / E Liquid approx. 90 approx. 13 Lutensol XP 80 + 8 EO approx. 100 approx. 56 / A Liquid approx. 300 approx. 14 Lutensol XP 89 + 8 EO approx. 85 approx. 56 / A Liquid approx. 90 approx. 14 Lutensol XP 90 + 9 EO approx. 100 approx. 69 / A Liquid approx. 1200 approx. 14.5 Lutensol XP 99 + 8 EO approx. 85 approx. 69 / A Liquid approx. 100 approx. 14.5 Lutensol XP 100 + 10 EO approx. 100 approx. 80 / A Paste approx. 30 (60 °C) approx. 15 Lutensol XP 140 + 14 EO approx. 100 approx. 78 / B Paste approx. 40 (60 °C) approx. 16Lutensol® XL types (C10-Guerbet alcohol ethoxylate)Lutensol XL 40 + 4 EO approx. 100 approx. 43 / E Liquid approx. 40 approx. 10.5 Lutensol XL 50 + 5 EO approx. 100 approx. 58 / E Liquid approx. 50 approx. 11.5 Lutensol XL 60 + 6 EO approx. 100 approx. 65 / E Liquid approx. 60 approx. 12.5 Lutensol XL 70 + 7 EO approx. 100 approx. 68 / E Liquid approx. 70 approx. 13 Lutensol XL 79 + 7 EO approx. 85 approx. 68 / E Liquid approx. 120 approx. 13 Lutensol XL 80 + 8 EO approx. 100 approx. 56 / A Liquid approx. 120 approx. 14 Lutensol XL 89 + 8 EO approx. 85 approx. 56 / A Liquid approx. 150 approx. 14 Lutensol XL 90 + 9 EO approx. 100 approx. 69 / A Liquid approx. 30 (60 °C) approx. 14.5 Lutensol XL 99 + 9 EO approx. 80 approx. 69 / A Liquid approx. 160 approx. 14.5 Lutensol XL 100 + 10 EO approx. 100 approx. 80 / A Paste approx. 30 (60 °C) approx. 15 Lutensol XL 140 + 14 EO approx. 100 approx. 78 / B Paste approx. 40 (60 °C) approx. 16 Lutensol® AP types (Alkyl phenol ethoxylates)Lutensol AP 6 + 6 EO approx. 100 approx. 61 / E Liquid approx. 350 approx. 11 Lutensol AP 7 + 7 EO approx. 100 approx. 62 / E Liquid approx. 320 approx. 11 Lutensol AP 8 + 8 EO approx. 100 approx. 34 / A Liquid approx. 320 approx. 12.5 Lutensol AP 9 + 9 EO approx. 100 approx. 51 / A Liquid approx. 300 approx. 13 Lutensol AP 10 + 10 EO approx. 100 approx. 60 / A Liquid approx. 300 approx. 13.5 Lutensol AP 14 + 14 EO approx. 100 approx. 76 / B Liquid approx. 300 approx. 14.5 Lutensol AP 20 + 20 EO approx. 100 approx. 85 / B Solid approx. 70 (60 °C) approx. 16Lutensol® ON types (C10-Oxo alcohol ethoxylates)Lutensol ON 30 + 3 EO approx. 100 approx. 53 / E Liquid approx. 30 approx. 9 Lutensol ON 50 + 5 EO approx. 100 approx. 67 / E Liquid approx. 40 approx. 11.5 Lutensol ON 60 + 6 EO approx. 100 approx. 36 / A Liquid approx. 50 approx. 12 Lutensol ON 66 + 6.5 EO approx. 100 approx. 53 / A Liquid approx. 60 approx. 12.5 Lutensol ON 70 + 7 EO approx. 100 approx. 60 / A Liquid approx. 60 approx. 13 Lutensol ON 80 + 8 EO approx. 100 approx. 80 / A Liquid approx. 100 approx. 14 Lutensol ON 110 + 11 EO approx. 100 approx. 78 / B Paste approx. 30 (60 °C) approx. 15 Lutensol® GD typesLutensol GD 70 Alkyl polyglucoside approx. 70 > 100 / B Liquid approx. 5000Lutensol® F typesLutensol FA 12 Oleyl amine + 12 EO approx. 100 approx. 86 / B Liquid approx. 150Lutensol FA 12 K Coco amine + 12 EO approx. 100 approx. 92 / B Liquid approx. 190Lutensol FA 15 T Tallow amine + 15 EO approx. 100 approx. 97 / B Liquid approx. 240Lutensol FSA 10 Oleic acid amide + 10 EO approx. 100 approx. 85 / E Liquid approx. 300Nonionic low-foam surfactantsProduct Chemical Active Cloud Physical Viscosity Wetting nature content point form [mPa·s] effect[%] [°C] [23 °C]Plurafac® LF typesPlurafac LF 120 Fatty alcohol alkoxylate approx. 100 approx. 28 / A Liquid approx. 45 approx. 25 Plurafac LF 220 Fatty alcohol alkoxylate approx. 95 approx. 42 / A Liquid approx. 90 approx. 30 Plurafac LF 221 Fatty alcohol alkoxylate approx. 95 approx. 33 / A Liquid approx. 80 approx. 30 Plurafac LF 223 Fatty alcohol alkoxylate approx. 98 approx. 33 / E Liquid approx. 60 > 300 Plurafac LF 224 Fatty alcohol alkoxylate approx. 100 approx. 27 / E Liquid approx. 45 > 300 Plurafac LF 226 Fatty alcohol alkoxylate approx. 100 approx. 28 / A Liquid approx. 100 approx. 15 Plurafac LF 300 Fatty alcohol alkoxylate approx. 100 approx. 22 / A Liquid approx. 75 approx. 15 Plurafac LF 301 Fatty alcohol alkoxylate approx. 100 approx. 32 / E Liquid approx. 130 approx. 90 Plurafac LF 303 Fatty alcohol alkoxylate approx. 100 approx. 29 / E Liquid approx. 300 approx. 130 Plurafac LF 305 Fatty alcohol alkoxylate approx. 100 approx. 38 / E Liquid approx. 100 approx. 20 Plurafac LF 400 Fatty alcohol alkoxylate approx. 100 approx. 33 / A Liquid approx. 60 approx. 25 Plurafac LF 401 Fatty alcohol alkoxylate approx. 100 approx. 74 / A Liquid approx. 135 approx. 115 Plurafac LF 403 Fatty alcohol alkoxylate approx. 100 approx. 41 / E Liquid approx. 45 > 300 Plurafac LF 404 Fatty alcohol alkoxylate approx. 100 approx. 45 / E Liquid approx. 45 approx. 70 Plurafac LF 405 Fatty alcohol alkoxylate approx. 95 approx. 55 / E Liquid approx. 70 approx. 100 Plurafac LF 500 Fatty alcohol alkoxylate approx. 100 approx. 32 / E Liquid approx. 60 approx. 60 Plurafac LF 600 Fatty alcohol alkoxylate approx. 100 approx. 55 / A Liquid approx. 90 approx. 65 Plurafac LF 711 Fatty alcohol alkoxylate approx. 100 approx. 45 / E Liquid approx. 55 approx. 25 Plurafac LF 1300 Fatty alcohol alkoxylate approx. 100 approx. 21 / E Liquid approx. 95 > 300 Plurafac LF 1430 Amine alkoxylate approx. 100 approx. 35 / A Liquid approx. 400 > 300Plurafac SLF-18B45 90 %Fatty alcohol alkoxylate approx. 90 approx. 19 / A Liquid approx. 300 approx. 70Plurafac® LF types, end-cappedPlurafac LF 131 Fatty alcohol alkoxylate approx. 100 approx. 35 / E Liquid approx. 30 approx. 30 Plurafac LF 132 Fatty alcohol alkoxylate approx. 100 approx. 30 / E Liquid approx. 20 approx. 75 Plurafac LF 231 Fatty alcohol alkoxylate approx. 100 approx. 28 / E Liquid approx. 40 approx. 50 Plurafac LF 431 Fatty alcohol alkoxylate approx. 100 approx. 39 / E Liquid approx. 40 approx. 30Product EO content Active Cloud Physical Viscosity Molar[%] content point form [mPa·s] mass[%] [°C] [23 °C] [g/mol] Pluronic® PE types (PO/EO block polymers)Pluronic PE 3100 approx. 10 approx. 100 approx. 41 / E Liquid approx. 175 approx. 1000 Pluronic PE 3500 approx. 50 approx. 100 approx. 68 / A Liquid approx. 450 approx. 1900 Pluronic PE 4300 approx. 30 approx. 100 approx. 61 / E Liquid approx. 400 approx. 1750 Pluronic PE 6100 approx. 10 approx. 100 approx. 23 / A Liquid approx. 350 approx. 2000 Pluronic PE 6120 approx. 12 approx. 100 approx. 41 / E Liquid approx. 400 approx. 2100 Pluronic PE 6200 approx. 20 approx. 100 approx. 33 / A Liquid approx. 500 approx. 2450 Pluronic PE 6400 approx. 40 approx. 100 approx. 60 / A Liquid approx. 1000 approx. 2900 Pluronic PE 6800 approx. 80 approx. 100 approx. 88 / B Powder approx. 5000 (60 °C) approx. 8000 Pluronic PE 7400 approx. 40 approx. 100 approx. 60 / A Liquid approx. 1500 approx. 3500 Pluronic PE 8100 approx. 10 approx. 100 approx. 36 / E Liquid approx. 700 approx. 2600 Pluronic PE 9200 approx. 20 approx. 100 approx. 49 / E Liquid approx. 900 approx. 3650 Pluronic PE 9400 approx. 40 approx. 100 approx. 80 / E Solid approx. 300 (60 °C) approx. 4600 Pluronic PE 10100 approx. 10 approx. 100 approx. 35 / E Liquid approx. 800 approx. 3500 Pluronic PE 10300 approx. 30 approx. 100 approx. 71 / E Paste approx. 200 (60 °C) approx. 4950 Pluronic PE 10400 approx. 40 approx. 100 approx. 81 / A Paste approx. 500 (60 °C) approx. 5900 Pluronic PE 10500 approx. 50 approx. 100 approx. 75 / B Solid approx. 500 (60 °C) approx. 6500 Pluronic PE 10500 Solution approx. 50 approx. 18 approx. 75 / B Liquid approx. 10 approx. 6500Product EO content Active Cloud Physical Viscosity Molar[%] content point form [mPa·s] mass[%] [°C] [23 °C] [g/mol] Pluronic® RPE types (EO/PO block polymers)Pluronic RPE 1720 approx. 20 approx. 100 approx. 37 / E Liquid approx. 450 approx. 2150 Pluronic RPE 1740 approx. 40 approx. 100 approx. 51 / E Liquid approx. 600 approx. 2650 Pluronic RPE 2035 approx. 35 approx. 100 approx. 41 / E Liquid approx. 690 (40 °C) approx. 4100 Pluronic RPE 2520 approx. 20 approx. 100 approx. 31 / E Liquid approx. 600 approx. 3100 Pluronic RPE 2525 approx. 25 approx. 100 approx. 38 / E Liquid approx. 400 approx. 2000 Pluronic RPE 3110 approx. 10 approx. 100 approx. 25 / E Liquid approx. 600 approx. 3500 EmulsifiersProduct Chemical Active Cloud Physical Viscosity HLB nature content [%] point [°C] form [23 °C] [mPa·s] value Emulan® typesEmulan A Oleic acid ethoxylate approx. 100 approx. 52 / E Liquid approx. 70Emulan A Oleic acid ethoxylate approx. 100 approx. 52 / E Liquid approx. 70 approx. 11 Emulan AF Fatty alcohol ethoxylate approx. 100 approx. 65 / E Solid approx. 15 (60 °C) approx. 11 Emulan AT 9 Fatty alcohol ethoxylate approx. 100 approx. 68 / A Solid approx. 20 (60 °C) approx. 13 Emulan EL Castor oil ethoxylate approx. 97 approx. 71 / B Liquid approx. 600 (40 °C) approx. 13.5 Emulan EL 40 Castor oil ethoxylate approx. 100 approx. 72 / E Liquid approx. 300 (40 °C) approx. 12 Emulan ELH 60 Castor oil ethoxylate approx. 90 approx. 85 / B Liquid approx. 2500 approx. 16 Emulan EL 200 Powder Castor oil ethoxylate approx. 100 > 100 / A Powder approx. 200 (70 °C) approx. 18 Emulan ELP Castor oil ethoxylate approx. 100 approx. 51 / E Liquid approx. 700 approx. 7 Emulan LVA Oxo alcohol ethoxylate approx. 85 approx. 56 / A Liquid approx. 90 approx. 14 Emulan NP 3070 Alkylphenol ethoxylate approx. 70 approx. 90 / B Liquid approx. 1050 approx. 17 Emulan OC Fatty alcohol ethoxylate approx. 100 approx. 90 / B Solid approx. 60 (60 °C) approx. 17 Emulan OC Solution Fatty alcohol ethoxylate approx. 30 approx. 90 / B Liquid approx. 30 approx. 17 Emulan OG Fatty alcohol ethoxylate approx. 100 approx. 92 / B Powder approx. 80 (60 °C) approx. 17 Emulan OP 25 Alkylphenol ethoxylate approx. 100 approx. 88 / B Solid approx. 100 (60 °C) approx. 17 Emulan OU Fatty alcohol ethoxylate approx. 100 approx. 90 / B Solid approx. 60 (60 °C) approx. 17 Emulan P Fatty alcohol ethoxylate approx. 100 approx. 52 / E Liquid approx. 30 approx. 11 Emulan PO Alkylphenol ethoxylate approx. 100 approx. 46 / E Liquid approx. 300 approx. 11 Emulan TO 2080 C13 Oxo alcohol ethoxylate approx. 80 approx. 93 / B Liquid approx. 400 approx. 16 Emulan TO 3070 C13 Oxo alcohol ethoxylate approx. 70 approx. 91 / B Liquid approx. 1500 approx. 17 Emulan TO 4070 C13 Oxo alcohol ethoxylate approx. 70 approx. 91 / B Liquid approx. 1400 approx. 18 Emulan XCA 23 Polyisobutene derivative approx. 70 – Liquid approx. 3600 (40 °C) –Emulphor® typesEmulphor OPS 25 Sodium octylphenol approx. 34 Liquid approx. 60polyglycol ether sulphateEmulphor NPS 25 Sodium nonylphenol approx. 31 Liquid approx. 100polyglycol ether sulphateEmulphor FAS 30 Sodium fatty alcohol approx. 30 Liquid approx. 100polyglycol ether sulphateSolubiliserProduct Chemical Active Cloud Physical Viscositynature content [%] point [°C] form [mPa·s]Emulan HE 50 Hexanol ethoxylate approx. 100 approx. 72 / B Liquid approx. 25Emulan HE S104 Alcohol alkoxylate approx. 100 approx. 56 / E Liquid approx. 45AminopolyolQuadrol L Ethylene diamine+4 PO approx. 100 LiquidIonic surfactantsProduct Concentration Physical form Chemical nature[%] [23 °C]Lutensit® typesLutensit A-BO approx. 60 Liquid Sodium dioctylsulphosuccinateLutensit A-EP approx. 100 Liquid Acid phosphoric esterLutensit A-ES approx. 40 Liquid Sodium alkylphenol ether sulphateLutensit A-FK approx. 55 Liquid Sodium fatty acid condensation productLutensit A-LBA approx. 55 Liquid Amine salt of dodecylbenzenesulphonateLutensit A-LBS approx. 98 Liquid Dodecylbenzenesulphonic acidLutensit AN 10 approx. 100 Liquid Anionic/nonionic surfactant combination based on APEO Lutensit AN 30 approx. 100 Liquid Anionic/nonionic surfactant combination based on fattyalcohol ethoxylateLutensit AN 40 approx. 70 Liquid Mixture of nonionic surfactants with alkyl carboxylic acids Lutensit AN 45 approx. 80 Liquid Mixture of nonionic surfactants with alkyl carboxylic acids Lutensit AN 50 approx. 100 Liquid Anionic/nonionic surfactant combination based on fattyalcohol ethoxylateNekal® typesNekal BX Dry approx. 68 Powder Sodium alkylnaphthalene sulphonateNekal BX Conc. Paste approx. 60 Paste Sodium alkylnaphthalene sulphonateNekal BX Conc. Paste 40 % approx. 34 Paste Sodium alkylnaphthalene sulphonateNekal BX 30 % approx. 22 Liquid Sodium alkylnaphthalene sulphonateNekal SBC approx. 72 Liquid Alkylnaphthalene sulphonic acidCorrosion inhibitorsKorantin® typesKorantin BH Solid > 98 Solid 2-Butyne-1,4-diolKorantin BH 50 approx. 50 Liquid 2-Butyne-1,4-diolKorantin LUB approx. 100 Liquid Acid phosphoric ester of a polyetherKorantin MAT approx. 100 Liquid Alkanolamine salt of a nitrogenous organic acidKorantin PAT approx. 80 Liquid Alkanolamine salt of a nitrogenous organic acidKorantin PM > 99.5 Liquid Propargyl alcohol alkoxylateKorantin PP approx. 67 Liquid Propargyl alcohol alkoxylateKorantin SMK approx. 100 Liquid Phosphoric acid monoesterFoam depressorsProduct Chemical Physical form Viscosity Concentration nature [23 °C] [m·Pas] [%] Degressal® typesDegressal SD 20 Fatty alcohol alkoxylate Liquid approx. 60 100 Degressal SD 21 Fatty alcohol alkoxylate Liquid approx. 250 100 Degressal SD 23 Alcohol alkoxylate Liquid approx. 800 100 Degressal SD 30 Carboxylic acid ester Liquid approx. 20 100 Degressal SD 40 Phosphoric acid ester Liquid approx. 20 100Polyalkylene glycolsProduct Unsaturated Physical form Viscosity at 20 °C Iodine numberalcohol [23 °C] [mm2/s]Pluriol® A … R types (Reactive polyalkylene glycols)Pluriol A 010 R Allyl alcohol ethoxylate Liquid approx. 55 approx. 50Pluriol A 11 RE Allyl alcohol alkoxylate Liquid approx. 500 approx. 12Pluriol A 13 R Allyl alcohol alkoxylate Liquid approx. 150 approx. 20Pluriol A 22 R Allyl alcohol alkoxylate Liquid approx. 300 approx. 13Pluriol A 23 R Allyl alcohol alkoxylate Liquid approx. 60 approx. 43Pluriol A 308 R Butyne diol ethoxylate Liquid approx. 175 approx. 14 Product Molar mass Physical form Viscosity at 20 °C Melting point[g/mol] [23 °C] [mm2/s] [°C]Pluriol® A … E types (Methyl polyethylene glycols)Pluriol A 350 E approx. 350 Liquid approx. 30 –Pluriol A 500 E approx. 500 Liquid approx. 60 –Pluriol A 750 E* approx. 750 Solid approx. 30 (50 °C) approx. 35Pluriol A 760 E approx. 750 Solid approx. 30 (50 °C) approx. 35Pluriol A 1000 E approx. 1000 Solid approx. 60 (50 °C) approx. 40Pluriol A 1020 E* approx. 1000 Solid approx. 60 (50 °C) approx. 40Pluriol A 2000 E approx. 2000 Solid approx. 120 (50 °C) approx. 54Pluriol A 3010 E* approx. 3000 Solid approx. 160 (70 °C) approx. 59Pluriol A 5010 E* approx. 5000 Solid approx. 200 (100 °C) approx. 62 * = not filtratedProduct Molar mass Physical form Viscosity at 20 °C Viscosity[g/mol] [23 °C] [mm2/s] [mm2/s]Pluriol® A … PE types (Alkyl polyalkylene glycol copolymers)Pluriol A 1000 PE approx. 1000 Liquid approx. 50 approx. 11 (100 °C) Pluriol A 1320 PE* approx. 1400 Liquid approx. 180 approx. 20 (100 °C) Pluriol A 2000 PE approx. 2000 Liquid approx. 250 approx. 28 (100 °C) Pluriol A 2020 PE* approx. 2000 Liquid approx. 250 approx. 28 (100 °C) * = not filtratedPluriol® A … P types (Alkyl polypropylene glycols)Pluriol A 1350 P approx. 1350 Liquid approx. 195 approx. 85 (40 °C) Pluriol A 2000 P approx. 2000 Liquid approx. 500 approx. 180 (40 °C) Pluriol® A … TE types (Polyfunctional polyalkylene glycols)Pluriol A 3 TE approx. 275 Liquid approx. 1000 approx. 230 (40 °C) Pluriol A 15 TE approx. 800 Liquid approx. 400 approx. 140 (40 °C) Pluriol A 15 TERC approx. 800 Liquid approx. 400 approx. 140 (40 °C) Pluriol A 18 TERC approx. 900 Liquid approx. 430 approx. 150 (40 °C) Reactive solventsProduct Bisphenol A Physical form Active Viscosity[23 °C] content (%) [mm2/s]Pluriol® BP …E types (Bisphenol A ethoxylates)Pluriol BP 30 E + 3 EO Liquid approx. 100 approx. 450 (60 °C) Pluriol BP 40 E + 4 EO Liquid approx. 100 approx. 580 (50 °C) Pluriol BP 60 E + 6 EO Liquid approx. 100 approx. 680 (40 °C) Pluriol BP 100 E + 10 EO Liquid approx. 100 approx. 400 (40 °C)Product Molar mass Physical form Viscosity at 75 °C Melting point [g/mol] [23 °C] [mm2/s] [°C]Pluriol® E types (Polyethylene glycols) / Technical gradePluriol E 200 approx. 200 Liquid approx. 60 (20 °C)Pluriol E 300 approx. 300 Liquid approx. 85 (20 °C)Pluriol E 400 approx. 400 Liquid approx. 110 (20 °C)Pluriol E 600 approx. 600 Liquid approx. 40 (50 °C) approx. 20 Pluriol E 1000 approx. 1000 Paste approx. 30 approx. 40 Pluriol E 1500 E approx. 1500 Solid approx. 60 approx. 45 Pluriol E 1500 Powder approx. 1500 Powder approx. 60 approx. 45 Pluriol E 1500 Flakes approx. 1500 Flakes approx. 60 approx. 45 Pluriol E 3400 E approx. 3400 Solid approx. 200 approx. 55 Pluriol E 3400 Powder approx. 3400 Powder approx. 200 approx. 55 Pluriol E 3400 Flakes approx. 3400 Flakes approx. 200 approx. 55 Pluriol E 4000 E approx. 4000 Solid approx. 260 approx. 55 Pluriol E 4000 Powder approx. 4000 Powder approx. 260 approx. 55 Pluriol E 4000 Flakes approx. 4000 Flakes approx. 260 approx. 55 Pluriol E 6000 E approx. 6000 Solid approx. 600 approx. 60 Pluriol E 6000 Powder approx. 6000 Powder approx. 600 approx. 60 Pluriol E 6000 Flakes approx. 6000 Flakes approx. 600 approx. 60 Pluriol E 8000 E approx. 8000 Solid approx. 1500 approx. 63 Pluriol E 8000 Flakes approx. 8000 Flakes approx. 1500 approx. 63 Pluriol E 9000 Powder approx. 9000 Powder approx. 2500 approx. 65 Pluriol E 9000 Flakes approx. 9000 Flakes approx. 2500 approx. 65 Product Molar mass Physical form Viscosity at 100 °C[g/mol] [23 °C] [mm2/s]Pluriol® E types (Polyethylene glycols) / CARE grade*Pluriol E 205 approx. 200 Liquid approx. 4Pluriol E 305 approx. 300 Liquid approx. 5Pluriol E 405 approx. 400 Liquid approx. 6.5Pluriol E 605 approx. 600 Liquid approx. 10Pluriol E 1505 E approx. 1500 Solid approx. 30Pluriol E 1505 Flakes approx. 1500 Flakes approx. 30Pluriol E 3405 E approx. 3400 Solid approx. 85Pluriol E 3405 Flakes approx. 3400 Flakes approx. 85Pluriol E 4005 E approx. 4000 Solid approx. 110Pluriol E 4005 Flakes approx. 4000 Flakes approx. 110Pluriol E 6005 E approx. 6000 Solid approx. 350Pluriol E 6005 Flakes approx. 6000 Flakes approx. 350Pluriol E 8005 E approx. 8000 Solid approx. 600Pluriol E 8005 Flakes approx. 8000 Flakes approx. 600* Meets the monograph requirements of the current European and American PharmacopoeiaProduct Molar mass Physical form Viscosity at 20 °C Viscosity at 40 °C [g/mol] [23 °C] [mm2/s] [mm2/s]Pluriol® P types (Polypropylene glycols)Pluriol P 400 approx. 430 Liquid approx. 95 approx. 20Pluriol P 600 approx. 600 Liquid approx. 130 approx. 40Pluriol P 900 approx. 900 Liquid approx. 180 approx. 60Pluriol P 2000 approx. 2000 Liquid approx. 440 approx. 150 Pluriol P 4000 approx. 4000 Liquid approx. 1050 approx. 350。

合金装备5幻痛剧情梳理之系列年代事件表

合金装备5幻痛剧情梳理之系列年代事件表

美陆军成立“绿色贝雷帽”【1962】THE BOSS再一次任务中被迫杀死THE SORROW(Ocelot生父)【1963】Shaghod除武器部分外,研发接近尾声。

索科洛夫开始对其强大的威力心生恐惧。

同年,Volgin上校准备叛乱。

【1964】8月24日。

贞洁行动开始,JACK被派遣营救索科洛夫。

THE BOSS叛变,任务失败。

8月30日,食蛇者行动开始,目标营救索科洛夫,杀死THE boss,Volgin。

摧毁Shaghod。

9月2日,食蛇者行动成功,JACK被授予“BIG BOSS”头衔,并且了解到THE BOSS叛变而牺牲自我,保全大局的真相,从此深受THE BOSS理念的影响。

同年,BIG BOSS退出FOX UNIT。

后FU由GENE接管指挥美国掌握有一半哲学家的遗产。

【1965】Sigint进入ARPA【1968】EVA于河内失踪【1970】PARA-MEDIC在西雅图建立PARA MEDIC医疗系统。

zero解散了FOX UNITGENE发动叛乱意图摧毁哲学家组织,BIGBOSS瓦解危机,GENE死前给予了BIG BOSS关于他设想的“Army’s heaven”全部资料Ocelot刺杀中情局局长,与EVA ZERO等人创立了“爱国者”,BIG BOSS随后应Ocelot要求,被吸收入爱国者。

【1971】BIG BOSS,FRANK(未来的灰狐),ROY CAMPBELL创立了FOX HOUND部队。

名称来源是整合了FOX UNIT 以及HOUND UNIT【1972】“魔童计划”元年,LIQUID SOLID SOLIDUS出生。

均克隆自BIG BOSS,LIQUID SOLID代孕体为EVA。

同年,BIG BOSS创立MSF,在克罗比亚与MICDONALD MILLER(KAZ)初识。

【1974】PEACE WALKER事件,METAL GEAR ZEKE研发完成。

MSF得以壮大。

solid works 教程第5章 工程图

solid works 教程第5章 工程图
计算机绘图与三维造型技术 ——AutoCAD and SolidWorks
机制教研室 汤爱君 山东建筑大学机电学院
二维工程图
工程图界面 设置绘图规范 视图的生成 视图编辑 尺寸标注 注释 装配体工程视图
工程图界面
建立工程图模板文件
工程图文件模板,包括工程图的图幅大小、标题栏格式、 标注样式、文字样式等内容。 绘制图框及标题栏
计算机绘图与三维造型技术autocadsolidworks机制教研室山东建筑大学机电学院二维工程图工程图界面工程图界面设置绘图规范设置绘图规范视图的生成视图的生成视图编辑视图编辑尺寸标注尺寸标注注释注释装配体工程视图装配体工程视图工程图界面建立工程图模板文件工程图文件模板包括工程图的图幅大小标题栏格式标注样式文字样式等内容
视图生成
旋转视图
通过旋转视图,可将视图绕其中心点转动任意角度,或通过旋转视 图将所选边线设置为水平或竖直方向。 用鼠标右键单击辅助视图边空白区,从快捷菜单中选择【缩放/ 平移/旋转】—【旋转视图】命令。
视图生成
裁剪视图
剪裁视图是在现有视图中剪去不必要的部分,使得视图所表 达的内容即简练又突出重点。 双击辅助视图空白区域,激活需裁剪的视图。 单击草图绘制工具【圆】按钮,在辅助视图中绘制封闭轮廓 选择所绘制的封闭轮廓,单击【剪裁视图】按钮
右键单击剪裁视图,从弹 出的快捷菜单中选择【剪 裁视图】—【移除剪裁视 图】命令,出现未剪裁视 图。
视图生成
局部视图
局部视图用来放大显示现有视图某一局部的形状,相当于机 械图样国标中的局部放大图。
视图生成
剖面视图 剖面视图用来表达机体的内部结构,用该命令可以绘 制机械图样国标中的全剖视图和半剖视图。
其它标注
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MGXX,MGYY,MGZZ代表永磁材料矫顽力的矢量分量。矫顽力的大小是其各个分量的平方和的平方根。极化方向由分量MGXX,MGYY,MGZZ确定。永久磁极的极化方向以及正交各向异性材料的方向和单元坐标方向一致。单元坐标系统的定位参见坐标系统。非线性磁特性,压电特性和各向异性弹性特性用TB命令输入,参见数据表---隐含分析。非线性正交各向异性磁特性可以通过B-H曲线和线性相关导磁率的结合来确定。这个B-H曲线用在各单元坐标方向上,相对导磁率将被指定为零。每种材料只能设置一个B-H曲线。
图1 SOLID5三维耦合场体单元(略)
输入数据
在图1中给出了这个单元几何形状,节点位置和坐标系统。这个单元具有8个节点和材料属性。单位(MKS或者用户自己定义)通过EMUNIT命令来指定。EMUNIT也用来定义MUZERO的值。EMUNIT缺省值就是国际单位制而MUZERO=4π×10-7亨/米。除MUZERO之外,通过材料特性表中的MURX,MURY,MURZ来定义正交各向异性的相对导磁率。
Item
用于ETABLE命令的预先定义的输出项;
E
对于单值或常数型单元数据的序列号;
I,J,,,P
节点I,J,,,P处数据的序列号;
FCn
单元第N条边输出项的序列号。
表5.2 SOLDI5输出项和序列号(略)
SOLID5假设与限制
· 单元不一定有0体积或0长度边。这种情况经常出现在当单元被非正常计数时。
Y
Y
TEMP
输入温度T(I), T(J), T(K), T(L),T(M), T(N), T(O), T(P)
Y
Y
HGEN
输入的生热率HG(I), HG(J), HG(K), HG(L),HG(M), HG(N), HG(O), HG(P)
Y
Y
S:INT
应力强度
1
1
S:EQV
当量应力
1
1
EPEL:X, Y, Z, XY,YZ,XZ
JSSUM
JS矢量的大小
1
1
JHEAT
每单位体积产生的焦尔热
1
1
D:X,Y,Z
电流密度分量(X,Y,Z)
1
1
D:SUM
D矢量的大小
1
1
UE,UD,UM
电(UE),电介质(UD)和机电耦合(UM)
1
1
TG:X,Y,Z
热梯度分量
1
1
TG:SUM
TG矢量的大小
1
1
TF:X,Y,Z
热流率分量
1
1
TF:SUM
SOLID5
名称
SOLID5--三维耦合场体单元
有效产品:MP ME EM PP ED
Solid5单元说明
Solid5具有三维磁场,热场,电场,压电场和结构场分析能力,并能在各场之间实现有限的耦合。本单元有8个节点,每个节点最多有6个自由度。在静态分析中为了建立静磁场模型我们可以较容易得到标量电压公式(包括简化RSP,微分DSP,或者综合GSP)。关于这个单元参看ANSYS理论手册14.5节。具有相似场性能的耦合场单元有PLANE13,SOLID62,SOLID98。
面载荷
压力ห้องสมุดไป่ตู้
面1(J-I-L-K),面2(I-J-N-M)
面3(J-K-O-N),面4(K-L-P-O)
面5(L-I-M-P),面6(M-N-O-P)
对流
面1(J-I-L-K),面2(I-J-N-M)
面3(J-K-O-N),面4(K-L-P-O)
面5(L-I-M-P),面6(M-N-O-P)
热流密度
面1(J-I-L-K),面2(I-J-N-M)
· 当出现图5.1或者有面IJKL和MNOP互相作用的时候单元也可以用来计数。
· 棱柱形状单元可以通过定义双节点数来形成如在三角形,棱柱和五边形单元中描述的那样。
· 标量磁势能微分选项被严格限制在单连通域中,所以在这些域中当µ趋于无穷时结果场H就趋于0。而简化的和总体的势能选项就没有这个限制。
· 在单元自由面上(例如不与其他单元接近的和不受边界约束限制的)我们假设磁通密度(B)的标准分量为0。如果内部计算的话,温度和产热率就包括任意使用者定义的产热率。热,电,磁,结构项可以通过迭代过程来耦合。
3只有在单元中心,作为*GET项时可用。
4当量应变使用有效泊松比:对于弹性和热分析,由用户输入(MP,PRXY)。
表5.2 “SOLID5 输出项和序列号”列出了可以通过ETABLE命令,采用序列号方法输出的内容列表。在表“SOLID5 输出项和序列号”中使用如下标识符:
Name
与表5.1 “SOLID5单元输出定义”中相同定义的输出量;
面3(J-K-O-N),面4(K-L-P-O)
面5(L-I-M-P),面6(M-N-O-P)
麦克斯韦面标记
面1(J-I-L-K),面2(I-J-N-M)
面3(J-K-O-N),面4(K-L-P-O)
面5(L-I-M-P),面6(M-N-O-P)
体载荷
温度:T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)
若KEYOPT(1)=9:VOLT
若KEYOPT(1)=10:MAG
实参数:无
材料特性:EX, EY, EZ, (PRXY, PRYZ, PRXZ或NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ, DENS, GXY, GYZ, GXZ, DAMP, KXX, KYY, KZZ, C, ENTH, MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ, MGXX, MGYY, MGZZ, PERX, PERY, PERZ,加上BH, ANEL,和PIEZ数据表(见ANSYS帮助中的数据表—隐式分析)。
产品限制
当这个单元被用在下面列出的产品时,就要在这个单元上应用规定的特殊产品约束除在上小节给出的一般假设和约束外。
ANSYS/Mechanical 如果Emag选项不被激活的话,就要应用下面的约束:
· 单元没有磁场特性
· MAG自由度不起作用
· KEYOPT(1)不能设成10。如果KEYOPT(1)=0或1,MAG自由度就不起作用
单元载荷在节点和单元载荷中说明。表面载荷,压力,对流热,热流量和麦克斯韦力标记可以在单元边界面上通过SF和SFE命令输入,如图SOLID5单元几何中带圆圈数字所示。正压力指向单元内部。需要计算磁力的表面,可以在该面上使用无数值参数的面载荷命令MXWF做标记。为了得到磁力我们可计算这些面上的麦克斯韦尔应力张量。这些力在求解时可作为载荷施加到结构上。表面标记应该施加到需计算力的体相邻的空气单元上。删除指定的MXWF就能够取消标记了。
生热率:HG (I), HG (J), HG (K), HG (L), HG (M),HG (N), HG (O), HG (P)
磁虚位移:VD (I), VD (J), VD (K), VD (L), VD (M), VD (N), VD (O), VD (P)
特殊特性
对于耦合场需要进行迭代计算(位移、温度、电、磁,但不包括压电);应力刚度;生死单元;自适应下降。
在图中显示了几个输出项。单元应力方向和单元坐标系统平行。节点的支反力,热流密度,电流和磁通量可以用OUTPR命令打印出来。在结果输出中给出了对于结果输出的一般说明。查看的方法见ANSYS基本分析指南。
图2 SOLID5单元输出(略)
单元输出定义表使用如下标记:
在名称列表中的冒号表示该项可以用分量名方法ETABLE,ESOL处理;0列表示该项可用于Jobname.OUT文件;R列表示该项可用于结果文件。无论0或R列,Y表示该项总是可用的,一个数字表示表的一个注解,其中说明了使用该项的条件;而减号“-”表示该项不可用。
表1 SOLID5单元输出定义
名称
定义
O
R
EL
单元号
Y
Y
NODES
节点- I, J, K, L, M, N, O, P
Y
Y
MAT
材料号
Y
Y
VOLU:
体积
Y
Y
XC, YC,ZC
结果输出点位置
Y
3
PRES
P1在节点J, I,L,K; P2在I,J,N,M; P3在J,K,O,N; P4在K, L,P,O; P5在L,I,M,P; P6在M,N,O,P
体载荷,温度,发热率和磁虚位移可以输入其在单元结点处的值或单一的单元值BF和BFE。当温度自由度被激活时(KEYOPT(1)=0,1或8)就可以忽略上面提到的应用在体上的温度值(BF,BFE)。一般情况下,未指定的节点温度和生热率都默认为由命令BFUNIF或TUNIF指定的值。计算出来的焦耳热值可以作为发热率应用在后面的迭代中。
SOLID5输入汇总
单元名称
SOLID5
节点:I,J,K,L,M,N,O,P
自由度:
若KEYOPT(1)=0:UX,UY,UZ,TEMP,VOLT
若KEYOPT(1)=1:TEMP,VOLT
若KEYOPT(1)=2:UX,UY,UZ
若KEYOPT(1)=3:UX,UY,UZ,VOLT
若KEYOPT(1)=8:TEMP
· 磁性材料特性(MUZERO,MUR_,MG_,和BH数据表)是不允许的
· 麦克斯韦力标记和磁虚位移体载荷都是不可用的
ANSYS/Emag
· 单元只具有磁场和电场特性,并且没有结构,热或者压电特性
· 只有激活的自由度才是MAG和VOLT
· KEYOPT(1)设成0,1,2,3,8是无效的
· 唯一允许的材料特性是磁场和电场特性(MUZERO通过PERZ来定义,加上BH数据表)
相关文档
最新文档