2020年高考数学一轮经典例题 两直线的位置关系 理
高考数学一轮复习 第二节 两直线的位置关系课件 理 新人教A版

+y=1 平行”的充要条件,故选 C .
3.经过两直线 l1:x-2y+4=0 和 l2:x+y-2=0 的交点 P,
且与直线 l3:3x-4y+5=0 垂直的直线 l 的方程为________.
解析:法一
由பைடு நூலகம்
方
程
组
x-2y+4=0, x+y-2=0,
得
x=0, y=2,
即
P(0,2).
∵l⊥l3,∴直线 l 的斜率 k1=-43,
第二节
两直线的位置关系
1.两直线的位置关系
斜截式
一般式
方程 y=k1x+b1 y=k2x+b2
A1x+B1y+C1=0(A21+B21≠0) A2x+B2y+C2=0(A22+B22≠0)
相交
k1≠k2
A1B2-A2B1≠0当A2B2≠0时,记为AA21≠BB12
垂直 k1=-k12或k1k2=-1
2.已知 p:直线 l1:x-y-1=0 与直线 l2:x+ay-2=0 平行,
q:a=-1,则 p 是 q 的
()
A.充要条件
B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析:由于直线 l1:x-y-1=0 与直线 l2:x+ay-2=0 平行 的充要条件是 1×a-(-1)×1=0,即 a=-1.
k1=k2 平行
且 b1≠b2
A1A2+B1B2 =
0A当1BB2-1BA2≠20B时1=,0,记为ABA11·1BAB222=--A21B 1 =0,
B2C1-B1C2≠0
或
A1C2-A2C1≠0
当A2B2C2≠0时,记为AA12=BB12≠CC12
2.两直线的交点
【人教版】2020高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系分层演练文

第2讲 两直线的位置关系一、选择题1.已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -2=0,则“m =1”是“l 1⊥l 2”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A .由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B .由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1.又因为0<k <12,所以x =kk -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B .由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y =0平行,则l 1与l 2之间的距离为( ) A . 2 B .2 2 C .3 2D .4 2解析:选C .因为l 1∥l 2, 所以1a -2=a 3, 解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y =0,所以l 1与l 2的距离d =||6-02=32.选C .5.光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( ) A .a =13,b =6B .a =-13,b =-6C .a =3,b =-16D .a =-3,b =16解析:选B .在直线y =-3x +b 上任意取一点A (1,b -3),则点A 关于直线x +y =0的对称点B (-b +3,-1)在直线y =ax +2上,故有-1=a (-b +3)+2,即-1=-ab +3a +2,所以ab =3a +3,结合所给的选项,只有B 项符合,故选B .6.在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上, 因为|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D . 二、填空题7.直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形.故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:259.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=010.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.因为k AC =6-23-1=2,所以直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②联立①②⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案:(2,4) 三、解答题11.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0. 所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线, 最大距离为|-5|5=5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线. 12.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.1.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), 所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.2.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由. 解:(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。
高考数学一轮总复习 9.63 两条直线的位置关系与对称问题课件 理

②关于 y 轴对称(以___-x____代___x____); ③关于 y=x 对称(__x_,__y__互换);
④关于 x+y=0 对称(以___-_x___代__y___,以__-_y__代___x___);
⑤关于 x=a 对称(以_2_a_-_x__代___x___);
⑥关于 y=b 对称(以__2_b_-y____代____y____).
(2)由2xx-+2yy- =50= ,0,解得交点 P(2,1),如图,过 P 作任一直线,设 d 为点 A 到该直线的距离,则 d≤|PA|(当 l⊥PA 时等号成立).∴dmax=|PA|= 10.
第十八页,共37页。
四、直线位置关系的综合应用 例4(1)光线过点 A(-2,4),经过 2x-y-7=0 反 射,若反射线通过点 B(5,8),求入射光线与反射光线 所在直线的方程; (2)已知点 A(4,-1)和点 B(8,2)均在直线 l:x-y -1=0 的同侧,动点 P(x,y)在直线 l 上,求|PA|+|PB| 的最小值.
【基础检测】
1.“λ=3”是“直线 λx+2y+3λ=0 与直线 3x+
(λ-1)y=λ-7 平行”的( C )
A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
【解析】当 λ=3 时,两直线平行.若直线 λx+2y +3λ=0 与直线 3x+(λ-1)y=λ-7 平行,则 λ(λ-1)=6, 且-λ(λ-7)≠3×3λ,解得 λ=3.因此选 C.
①____P_P__垂_直__直__线__l____;②___P_P__的__中__点__在__直__线__l_上____,
则点 P,P′关于直线 l 对称.
第九页,共37页。
2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

第3讲 空间点、直线、平面之间的位置关系基础知识整合1.平面的基本性质公理1:如果一条直线上的□01两点在一个平面内,那么这条直线就在此平面内. 公理2:经过□02不在同一直线上的三点,有且只有一个平面. 公理3:如果不重合的两个平面有一个公共点,那么它们有□03且只有一条过□04该点的公共直线.2.用集合语言描述点、线、面间的关系 (1)点与平面的位置关系:点A 在平面α内记作□05A ∈α,点A 不在平面α内记作□06A ∉α. (2)点与线的位置关系点A 在直线l 上记作□07A ∈l ,点A 不在直线l 上,记作□08A ∉l . (3)线面的位置关系:直线l 在平面α内记作□09l ⊂α,直线l 不在平面α内记作□10l ⊄α.(4)平面α与平面β相交于直线a ,记作□11α∩β=a . (5)直线l 与平面α相交于点A ,记作□12l ∩α=A . (6)直线a 与直线b 相交于点A ,记作□13a ∩b =A . 3.直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧□14平行.□15相交.异面直线:不同在□16任何一个平面内的两条直线.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的□17锐角或直角叫做异面直线a ,b 所成的角(或夹角). ②范围:□18⎝ ⎛⎦⎥⎤0,π2.1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.1.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m ⊥α,n⊥β,且β⊥α,则下列结论一定正确的是( )A.m⊥n B.m∥nC.m与n相交D.m与n异面答案 A解析若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:m⊂β或m∥β.当m⊂β时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n.故选A.2.(2019·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p 是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.3.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案 D解析A,B,C,D构成的四边形可能为平面四边形,也可能为空间四边形,D不成立.4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾,D错误.故选C.5.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是________(写出所有错误命题的序号).答案②③④解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错误.故填②③④.6.(2019·河南南阳模拟)如图,在四棱锥P-ABCD中,O为CD上的动点,V P-OAB恒为定值,且△PDC是正三角形,则直线PD与直线AB所成角的大小是________.答案60°解析因为V P-OAB为定值,所以S△ABO为定值,即O到线AB的距离为定值.因为O为CD上的动点,所以CD∥AB.所以∠PDC即为异面直线PD与AB所成角.因为△PDC为等边三角形,所以∠PDC=60°.所以PD与AB所成角为60°.核心考向突破考向一平面基本性质的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1.∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.触类旁通共面、共线、共点问题的证明方法(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.提醒:点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.即时训练 1. 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E ,F ,G ,H 四点共面; (2)设EG 与FH 交于点P . 求证:P ,A ,C 三点共线.证明 (1)∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD . 在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面. (2)由(1)知EF 綊12BD ,GH 綊23BD .∴四边形FEGH 为梯形,∴GE 与HF 交于一点, 设EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 考向二 空间两条直线的位置关系角度1 两条直线位置关系的判定例2 (1)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4即不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 构造如图所示的正方体ABCD -A 1B 1C 1D 1,取l 1为AD ,l 2为AA 1,l 3为A 1B 1,当取l 4为B 1C 1时,l 1∥l 4,当取l 4为BB 1时,l 1⊥l 4,故排除A ,B ,C ,选D.(2)(2019·贵州六盘水模拟)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直B.相交C.异面D.平行答案 D解析∵α是一个平面,m,n是两条直线,A是一个点,m⊄α,n⊂α,A∈m,A∈α,∴n在平面α内,m与平面α相交,A是m和平面α的交点,∴m和n异面或相交(垂直是相交的特殊情况),一定不平行.故选D.角度2异面直线的判定例3 (2019·许昌模拟)如下图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.答案②④解析①中HG∥MN;③中GM∥HN且GM≠HN,所以直线HG与MN必相交.触类旁通空间两条直线位置关系的判定方法即时训练 2.(2019·太原期末)已知平面α和直线l,则α内至少有一条直线与l( )A.平行B.相交C.垂直D.异面答案 C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;l⊂α时,在平面α内不存在与l异面的直线,∴D错误;l∥α时,在平面α内不存在与l 相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C.3.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论序号都填上).答案③④解析 因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.考向三 异面直线所成的角例4 (1)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25 C.35 D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1或其补角即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.则异面直线A 1B 与AD 1所成角的余弦值为45.故选D.(2)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是________.答案 60°解析 如图所示,连接A 1B ,可知A 1B ∥E 1D ,∴∠A 1BC 1是异面直线E 1D 和BC 1所成的角.连接A 1C 1,可求得A 1C 1=C 1B =BA 1=3, ∴∠A 1BC 1=60°. 触类旁通用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角.二证:证明作出的角是异面直线所成的角.三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.即时训练 4. 如图,在三棱锥D -ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于( )A .30°B .45°C .60°D .90°答案 B解析 如图所示,取BC 的中点G ,连接FG ,EG .∵E ,F 分别为CD ,AB 的中点, ∴FG ∥AC ,EG ∥BD , 且FG =12AC ,EG =12BD .∴∠EFG 为EF 与AC 所成的角. ∵AC =BD ,∴FG =EG . ∵AC ⊥BD ,∴FG ⊥EG , ∴∠FGE =90°,∴△EFG 为等腰直角三角形,∴∠EFG =45°,即EF 与AC 所成的角为45°.故选B.5.在三棱锥S -ACB 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则SC 与AB 所成角的余弦值为________.答案1717解析 如图所示,取BC 的中点E ,分别在平面ABC 内作DE ∥AB ,在平面SBC 内作EF ∥SC ,则异面直线SC 与AB 所成的角为∠FED ,过F 作FG ⊥AB ,连接DG ,则△DFG 为直角三角形.由题知AC =2,BC =13,SB =29可得DE =172,EF =2,DF =52,在△DEF 中,由余弦定理可得cos ∠FED =DE 2+EF 2-DF 22DE ·EF =1717.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C. 答题启示(1)当异面直线所成的角不易作出或难于计算时,可考虑使用补形法.(2)补形法的目的是平移某一条直线,使之与另一条相交,常见的补形方法是对称补形. 对点训练(2019·银川模拟)如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =12,BC =3,AA 1=4,N 在A 1B 1上,且B 1N =4,则异面直线BD 1与C 1N 所成角的余弦值为( )A.25 B.35 C.45 D .-35答案 B解析 补一个与原长方体相同的,并与原长方体有公共面BC 1的长方体B 1F , 如图所示.连接C 1E ,NE ,则C 1E ∥BD 1,于是∠NC 1E 即为异面直线BD 1与C 1N 所成角(或其补角).在△NC 1E 中,根据已知条件可求C 1N =5,C 1E =13,EN =E 1N 2+EE 21=417.由余弦定理,得cos ∠NC 1E =C 1N 2+C 1E 2-EN 22C 1N ×C 1E =-35.所以BD 1与C 1N 所成角的余弦值为35.。
高考总复习一轮数学精品课件 第9章 平面解析几何 第2节 两条直线的位置关系

D. 2+1
a=-1+ 2或 a=-1- 2.
∵a>0,∴a=-1+ 2.
(3)直线3x-4y-4=0与直线6x-8y-3=0之间的距离为( C )
1
A.
5
2解析 直线 3x-4y-4=0 即 6x-8y-8=0,显然与另一条直线平行,
则所求距离为
|-8-(-3)|
62 +82
=
(3)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为
(x,2b-y).
(4)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
(5)点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为
(k+y,x-k).
2.三种直线系方程
3.直线外一点与直线上的点的距离的最小值就是点到直线的距离.(
)
题组二 回源教材
4.(人教A版选择性必修第一册2.3.4节练习第1题改编)已知两条平行直线l1:
2 5
2x+y-1=0,l2:2x+y+1=0,则l1与l2之间的距离是__________.
5
解析 利用两平行线间的距离公式得 l1 与 l2 之间的距离 d=
条直线的斜率为0时,l1⊥l2
l1⊥l2⇔__________
k1k2=-1
若 A1,A2,B1,B2,C1,C2 均不为 0,
1
1
1
则 l1 与 l2 重合⇔ = =
2
2
2
l1∥l2⇔__________,且
A1B2-A2B1=0 B1C2-B2C1≠0(或 A1C2-A2C1≠0)
高考数学一轮总复习课件:两直线的位置关系

例1 (1)(2021·江西八校联考)已知直线l1:kx+y+3=0, l2:x+ky+3=0,且l1∥l2,则k的值为__-__1____.
【思路】 根据两直线平行列关于k的方程,解出k的值,然后 代入两直线方程进行验证是否满足l1∥l2,即可得出实数k的值.
【解析】 ∵直线l1:kx+y+3=0,l2:x+ky+3=0,且l1 ∥l2,
答案 (1)× (2)× (3)√ (4)× (5)×
=0.若2.l1∥(课l2本,习则题a的改值编为)已_-_知_12_直__线__l,1:若axl1+⊥yl+2,5则=a0的,值l2:为x-2y+7 _____2___.
3.直线y=kx-k-2恒过定点__(_1,__-__2)_.
解析 y=kx-k-2=k(x-1)-2.当x=1,y=-2时恒成立, ∴直线恒过定点(1,-2).
【解析】 要使点P到直线x-y-4=0有最小距离, 只需点P为曲线与直线x-y-4=0平行的切线的切点, 即点P为曲线上斜率为1的切线的切点,设P(x0,y0),x0>0, y=x2-lnx,y′|x=x0=2x0-x10=1,解得x0=1或x0=-12(舍去), 点P(1,1)到直线x-y-4=0的距离为|1-12-4|=2 2, 所以曲线y=x2-lnx上任一点到直线x-y-4=0的距离的最小 值为2 2.
【思路】 结合图形,根据点到直线的距离公式求解.
【解析】 (1)过点P的直线l与原点的距离为2,而点P的坐 标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条 件,
此时l的斜率不存在,其方程为x=2. 若斜率存在,设l的方程为y+1=k(x-2), 即kx-y-2k-1=0. 由已知得|-k22k+-11|=2,解得k=34. 此时l的方程为3x-4y-10=0.
2020高考数学一轮复习第九章解析几何9-2两直线的位置关系学案理

【2019最新】精选高考数学一轮复习第九章解析几何9-2两直线的位置关系学案理考纲展示►1.能根据两条直线的斜率判断这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.考点1 两条直线的位置关系1.两条直线平行与垂直的判定(1)两条直线平行①对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔________;②当不重合的两条直线l1,l2的斜率都不存在时,l1与l2的关系为________.(2)两条直线垂直①如果两条直线l1,l2的斜率存在,设为k1,k2,则l1⊥l2⇔________;②如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2的关系为________.答案:(1)①k1=k2 ②平行(2)①k1k2=-1 ②垂直2.两条直线的交点答案:唯一解无解无穷多解(1)[教材习题改编]若直线l过点(-1,2),且与直线y=x垂直,则直线l的方程是________.答案:x+y-1=0解析:由条件知,直线l的斜率k=-1,则其方程为y-2=-(x+1),即x+y-1=0.(2)[教材习题改编]过点A(4,a)和B(5,b)的直线与直线y=x+m平行,则|AB|=________. 答案:2解析:依题意有=1,即b -a =1,则|AB|==.两直线位置关系的重点:平行和垂直.(1)若直线l1:2x +my +1=0与直线l2:y =3x -1平行,则m =________.答案:-23解析:若l1∥l2,则需满足 ⎩⎪⎨⎪⎧-2m=3,1m ≠1,得 ⎩⎪⎨⎪⎧m =-23,m≠1,所以m 的值是-.(2)[2016·辽宁锦州模拟]若直线l1:kx +(1-k)y -3=0和l2:(k -1)x +(2k+3)y -2=0互相垂直,则k =________.答案:-3或1解析:由k(k -1)+(1-k)(2k +3)=0,得k =1或k =-3.[典题1] (1)[2017·重庆巴蜀中学模拟]若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于( )A .1B .-C .-D .-2[答案] D[解析] 由a·1+2·1=0,得a =-2,故选D.(2)[2017·浙江金华十校模拟]“直线ax -y =0与直线x -ay =1平行”是“a=1”成立的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D.既不充分也不必要条件[答案] B [解析] 由直线ax-y=0与x-ay=1平行,得a2=1,即a=±1,所以“直线ax-y=0与x-ay=1平行”是“a=1”的必要不充分条件.(3)过点(1,0)且与直线x-2y-2=0平行的直线方程是( )B.x-2y+1=0A.x-2y-1=0D.x+2y-1=0C.2x+y-2=0[答案] A [解析] 依题意,设所求的直线方程为x-2y+a=0,由于点(1,0)在所求直线上,则1+a=0,即a=-1,则所求的直线方程为x-2y-1=0.(4)经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________.[答案] 4x+3y-6=0[解析] 解法一:由方程组得即P(0,2).∵l⊥l3,∴直线l的斜率k=-,∴直线l的方程为y-2=-x,即4x+3y-6=0.解法二:∵直线l过直线l1和l2的交点,∴可设直线l的方程为x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0.∵l与l3垂直,∴3(1+λ)+(-4)(λ-2)=0,∴λ=11,∴直线l的方程为12x+9y-18=0,即4x+3y-6=0.[点石成金] 1.由一般式确定两直线位置关系的方法建议多用比例式来解答.2.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.3.常见的三大直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+m=0(m∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.考点2 距离公式的应用三种距离两平行直线3x-4y-1=0与6x-8y+18=0间的距离是________.答案:2解析:两平行直线的方程分别是3x-4y-1=0和3x-4y+9=0,由两平行线间的距离公式得,所求距离d==2.两平行直线l1,l2分别过点A(1,0),B(0,5),若l1与l2间的距离为5,则l1与l2的方程分别为________.答案:y=0与y=5或5x-12y-5=0与5x-12y+60=0解析:依题意,两条直线的斜率必存在.设所求直线方程为l1:y=k(x-1),l2:y=kx+5.∵两条平行直线间的距离为5,∴=5,解得k=0或k=,∴所求直线方程为l1:y=0,l2:y=5或l1:5x-12y-5=0,l2:5x-12y+60=0.[典题2] 直线l经过点P(2,-5)且与点A(3,-2)和点B(-1,6)的距离之比为1∶2,求直线l的方程.[解] 当直线l与x轴垂直时,此时直线l的方程为x=2,点A到直线l的距离为d1=1,点B到直线l的距离为d2=3,不符合题意,故直线l的斜率必存在,设为k,∵直线l过点P(2,-5),∴设直线l的方程为y+5=k(x-2),即kx-y-2k-5=0.∴点A(3,-2)到直线l的距离d1==,点B(-1,6)到直线l的距离d2==.∵d1∶d2=1∶2,∴=,∴k2+18k+17=0,∴k1=-1,k2=-17.∴所求直线方程为x+y+3=0和17x+y-29=0.[点石成金] 利用距离公式应注意:(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;(2)两平行线间的距离公式要把两直线方程中x,y的系数化为相等.1.[2017·四川绵阳一诊]若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则|PQ|的最小值为( )A. B. C. D.295答案:C解析:因为=≠,所以两直线平行,由题意可知,|PQ|的最小值为这两条平行直线间的距离,即=,所以|PQ|的最小值为.2.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为________.答案:x+3y-5=0或x=-1解析:解法一:当直线l的斜率存在时,设直线l的斜率为k,则它的方程为y -2=k(x+1),即kx-y+k+2=0.由题意知,=,即|3k-1|=|-3k-3|,∴k=-,∴直线l的方程为y-2=-(x+1),即x+3y-5=0.当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.综上知,所求直线l的方程为x+3y-5=0或x=-1.解法二:当AB∥l时,有k=kAB=-,直线l的方程为y-2=-(x+1),即x+3y-5=0.当l 过AB 中点时,AB 的中点为(-1,4), ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.考点3 对称问题[考情聚焦] 对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.主要有以下几个命题角度:角度一点关于点的中心对称问题[典题3] 过点P(0,1)作直线l ,使它被直线l1:2x +y -8=0和l2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.[答案] x +4y -4=0[解析] 设l1与l 的交点为A(a,8-2a),则由题意知,点A 关于点P 的对称点B(-a,2a -6)在l2上,代入l2的方程得-a -3(2a -6)+10=0,解得a =4,即点A(4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.角度二点关于直线的对称问题[典题4] 已知直线l :2x -3y +1=0,点A(-1,-2),则点A 关于直线l 的对称点A′的坐标为________.[答案] ⎝ ⎛⎭⎪⎫-3313,413 [解析] 设A′(x,y),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A′. 角度三直线关于直线的对称问题[典题5] 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m′的方程.[解] 在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上.设对称点M′(a,b),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′.设直线m 与直线l 的交点为N ,则由得N(4,3).又∵m′经过点N(4,3),∴由两点式,得直线m ′的方程为9x -46y +102=0.角度四对称问题的应用[典题6] 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于________.[答案]43[解析] 以AB ,AC 所在直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A(0,0),B(4,0),C(0,4),得△ABC 的重心D ,设AP =x ,则P(x,0),x∈(0,4),由光的反射定理知,点P 关于直线BC ,AC 的对称点P1(4,4-x),P2(-x,0),与△ABC 的重心D 共线,所以=,解得x =,AP =.[点石成金] 1.点P(x ,y)关于O(a ,b)的对称点P′(x′,y′)满足⎩⎪⎨⎪⎧x′=2a -x ,y′=2b -y.2.解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.3.若直线l1,l2关于直线l 对称,则有如下性质:①若直线l1与l2相交,则交点在直线l 上;②若点B 在直线l1上,则其关于直线l 的对称点B′在直线l2上. 4.解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.[方法技巧] 1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1,l2,l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=-1.2.与已知直线垂直及平行的直线系的设法与直线Ax +By +C =0(A2+B2≠0)垂直和平行的直线方程可设为:(1)垂直:Bx -Ay +m =0;(2)平行:Ax +By +n =0.3.直线l1:A1x +B1y +C1=0(A +B≠0),l2:A2x +B2y +C2=0(A +B≠0),则:(1)l1⊥l2⇔A1A2+B1B2=0; (2)l1∥l2⇔=≠(A2B2C2≠0); (3)l1与l2相交⇔≠(A2B2≠0); (4)l1与l2重合⇔==(A2B2C2≠0).4.对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法. [易错防范] 1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. 2.运用两平行直线间的距离公式d =的前提是将两方程中的x ,y 的系数化为对应相等.真题演练集训1.[2016·四川卷]设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P ,且l1,l2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)答案:A解析:不妨设P1(x1,ln x1),P2(x2,-ln x2),由于l1⊥l2,所以×=-1,则x1=.又切线l1:y -ln x1=(x -x1),l2:y +ln x2=-(x -x2),于是A(0,ln x1-1),B(0,1+ln x1),所以|AB|=2.联立⎩⎪⎨⎪⎧y -ln x1=1x1-,y +ln x2=-1x2-,解得xP =.所以S△PAB=×2×xP=, 因为x1>1,所以x1+>2,所以S△PAB 的取值范围是(0,1),故选A.2.[2013·新课标全国卷Ⅱ]已知点A(-1,0),B(1,0),C(0,1),直线y =ax +b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A. (0,1)B. ⎝ ⎛⎭⎪⎫1-22,12C.D. ⎣⎢⎡⎭⎪⎫13,12 答案:B解析:如图①所示,点F 在线段AB 上时,可求得E ,则S△EF B =·=S△ABC=,整理得a =,由⎩⎪⎨⎪⎧-1≤-b a <0,a =b21-2b >0, 可解得≤b<;①②如图②所示,当点F 在点A 左侧时,可求得E ,G ,则S 四边形ABEG =S△BEF-S△AFG=·-·=S△ABC=,整理可得a2=-2b2+4b -1,由⎩⎪⎨⎪⎧-b a<-1,a2=-2b2+4b -1>0, 可解得1-<b<或1<b<1+(舍去).综上可得,b 的取值范围为,故选B.3.[2014·江苏卷]在平面直角坐标系xOy 中,若曲线y =ax2+(a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.答案:-3解析:由曲线y =ax2+过点P(2,-5)可得-5=4a +.①又y′=2ax -,所以在点P 处的切线斜率4a -=-.②由①②解得a =-1,b =-2,所以a +b =-3.4.[2014·四川卷]设m∈R,过定点A 的动直线x +my =0和过定点B 的动直线mx-y -m +3=0交于点P(x ,y),则|PA|·|PB|的最大值是________.答案:5解析:∵直线x+my=0与mx-y-m+3=0分别过定点A,B,∴A(0,0),B(1,3).当点P与点A(或B)重合时,|PA|·|PB|为零;当点P与点A,B均不重合时,∵P为直线x+my=0与mx-y-m+3=0的交点,且易知此两直线垂直,∴△APB为直角三角形,∴|PA|2+|PB|2=|AB|2=10,∴|PA|·|PB|≤==5,当且仅当|PA|=|PB|时,上式等号成立.课外拓展阅读直线过定点及直线的距离最值问题专题一直线过定点问题直线l的方程中除去x,y还有其他字母(称为参数),若直线l过一个定点P,求定点P的坐标时,通常对参数分别取两个具体的值,将所得的两个方程联立得方程组,由方程组的解可得定点P的坐标.[典例1] 已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1),Q2(a2,b2)(a1≠a2)的直线方程.[思路分析] 由两直线过定点得出系数之间的关系,从而得出直线方程.[解] 因为点P(2,3)在已知直线上,所以2a1+3b1+1=0,2a2+3b2+1=0,所以2(a1-a2)+3(b1-b2)=0,即=-,所以所求直线方程为y-b1=-(x-a1).所以2x+3y-(2a1+3b1)=0,即2x+3y+1=0.[典例2] 点P(2,1)到直线mx-y-3=0(m∈R)的最大距离是________.[思路分析][解析] 解法一:点P(2,1)到直线mx -y -3=0(m∈R)的距离d ==,则设f(m)=d2==4×m2-4m +4m2+1=4,下面求(m∈R)的最大值.设3-4m =t ,则m =.当m<时,t>0,则===16t +25t-6 ≤=4,当且仅当t =,即t =5时等号成立;当m =时,=0;当m>时,t<0,则0>=t⎝ ⎛⎭⎪⎫3-t 42+1 ==≥=-1,当且仅当t =,即t =-5时等号成立.综上可得,(m∈R)的最大值为4,所以点P(2,1)到直线mx -y -3=0(m∈R)的最大距离是=2.解法二:对于直线l :mx -y -3=0(m∈R),令m =0,则有-y -3=0;令m =1,则有x -y -3=0,解方程组得⎩⎪⎨⎪⎧x =0,y =-3, 则直线l 经过定点Q(0,-3),如图所示.由原题答图知,当PQ⊥l 时,点P(2,1)到直线l 的距离取得最大值,此时|PQ|==2,所以点P(2,1)到直线l 的最大距离是2.[答案] 25方法探究受思维定式的影响,很容易想到解法一,这种方法看起来可行,但是在具体求解时很繁琐,解法二应用数形结合的思想,方便简捷,是最优解法,值得学习和借鉴.专题二 有关直线的距离最值问题[典例3] 已知直线l :x -2y +8=0和两点A(2,0),B(-2,-4).(1)在直线l 上求一点P ,使|PA|+|PB|最小;(2)在直线l 上求一点P ,使||PB|-|PA||最大.[思路分析][解] (1)设A 关于直线l 的对称点A′(m,n),则解得⎩⎪⎨⎪⎧m =-2,n =8, 故A′(-2,8).P 为直线l 上的一点,则|PA|+|PB|=|PA′|+|PB|≥|A′B|,当且仅当B ,P ,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,则点P 就是直线A′B 与直线l 的交点,解得⎩⎪⎨⎪⎧x =-2,y =3, 故所求的点P 的坐标为(-2,3).(2)A ,B 两点在直线l 的同侧,P 是直线l 上的一点,则||PB|-|PA||≤|AB|,当且仅当A ,B ,P 三点共线时,||PB|-|PA||取得最大值,为|AB|,则点P 就是直线AB 与直线l 的交点,又直线AB 的方程为y =x -2,解得⎩⎪⎨⎪⎧x =12,y =10, 故所求的点P 的坐标为(12,10).[典例4] 已知点A(3,1),在直线y =x 和y =0上各找一点M 和N ,使△AMN 的周长最短,并求出最短周长.[思路分析][解] 由点A(3,1)及直线y =x ,可求得点A 关于y =x 的对称点为点B(1,3),同样可求得点A 关于y =0的对称点为点C(3,-1),如图所示.则|AM|+|AN|+|MN|=|BM|+|CN|+|MN|≥|BC|,当且仅当B ,M ,N ,C 四点共线时,△AMN 的周长最短,为|BC|=2.由B(1,3),C(3,-1)可得,直线BC 的方程为2x +y -5=0.由得⎩⎪⎨⎪⎧x =53,y =53, 故点M 的坐标为.对于2x +y -5=0,令y =0,得x =,故点N 的坐标为.故在直线y =x 上找一点M ,在y =0上找一点N ,可使△AMN 的周长最短,最短周长为2.领悟整合在直线l 上找一点P 到两定点A ,B 的距离之和最小,则点P 必在线段AB′上,故将l 同侧的点利用对称转化为异侧的点;若点P 到两定点A ,B 的距离之差最大,则点P 必在AB′的延长线或BA′的延长线上,故将l 异侧的点利用对称性转化为同侧的点(A′,B′为点A ,B 关于l 的对称点).。
高考数学一轮总复习第8章平面解析几何8.2两直线的位置关系模拟演练课件理

解 (1)设 A 关于直线 l 的对称点为 A′(m,n),则
mn- -02=-2, m+ 2 2-2·n+ 2 0+8=0,
解得nm= =8- ,2,
故 A′(-2,8). P 为 直 线 l 上 的 一 点 , 则 |PA| + |PB| = |PA′| + |PB|≥|A′B|,当且仅当 B,P,A′三点共线时,|PA|+|PB| 取得最小值,为|A′B|,点 P 即是直线 A′B 与直线 l 的交 点,解xx= -- 2y+ 2,8=0, 得xy= =- 3,2, 故所求的点 P 的坐标 为(-2,3).
再由两点式可得 l′的方程为 2x-3y-9=0. 解法二:∵l∥l′, ∴设 l′的方程为 2x-3y+C=0(C≠1). ∵点 A(-1,-2)到两直线 l,l′的距离相等, ∴由点到直线的距离公式,得 |-22+2+6+ 32C|=|-22+2+6+ 32 1|,解得 C=-9,
∴l′的方程为 2x-3y-9=0. 解法三:设 P(x,y)为 l′上任意一点, 则 P(x,y)关于点 A(-1,-2)的对称点为 P′(-2-x,-4-y).∵点 P′在直线 l 上, ∴2(-2-x)-3(-4-y)+1=0, 即 2x-3y-9=0.
(2)A,B 两点在直线 l 的同侧,P 是直线 l 上的一点, 则||PB|-|PA||≤|AB|,当且仅当 A,B,P 三点共线时,||PB| -|PA||取得最大值,为|AB|,点 P 即是直线 AB 与直线 l 的
交点,又直线 AB 的方程为 y=x-2,解yx= -x2- y+2, 8=0, 得
=0,l1 与 l2 重合.∴a=-1,故选 B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学(理)一轮经典例题——两直线的位置关系典型例题一例1 已知)3,0(A ,)0,1(-B ,)0,3(C ,求D 点的坐标,使四边形ABCD 为等腰梯形. 分析:利用等腰梯形所具备的性质“两底互相平行且两腰长相等”进行解题. 解:如图,设),(y x D ,若CD AB //,则CD AB k k =,BCAD =,即⎪⎩⎪⎨⎧=+=-+--=+-②①.1613)3(,301003222y x x y由①、②解得)53,516(D .若BC AD //,则⎪⎩⎪⎨⎧==,,BC AD k k BC AD 即⎪⎩⎪⎨⎧+=+-=--④③.31)3(,0032222y x x y由③、④式解得)3,2(D .故D 点的坐标为)53,516(或)3,2(. 说明:(1)把哪两条边作为梯形的底是讨论的标准,解此题时注意不要漏解.(2)在遇到两直线平行问题时,一定要注意直线斜率不存在的情况.此题中AB 、BC 的斜率都存在,故不可能出现斜率不存在的情况.典型例题二例2当a 为何值时,直线01)1()2(1=--++y a x a l :与直线02)32()1(2=+++-y a x a l :互相垂直?分析:分类讨论,利用两直线垂直的充要条件进行求解.或利用结论“设直线1l 和2l 的方程分别是01111=++C y B x A l :,02222=++C y B x A l :,则21l l ⊥的充要条件是02121=+B B A A ”(其证明可借助向量知识完成)解题. 解法一:由题意,直线21l l ⊥.(1)若01=-a ,即1=a ,此时直线0131=-x l :,0252=+y l :显然垂直; (2)若032=+a ,即23-=a 时,直线0251=-+y x l :与直线0452=-x l :不垂直; (3)若01≠-a ,且032≠+a ,则直线1l 、2l 斜率1k 、2k 存在,a a k -+-=121,3212+--=a a k .当21l l ⊥时,121-=⋅k k ,即1)321()12(-=+--⋅-+-a a a a ,∴1-=a .综上可知,当1=a 或1-=a 时,直线21l l ⊥.解法二:由于直线21l l ⊥,所以0)32)(1()1)(2(=+-+-+a a a a ,解得1±=a . 故当1=a 或1-=a 时,直线21l l ⊥.说明:对于本题,容易出现忽视斜率存在性而引发的解题错误,如先认可两直线1l 、2l 的斜率分别为1k 、2k ,则a a k -+-=121,3212+--=a a k . 由21l l ⊥,得121-=⋅k k ,即1)321()12(-=+--⋅-+-a a a a .解上述方程为1-=a .从而得到当1-=a 时,直线1l 与2l 互相垂直.上述解题的失误在于机械地套用两直线垂直(斜率形式)的充要条件,忽视了斜率存在的大前提,因而失去对另一种斜率不存在时两直线垂直的考虑,出现了以偏概全的错误. 典型例题三例3 已知直线l 经过点)1,3(P ,且被两平行直线011=++y x l :和062=++y x l :截得的线段之长为5,求直线l 的方程.分析:(1)如图,利用点斜式方程,分别与1l 、2l 联立,求得两交点A 、B 的坐标(用k 表示),再利用5=AB 可求出k 的值,从而求得l 的方程.(2)利用1l 、2l 之间的距离及l 与1l 夹角的关系求解.(3)设直线l 与1l 、2l 分别相交于),(11y x A 、),(22y x B ,则可通过求出21y y -、21x x -的值,确定直线l 的斜率(或倾斜角),从而求得直线l 的方程.解法一:若直线l 的斜率不存在,则直线l 的方程为3=x ,此时与1l 、2l 的交点分别为)4,3('-A 和)9,3('-B ,截得的线段AB 的长594=+-=AB ,符合题意,若直线l 的斜率存在,则设直线l 的方程为1)3(+-=x k y .解方程组⎩⎨⎧=+++-=,01,1)3(y x x k y 得⎪⎭⎫ ⎝⎛+--+-114,123k k k k A , 解方程组⎩⎨⎧=+++-=,06,1)3(y x x k y 得⎪⎭⎫ ⎝⎛+--+-119,173k k k k B . 由5=AB ,得2225119114173123=⎪⎭⎫ ⎝⎛+-++--+⎪⎭⎫ ⎝⎛+--+-k k k k k k k k .解之,得0=k ,即欲求的直线方程为1=y . 综上可知,所求l 的方程为3=x 或1=y .解法二:由题意,直线1l 、2l 之间的距离为125261=-=d ,且直线l 被平等直线1l 、2l 所截得的线段AB 的长为5(如上图),设直线l 与直线1l 的夹角为θ,则225225sin ==θ,故∴︒=45θ.由直线011=++y x l :的倾斜角为135°,知直线l 的倾斜角为0°或90°,又由直线l 过点)1,3(P ,故直线l 的方程为3=x 或1=y .解法三:设直线l 与1l 、2l 分别相交),(11y x A 、),(22y x B ,则:0111=++y x ,0622=++y x .两式相减,得5)()(2121=-+-y y x x . ①又25)()(221221=-+-y y x x ②联立①、②,可得⎩⎨⎧=-=-052121y y x x 或⎩⎨⎧=-=-502121y y x x由上可知,直线l 的倾斜角分别为0°或90°. 故所求直线方程为3=x 或1=y .说明:本题容易产生的误解是默认直线l 的斜率存在,这样由解法一就只能得到0=k ,从而遗漏了斜率不存在的情形.一般地,求过一定点,且被两已知平行直线截得的线段为定长a 的直线,当a 小于两平行直线之间距离d 时无解;当d a =时有唯一解;当d a >时,有且只有两解.另外,本题的三种解法中,解法二采取先求出夹角θ后,再求直线l 的斜率或倾斜角,从方法上看较为简单;而解法三注意了利用整体思想处理问题,在一定程度上也简化了运算过程. 典型例题四例4 已知点()31,-A ,()13,B ,点C 在坐标轴上,且ο90=∠ACB ,则满足条件的点C 的个数是( ).(A )1 (B )2 (C )3 (D )4解:点C 在坐标轴上,可有两种情况,即在x 轴或y 轴上,点C 的坐标可设为()0,x 或()0,y .由题意,ο90=∠ACB ,直线AC 与直线BC 垂直,其斜率乘积为-1,可分别求得0=x 或2,0=y 或4,所以满足条件的点的坐标为(0,0),(2,0),(0,4).说明:①本题还可以有另外两种解法:一种是利用勾股定理,另一种是直角三角形斜边AB 与y 轴交点D 恰为斜边AB 中点,则由D 到A 、B 距离相等的性质可解.②本题易错,可能只解一个坐标轴;可能解方程时漏解;也可能看到x 、y 各有两解而误以为有四点. 典型例题五例5 已知ABC ∆的一个定点是()13-,A ,B ∠、C ∠的平分线分别是0=x ,x y =,求直线BC 的方程.分析:利用角平分线的轴对称性质,求出A 关于0=x ,x y =的对称点,它们显然在直线BC 上.解:()13-,A 关于0=x ,x y =的对称点分别是()13--,和()31,-,且这两点都在直线BC 上,由两点式求得直线BC 方程为052=+-y x . 典型例题六例 6 求经过两条直线0132=++y x 和043=+-y x 的交点,并且垂直于直线0743=-+y x 的直线的方程.解一:解得两直线0132=++y x 和043=+-y x 的交点为(35-,97),由已知垂直关系可求得所求直线的斜率为34,进而所求直线方程为0934=+-y x .解二:设所求直线方程为034=+-m y x ,将所求交点坐标(35-,97)代入方程得9=m ,所以所求直线方程为0934=+-y x .解三:所求直线过点(35-,97),且与直线0743=-+y x 垂直,所以,所求直线方程为973354=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+y x即 0934=+-y x . 解四:设所求直线得方程为()()043132=+-+++y x m y x即 ()()041132=++-++m y m x m (1) 由于该直线与已知直线0743=-+y x 垂直 则 ()()013423=-⋅++m m 解得 2=m代入(1)得所求直线方程为0934=+-y x . 典型例题七例7 已知定点A (3,1),在直线x y =和0=y 上分别求点M 和点N ,使AMN ∆的周长最短,并求出最短周长.分析:由连接两点的线中,直线段最短,利用对称,把折线转化为直线,即转化为求两点间的距离. 解:如图1,设点A 关于直线x y =和0=y 的对称点分别为()31,B ,()13-,C ∵MN CN BM MN AN AM ++=++又BCMN CN BM ≥++周长最小值是:52=BC由两点式可得BC 方程为: 052=-+y x .而且易求得:M (35,35),N (25,0),此时,周长最短,周长为52. 典型例题八例8 已知实数a ,b 满足1=+b a ,求证:()()2252222≥+++b a .解:本题的几何意义是:直线1=+b a 上的点(a ,b )与定点()22--,的距离的平方不小CAxCNO yBM图1于225.因为直线外一点与直线上任一点连线中,垂线段距离最短,而垂线段的长度即距离251112222=+---=d ,所以25)2()2(22≥+++b a ,即()()2252222≥+++b a .说明:本题应为不等式的题目,难度较大,证明方法也较多,但用解析几何的方法解决显得轻松简捷,深刻地体现了数形结合的思想. 典型例题九例9 在平面直角坐标系中,α=∠xOA ,παπ<<2,点B 在OA 上aOA =,bOB =,()0>>b a ,试在x 轴的正半周上求一点C ,使ACB ∠取得最大值.分析:要使最大,只需最大,而是直线到直线的角(此处即为夹角),利用公式可以解决问题.解:如图2,设点()()00>x x C ,∵α=∠xOA ,aOA =,bOB =,∴()ααsin cos a a A ,,()ααsin cos b b B ,,于是直线CA 、CB 的斜率分别为:x a a xCA k CA -=∠=ααcos cos tan ,x a a xCB k CB -=∠=ααcos cos tan∴CACB CA CB k k k k ACB +-=∠1tan =)cos )(cos (sin 1cos sin cos sin 2x a x b ab xa a xb b --+---ααααααα =α+-α-α-αα--αα2sin )cos )(cos ()cos (sin )cos (sin ab x a x b x b a x a b =2cos )(sin )(x x b a ab x b a +α+-α-图2=α+-+α-cos )(sin )(b a x x abb a∵abx x ab2≥+∴()()α+-α-≤∠cos 2sin tan b a ab b a ACB当且仅当x x ab =即ab x =,C 点的坐标为(ab ,0),由παπ<<2可知ACB ∠为锐角,所以此时ACB ∠有最大值arctanααcos )(2sin )(b a ab b a +--.说明:本题综合性强,是三角、不等式和解析几何知识的交汇点.另外本题也是足球射门最大角问题的推广.为了更好地理解问题,可以演示用“几何画板”制作的课件. 典型例题十例10 直线0421=-+y x l :,求1l 关于直线0143=-+y x l :对称的直线2l 的方程. 分析:本题可有多种不同的解法,给出多种解法的途径是:一类利用直线方程的不同形式求解;另一类采用消元思想进行求解.解法一:由⎩⎨⎧=-+=-+0143042y x y x 得1l 与l 的交点为)2,3(-P ,显见P 也在2l 上.设2l 的斜率为k ,又1l 的斜率为-2,l 的斜率为43-,则k k )43(1)43()2)(43(1)2(43-+--=--+---,解得112-=k . 故2l 的直线方程为)3(1122--=+x y .即016112=++y x .解法二:在直线1l 上取一点)0,2(A ,又设点A 关于直线l 的对称点为),(00y x B ,则⎪⎪⎩⎪⎪⎨⎧=-+⋅++⋅=--.01204223,3420000y x x y 解得)58,54(-B故由两点式可求得直线2l 的方程为016112=++y x .解法三:设直线2l 上一动点),(y x M 关于直线l 的对称点为),('''y x M ,则 ⎪⎪⎩⎪⎪⎨⎧=-+⋅++⋅=--.012423,34''''y y x x x x y y解得256247'+-=y x x ,258724'+--=y x y .显然),('''y x M 在1l 上,即42587242562472=-+--++-⋅y x y x ,也即016112=++y x .这便是所求的直线2l 的方程.解法四:设直线2l 上一动点),(y x M ,则M 关于l 的对称点'M 在直线1l 上,可设'M 的坐标为)24,(00x x -,则⎪⎪⎩⎪⎪⎨⎧=-----+=-+,34)24(,51)24(4351430000x x x y x x y x即⎪⎪⎩⎪⎪⎨⎧=-----+=-+-.34)24(,51)24(435)143(0000x x x y x x y x消去0x ,得016112=++y x ,即此所求的直线2l 的方程.说明:在解法一中,应注意正确运用“到角公式”,明确由哪条直线到哪条直线的角.在具体解题时,最好能准确画出图形,直观地得出关系式.在解法四中,脱去绝对值符号时,运用了平面区域的知识.否则,若从表面上可得到两种结果,这显然很难准确地得出直线2l 的方程. 本题的四种不同的解法,体现了求直线方程的不同的思想方法,具有一定的综合性.除此之外,从本题的不同解法中可以看出,只有对坐标法有了充分的理解与认识,并具有较强的数形结合意识,才有可能驾驭本题,从而在解法选择的空间上,真正做到游刃有余,左右逢源. 典型例题十一例11 不论m 取什么实数,直线0)11()3()12(=--++-m y m x m 都经过一个定点,并求出这个定点.分析:题目所给的直线方程的系数含有字母m ,给m 任何一个实数值,就可以得到一条确定的直线,因此所给的方程是以m 为参数的直线系方程.要证明这个直线系的直线都过一定点,就是证明它是一个共点的直线系,我们可以给出m 的两个特殊值,得到直线系中的两条直线,它们的交点即是直线系中任何直线都过的定点.另一思路是由于方程对任意的m 都成立,那么就以m 为未知数,整理为关于m 的一元一次方程,再由一元一次方程有无数个解的条件求得定点的坐标.解法一:对于方程0)11()3()12(=--++-m y m x m ,令0=m ,得0113=--y x ;令1=m ,得0104=++y x .解方程组⎩⎨⎧=++=--01040113y x y x 得两直线的交点为)3,2(-.将点)3,2(-代入已知直线方程左边,得:)11()3()3(2)12(---⨯++⨯-m m m 0119324=+----=m m m .这表明不论m 为什么实数,所给直线均经过定点)3,2(-. 解法二:将已知方程以m 为未知数,整理为:0)113()12(=++-+-+y x m y x .由于m 取值的任意性,有⎩⎨⎧=++-=-+0113012y x y x ,解得2=x ,3-=y .所以所给的直线不论m 取什么实数,都经过一个定点)3,2(-.说明:(1)曲线过定点,即与参数无关,则参数的同次幂的系数为0,从而求出定点.(2)分别令参数为两个特殊值,得方程组求出点的坐标,代入原方程满足,则此点为定点. 典型例题十二例12 一年级为配合素质教育,利用一间教室作为学生绘画成果展览室.为节约经费,他们利用课桌作为展台,将装画的镜框旋置桌上,斜靠展出.已知镜框对桌面的倾角为α(︒<≤︒18090α)镜框中,画的上、下边缘与镜框下边缘分别相距a m 、b m (b a >),学生距离镜框下缘多远看画的效果最佳?分析:建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,O 为下边缘上的一点,则可将问题转化为:已知α=∠xOA ,a OA =,b OB =,在x 轴的正方向向上求一点C ,使ACB ∠取最大值. 因为视角最大时,从理论上讲,看画的效果最佳(不考虑其他因素).解:设C 点坐标为)0,(x (0>x ),从三角函数定义知A 、B 两点坐标分别为)sin ,cos (ααa a 、)sin ,cos (ααb b ,于是直线AC 、BC 的斜率分别为x a a xCA k AC -=∠=ααcos sin tan ,x b b xCB k BC -=∠=ααcos sin tan .于是2cos )(sin )(1tan x x b a ab x b a k k k k ACB AC BC AC BC ++--=⋅+-=∠αα,即ααcos )(sin )(tan b a x x abb a ACB +-+-=∠.由于ACB ∠是锐角,且在)2,0(π上,则:ααcos )(2sin )(tan b a ab b a ACB +--≤∠,当且仅当x x ab =,即ab x =时,等号成立,此时ACB ∠取最大值,对应的点为)0,(ab C ,因此,学生距离镜框下缘m ab 处时,视角最大,即看画效果最佳.说明:解决本题有两点至关重要:一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求ACB ∠tan 的最大值.如果坐标系选择不当,或选择求ACB ∠sin 的最大值,都将使问题变得复杂起来.本题是一个非常实际的数学应用问题,它不仅考查了直线的有关概念以及三角知识的结合运用,而且更重要的是考查了把实际问题转化为数学问题的能力. 典型例题十三例13 知实数x ,y 满足04=-+y x ,求22)1()1(-+-y x 的最小值.分析:本题可使用减少变量法和数形结合法两种方法:22)1()1(-+-y x 可看成点),(y x 与)1,1(之间的距离.解:(法1)由04=-+y x 得x y -=4(R x ∈),则2222)14()1()1()1(--+-=-+-x x y x961222+-++-=x x x x 10822+-=x x2)2(22+-=x , ∴22)1()1(-+-y x 的最小值是2.(法2)∵实数x ,y 满足04=-+y x , ∴点),(y x P 在直线04=-+y x 上.而22)1()1(-+-y x 可看成点),(y x P 与点)1,1(A 之间的距离(如图所示)显然22)1()1(-+-y x 的最小值就是点)1,1(A 到直线04=-+y x 的距离:21141122=+-+=d ,∴22)1()1(-+-y x 的最小值为2.说明:利用几何意义,可以使复杂问题简单化.形如22)()(b y a x -+-的式子即可看成是两点间的距离,从而结合图形解决.典型例题十四例14直线x y 2=是ABC ∆中C ∠的平分线所在的直线,且A ,B 的坐标分别为)2,4(-A ,)1,3(B ,求顶点C 的坐标并判断ABC ∆的形状.分析:“角平分线”就意味着角相等,故可考虑使用直线的“到角”公式将“角相等”列成一个表达式.解:(法1)由题意画出草图(如图所示).∵点C 在直线x y 2=上,∴设)2,(a a C ,则422+-=a a k AC ,312--=a a k BC ,2=l k .由图易知AC 到l 的角等于l 到BC 的角,因此这两个角的正切也相等.∴l BC lBC l AC AC l k k kk k k k k +-=⋅+-11, ∴231212312242214222⋅--+---=⋅+-++--a a a a a a a a .解得2=a .∴C 的坐标为)4,2(,∴31=AC k ,3-=BC k ,∴BC AC ⊥.∴ABC ∆是直角三角形.(法2)设点)2,4(-A 关于直线x y l 2=:的对称点为),('b a A ,则'A 必在直线BC 上.以下先求),('b a A .由对称性可得⎪⎪⎩⎪⎪⎨⎧-⋅=+-=+-,24222,2142a b a b解得⎩⎨⎧-==24b a ,∴)2,4('-A . ∴直线BC 的方程为343121--=---x y ,即0103=-+y x . 由⎩⎨⎧=-+=01032y x x y 得)4,2(C . ∴31=AC k ,3-=BC k ,∴BC AC ⊥.∴ABC ∆是直角三角形.说明:(1)在解法1中设点C 坐标时,由于C 在直线x y 2=上,故可设)2,(a a ,而不设),(b a ,这样可减少未知数的个数.(2)注意解法2中求点)2,4(-A 关于l 的对称点),('b a A 的求法:原理是线段'AA 被直线l 垂直平分.典型例题十五例15 两条直线m y x m l 352)3(1-=++:,16)5(42=++y m x l :,求分别满足下列条件的m的值.(1) 1l 与2l 相交; (2) 1l 与2l 平行; (3) 1l 与2l 重合; (4) 1l 与2l 垂直; (5) 1l 与2l 夹角为︒45.分析:可先从平行的条件2121b b a a =(化为1221b a b a =)着手.解:由m m +=+5243得0782=++m m ,解得11-=m ,72-=m . 由163543m m -=+得1-=m . (1)当1-≠m 且7-≠m 时,2121b b a a ≠,1l 与2l 相交;(2)当7-=m 时,212121c c b b a a ≠=.21//l l ;(3)当1-=m 时,212121c c b b a a ==,1l 与2l 重合;(4)当02121=+b b a a ,即0)5(24)3(=+⋅+⋅+m m ,311-=m 时,21l l ⊥;(5)231+-=m k ,m k +-=542.由条件有145tan 11212=︒=+-k k k k .将1k ,2k 代入上式并化简得029142=++m m ,527±-=m ;01522=-+m m ,35或-=m .∴当527±-=m 或-5或3时1l 与2l 夹角为︒45.说明:由m m +=+5243解得1-=m 或7-=m ,此时两直线可能平行也可能重合,可将m 的值代入原方程中验证是平行还是重合.当m m +≠+5243时两直线一定相交,此时应是1-≠m 且7-≠m . 典型例题十六例16点)3,2(1P,)5,4(2-P 和)2,1(-A ,求过点A 且与点1P ,2P 距离相等的直线方程. 分析:可以用待定系数法先设出直线方程,再求之;也可从几何意义上考察这样的直线具有的特征.解:(法1)设所求直线方程为)1(2+=-x k y ,即02=++-k y kx ,由点1P 、2P 到直线的距离相等得:1254123222+++--=+++-k k k k k k .化简得3313--=-k k ,则有:3313--=-k k 或3313+=-k k ,即31-=k 或方程无解.方程无解表明这样的k 不存在,但过点A ,所以直线方程为1-=x ,它与1P ,2P 的距离都是3.∴所求直线方程为)1(312+-=-x y 或1-=x .(法2)设所求直线为l ,由于l 过点A 且与1P ,2P 距离相等,所以l 有两种情况,如下图:(1)当1P ,2P 在l 同侧时,有21//P Pl ,此时可求得l 的方程为)1(24352+---=-x y ,即)1(312+-=-x y ;(2)当1P ,2P 在l 异侧时,l 必过21P P中点)4,1(-,此时l 的方程为1-=x . ∴所求直线的方程为)1(312+-=-x y 或1-=x .说明:该题如果用待定系数法解易漏掉1-=x ,即斜率不存在的情况.所以无论解什么题目,只要图形容易画出,就应结合图形,用代数法、几何法配合来解.典型例题十七例17 经过点)1,2(-P 且与直线0623=--y x 平行的直线l 的方程.分析:已知直线l 与直线0623=--y x 平行,故l 的斜率可求,又l 过已知点P ,利用点斜式可得到l 的方程.另外由于l 与已知直线平行,利用平行直线系方程,再由已知点P ,也可确定l 的方程.解法一:由已知直线0623=--y x ,知其斜率23=k . 又由l 与直线0623=--y x 平行,所以直线l 的斜率23=l k .又由直线l 经过已知点)1,2(-P ,所以利用点斜式得到直线l 的方程为:)2(231-=+x y ,即0823=--y x .解法二:因为直线l 平行于直线0623=--y x ,所以可设直线l 的方程为023=+-C y x . 又点)1,2(-P 在直线l 上,所以0)1(223=+-⨯-⨯C ,解得8-=C . 故直线l 的方程为0823=--y x .说明:解法二使用的是平行直线系,并用了待定系数法来解.典型例题十八例18 过点)1,1(-P 且与直线0132=++y x 垂直的直线l 的方程.分析:已知直线l 与直线0132=++y x 垂直,故l 的斜率可求,又l 过已知点P ,利用点斜式可得到l 的方程.另外由于l 与已知直线垂直,利用垂直直线系方程,再由已知点P ,也可确定l 的方程.解法一:由直线0132=++y x ,知其斜率32-=k .又由l 与直线0132=++y x 垂直,所以直线l 的斜率231=-=k k l .又因l 过已知点)1,1(-P ,利用点斜式得到直线l 的方程为)1(231-=+x y ,即0523=--y x .解法二:由直线l 与直线0132=++y x 垂直,可设直线l 的方程为:023=+-C y x .又由直线l 经过已知点)1,1(-P ,有0)1(213=+-⨯-⨯C .解得5-=C .因此直线l 的方程为0523=--y x .说明:此题的解二中使用垂直直线系方程,并使用了待定系数法. 典型例题十九例19知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.分析:先求1l 与2l 的交点,再列两条直线夹角公式,利用l 与3l夹角为4π,求得l 的斜率.也可使用过两直线交点的直线系方程的方法省去求交点的过程,直接利用夹角公式求解.解法一:由方程组⎩⎨⎧=--=+0104302y x y x 解得直线1l 与2l 的交点)1,2(-.于是,所求直线l 的方程为)2(1-=+x k y .又由已知直线03253=+-y x l :的斜率253=k ,而且l 与3l 的夹角为4π,故由两直线夹角正切公式,得3314tan kk k k +-=π,即k k 251254tan +-=π. 有125125±=+-kk ,15252±=+-k k ,当15252=+-k k 时,解得37-=k ;当15252-=+-k k 时,解得73=k . 故所求的直线l 的方程为)2(731-=+x y 或)2(371--=+x y ,即01373=--y x 或01137=-+y x .解法二:由已知直线l 经过两条直线1l 与2l 的交点,则可设直线l 的方程为0)2()1043(=++--y x y x λ, (*)即010)42()3(=--++y x λλ.又由l 与3l 的夹角为4π,3l的方程为0325=+-y x ,有 212112214tanB B A A B A B A +-=π,即)42)(2()3(55)42()2)(3(1--++⨯---+=λλλλ,也即λλ+-=2312141,从而1231214=+-λλ,1231214-=+-λλ.解得139-=λ,1137=λ.代入(*)式,可得直线l 的方程为01373=--y x 或01137=-+y x .说明:此题用到两直线的夹角公式,注意夹角公式与到角公式的区别。