(数学试卷 文)2018届北京市西城区高三二模试题(含答案解析)
北京市朝阳区2018届高考二模数学试题(文)含答案

北京市朝阳区高三年级第二次综合练习数学学科测试(文史类) 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|320A x x x =-+<,{}|1B x x =≥,则AB =( )A .(2]-∞,B .(1)+∞,C .(12),D .[1)+∞, 2.计算2(1)i -=( )A .2iB .2i -C .2i -D .2i +3.已知x ,y 满足不等式220101x y x y y --⎧⎪+-⎨⎪⎩,,≤≥≤则3z y x =-的最小值是( )A .1B .3-C .1-D . 72-4.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( )AB 62- C.625.“01a <<且01b <<”是“log 0a b >”的( ) A .充分而不必要条件 B .必要而不充分条件 C.充分必要条件 D .既不充分也不必要条件6.如图,角α,β均以Ox 为始边,终边与单位圆O 分别交于点A ,B ,则OA OB ⋅=( )A .sin()αβ-B .sin()αβ+ C.cos()αβ- D .cos()αβ+7.已知定义在R 上的奇函数()f x 在[0)+∞,上单调递减,且0a b +>,0b c +>,,0a c +>,则()()()f a f b f c ++的值( )A .恒为正B .恒为负 C.恒为0 D .无法确定8.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( )A .4B .5 C.6 D .7第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上) 9.执行如图所示的程序框图,则输出的S = .10.双曲线22143x y -=的焦点坐标是 ;渐近线方程是 .11.已知0x >,0y >,且满足4x y +=,则lg lg x y +的最大值为 . 12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .13.在平面直角坐标系xOy 中,点P (不过原点)到x 轴,y 轴的距离之和的2倍等于点P 到原点距离的平方,则点P 的轨迹所围成的图形的面积是 .14.如图,已知四面体ABCD 的棱AB ∥平面α,且AB =1.四面体ABCD 以AB 所在的直线为轴旋转x 弧度,且始终在水平放置的平面α上方.如果将四面体ABCD 在平面α内正投影面积看成关于x 的函数,记为()S x ,则函数()S x 的最小值为 ;()S x 的最小正周期为 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.已知函数()2sin (sin cos )f x x x x a =+-的图象经过点(1)2π,,a ∈R .(1)求a 的值,并求函数()f x 的单调递增区间; (2)若当[0]2x π∈,时,求函数()f x 的最小值.16.已知数列{}n a 的前n 项和2n S pn qn =+(p ,q ∈R ,*n ∈N )且13a =,424S =. (1)求数列{}n a 的通项公式;(2)设2n a n b =,求数列{}n b 的前n 项和n T . 17.(1)根据表中数据写出这10年内银杏数列的中位数,并计算这10年栽种银杏数量的平均数;(2)从统计的数据中,在栽种侧柏与银杏数量之差的绝对值不小于300株的年份中,任意抽取2年,恰有1年栽种侧柏的数列比银杏数量多的概率.18.如图,在四棱锥P ABCD -中,平面PBC ⊥平面ABCD .PBC △是等腰三角形,且3PB PC ==.四边形ABCD 是直角梯形,AB DC ∥,AD DC ⊥,5AB =,4AD =,3DC =(1)求证:AB ∥平面PDC ;(2)当平面PBC ⊥平面ABCD 时,求四棱锥P ABCD -的体积;(3)请在图中所给的五个点P ,A ,B ,C ,D 中找出两个点,使得这两点所在的直线与直线BC 垂直,并给出证明.19. 已知椭圆W :22221x y a b+=(0a b >>A 在圆O :224x y +=上(O 为坐标原点).(1)求椭圆W 的方程;(2)过点A 作直线AQ 交椭圆W 于另外一点Q ,交y 轴于点R ,P 为椭圆W 上一点,且OP AQ ∥,求证:2AQ AR OP⋅为定值.20. 已知函数()x f x xe =,()1g x ax =+,a ∈R .(1)若曲线()y f x =在点(0(0))f ,处的切线与直线()y g x =垂直,求a 的值; (2)若方程()()0f x g x -=在(22)-,上恰有两个不同的实数根,求a 的取值范围;(3)若对任意1[22]x ∈-,,总存在唯一的2(2)x ∈-∞,,使得21()()f x g x =,求a 的取值范围.。
北京市西城区2018-2017届高考二模数学试题(理)含答案

西城区高三模拟测试数学(理科) 2018.5第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合{|01}A x x =<<,2{|20}B x x x =-<,则下列结论中正确的是 (A )AB =∅(B )A B =R(C )A B ⊆(D )B A ⊆2.若复数z 满足(1i)1z -⋅=,则z = (A )1i 22+ (B )1i22-+(C )1i22--(D )1i 22- 3.下列函数中,既是偶函数又在区间(0,1)上单调递减的是 (A )1y x=(B )2y x = (C )||2x y = (D )cos y x =4.某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的 侧面积是 (A )12 (B )410(C )122 (D )55.向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c共线,则实数λ= (A )2-(B )1-(C )1(D )26.已知点(0,0)A ,(2,0)B .若椭圆22:12x y W m+=上存在点C ,使得△ABC 为等边三角形,则椭圆W 的离心率是(A )12(B (C (D7.函数()f x a .则“0a ≥”是“0[1,1]x ∃∈-,使0()0f x ≥”的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件8.在直角坐标系xOy 中,对于点(,)x y ,定义变换σ:将点(,)x y变换为点(,)a b ,使得tan ,tan ,x a y b =⎧⎨=⎩其中ππ,(,)22a b ∈-.这样变换σ就将坐标系xOy 内的曲线变换为坐标系aOb 内的曲线. 则四个函数12(0)y x x =>,22(0)y x x =>,3e (0)x y x =>, 4ln (1)y x x =>在坐标系xOy 内的图象,变换为坐标系aOb 内的四条曲线(如图)依次是 (A )②,③,①,④ (B )③,②,④,① (C )②,③,④,① (D )③,②,①,④第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知圆C 的参数方程为2cos ,sin x y θθ=+⎧⎨=⎩(θ为参数),则圆C 的面积为____;圆心C 到直线:340l x y -=的距离为____.10.241()x x+的展开式中2x 的系数是____.11.在△ABC 中,3a =,2b =,π3A ∠=,则cos 2B =____.12.设等差数列{}n a 的前n 项和为n S .若11a =,23S S >,则数列{}n a 的通项公式可以是____.13.设不等式组 1,3,25x x y x y ⎧⎪+⎨⎪+⎩≥≥≤ 表示的平面区域为D .若直线0ax y -=上存在区域D 上的点,则实数a 的取值范围是____.14.地铁某换乘站设有编号为 A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()(1tan )sin 2f x x x =+⋅. (Ⅰ)求()f x 的定义域;(Ⅱ)若(0,π)α∈,且()2f α=,求α的值.16.(本小题满分14分)如图,梯形ABCD 所在的平面与等腰梯形ABEF 所在的平面互相垂直,////AB CD EF ,AB AD ⊥.2CD DA AF FE ====,4AB =.(Ⅰ)求证://DF 平面BCE ; (Ⅱ)求二面角C BF A --的余弦值;(Ⅲ)线段CE 上是否存在点G ,使得AG ⊥平面BCF ?请说明理由.17.(本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a ,b 的值;(Ⅱ)在该指标检测值为4的样本中随机选取2人,求这2人中有患病者的概率;(III )某研究机构提出,可以选取常数*00.5()X n n =+∈N ,若一名从业者该项身体指标检测值大于0X ,则判断其患有这种职业病;若检测值小于0X ,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患有职业病.写出使得判断错误的概率最小的0X 的值及相应的概率(只需写出结论).18.(本小题满分14分)已知直线:1l y kx =+与抛物线2:4C y x =相切于点P . (Ⅰ)求直线l 的方程及点P 的坐标;(Ⅱ)设Q 在抛物线C 上,A 为PQ 的中点.过A 作y 轴的垂线,分别交抛物线C 和直线l 于M ,N .记△PMN的面积为1S ,△QAM 的面积为2S ,证明:12S S =.19.(本小题满分13分)已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;(Ⅱ)设1b >,求()f x 在区间1[,]b b上的最大值和最小值.20.(本小题满分13分)数列n A :12,,,(2)n a a a n ≥的各项均为整数,满足:1(1,2,,)i a i n -=≥,且123123122220n n n n n a a a a a ----⋅+⋅+⋅++⋅+=,其中10a ≠.(Ⅰ)若3n =,写出所有满足条件的数列3A ; (Ⅱ)求1a 的值; (Ⅲ)证明:120n a a a +++>.西城区高三模拟测试数学(理科)参考答案及评分标准2018.5一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.D 4.B 5.D 6.C 7.A 8.A二、填空题:本大题共6小题,每小题5分,共30分. 9.π,65 10.611.13 12.2n -+(答案不唯一) 13.1[,3]214.D注:第9题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为函数tan y x =的定义域是π{|π,}2x x k k ∈≠+∈R Z ,所以()f x 的定义域为π{|π,}2x x k k ∈≠+∈R Z . ……………… 4分(Ⅱ)()(1tan )sin 2f x x x =+⋅sin (1)sin 2cos xxx =+⋅……………… 5分 2sin 22sin x x =+ ……………… 6分sin 2cos 21x x =-+ ……………… 7分π)14x -+. ……………… 8分由()2f α=,得π2sin(2)4α-= ……………… 9分因为 0πα<<,所以ππ7π2444α-<-<, ………………10分 所以 ππ244α-=,或π3π244α-=. ………………11分 解得 π4α=,或π2α=(舍去). ………………13分16.(本小题满分14分)解:(Ⅰ)因为 //CD EF ,且CD EF =,所以 四边形CDFE 为平行四边形,所以 //DF CE . …… 2分因为 DF ⊄平面BCE ,…… 3分所以 //DF 平面BCE .…… 4分 (Ⅱ)在平面ABEF 内,过A 作Az AB ⊥.因为 平面ABCD ⊥平面ABEF ,平面ABCD I 平面ABEF AB =, 又 Az ⊂平面ABEF ,Az AB ⊥, 所以 Az ⊥平面ABCD ,所以 AD AB ⊥,AD Az ⊥,Az AB ⊥.如图建立空间直角坐标系A xyz -. ……………… 5分由题意得,(0,0,0)A ,(0,4,0)B ,(2,2,0)C ,E ,(0,1F .所以 (2,2,0)BC −−→=-,(0,BF −−→=-.设平面BCF 的法向量为(,,)x y z =n ,则 0,0,BC BF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n即220,30.x y y -=⎧⎪⎨-=⎪⎩令1y =,则1x =,z ==n . ……………… 7分 平面ABF 的一个法向量为 (1,0,0)=v , ……………… 8分则cos ,||||⋅〈〉==n v n v n v 所以 二面角C BF A --. ………………10分 (Ⅲ)线段CE 上不存在点G ,使得AG ⊥平面BCF ,理由如下: ………………11分解法一:设平面ACE 的法向量为111(,,)x y z =m ,则 0,0,AC AE −−→−−→⎧⋅=⎪⎨⎪⋅=⎩m m即 1111220,330.x y y z +=⎧⎪⎨=⎪⎩令11y =,则11x =-,13z =- (1,1,3)=--m . ………………13分因为 0⋅≠m n ,所以 平面ACE 与平面BCF 不可能垂直,从而线段CE 上不存在点G ,使得AG ⊥平面BCF . ………………14分 解法二:线段CE 上不存在点G ,使得AG ⊥平面BCF ,理由如下: …………11分 假设线段CE 上存在点G ,使得AG ⊥平面BCF , 设 CG CE λ−−→−−→=,其中[0,1]λ∈.设 222(,,)G x y z,则有222(2,2,)(2,)x y z λλ--=-, 所以 222x λ=-,22y λ=+,2z =,从而(22,2,)G λλ-+,所以(22,2)AG λλ−−→=-+. ………………13分 因为 AG ⊥平面BCF ,所以 //AG n . 所以有22211λλ-+==, 因为 上述方程组无解,所以假设不成立.所以 线段CE 上不存在点G ,使得AG ⊥平面BCF . ………………14分17.(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为 3.4100408.5⨯=人.… 2分 10.100.350.250.150.100.05a =-----=,10.100.200.300.40b =---=. ……………… 4分(Ⅱ)指标检测数据为4的样本中,有患病者400.208⨯=人,未患病者600.159⨯=人. ……………… 6分 设事件A 为“从中随机选择2人,其中有患病者”.则 29217C 9(A)C 34P ==, ……………… 8分所以 25(A)1(A)34P P =-=. ……………… 9分 (Ⅲ)使得判断错误的概率最小的0 4.5X =. ………………11分 当0 4.5X =时,判断错误的概率为21100. ………………13分 18.(本小题满分14分)解:(Ⅰ)由 21,4y kx y x=+⎧⎪⎨=⎪⎩ 得 22(24)10k x k x +-+=. ① ……………… 2分依题意,有0k ≠,且22(24)40k k ∆=--=.解得 1k =. ……………… 3分所以直线l 的方程为1y x =+. ……………… 4分 将 1k = 代入①,解得 1x =,所以点P 的坐标为(1,2). ……………… 5分 (Ⅱ)设 (,)Q m n , 则 24n m =,所以 12(,)22m n A ++. ……………… 7分 依题意,将直线 22n y +=分别代入抛物线C 与直线l , 得 2(2)2(,)162n n M ++,2(,)22n n N +. ……………… 8分 因为 22(2)444441||16216164n n n n m n m n MN +-+-+-+=-===, ……… 10分 221(2)(88)(44)||21616m n m n n AM +++-++=-=(88)(444)1164m m n m n +-++-+==, ………………12分所以 ||||AM MN =. ………………13分又 A 为PQ 中点,所以P Q ,两点到直线AN 的距离相等,所以 12S S =. ………………14分19.(本小题满分13分)解:(Ⅰ)()f x 的导函数为221ln ()x ax f x x--'=, ……………… 2分 所以(1)1f a '=-. 依题意,有 (1)(1)112f a --=--,即1112a a -+=--, ……………… 4分 解得 1a =. ……………… 5分(Ⅱ)由(Ⅰ)得221ln ()x xf x x --'=.当0<<1x 时,210x ->,ln 0x ->,所以()0f x '>,故()f x 单调递增;当>1x 时,210x -<,ln 0x -<,所以()0f x '<,故()f x 单调递减.所以 ()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减. ……………… 8分因为 101b b<<<, 所以 ()f x 最大值为(1)1f =-. ……………… 9分 设 111()()()()ln h b f b f b b b b b b =-=+-+,其中1b >. ………………10分则 21()(1)ln 0h b b b'=->,故 ()h b 在区间(1,)+∞上单调递增. ………………11分所以 ()(1)0h b h >=, 即 1()()f b f b>, ………………12分故 ()f x 最小值为11()ln f b b b b=--. ………………13分20.(本小题满分13分)解:(Ⅰ)满足条件的数列3A 为:1,1,6--;1,0,4-;1,1,2-;1,2,0-. ……………… 3分 (Ⅱ)11a =-. ……………… 4分否则,假设11a ≠-,因为10a ≠,所以11a ≥.又23,,,1n a a a -≥,因此有12312312222n n n n n a a a a a ----⋅+⋅+⋅++⋅+1232(1)2(1)2(1)2(1)n n n ---+-⋅+-⋅++-⋅+-≥123222211n n n ---=-----=,这与123123122220n n n n n a a a a a ----⋅+⋅+⋅++⋅+=矛盾!所以11a =-. ……………… 8分 (Ⅲ)先证明如下结论:{1,2,,1}k n ∀∈-,必有12122220n n n k k a a a ---⋅+⋅++⋅≤.否则,令 12122220n n n k k a a a ---⋅+⋅++⋅>,注意左式是2n k -的整数倍,因此 12122222n n n k n k k a a a ----⋅+⋅++⋅≥.所以有:12312312222n n n n na a a a a ----⋅+⋅+⋅++⋅+ 122(1)2(1)2(1)2(1)n kn k n k -----+-⋅+-⋅++-⋅+-≥1222221n k n k n k -----=-----1=,这与123123122220n n n n n a a a a a ----⋅+⋅+⋅++⋅+=矛盾!所以 12122220n n n k k a a a ---⋅+⋅++⋅≤. ………………10分因此有:112123121212312210,20,420,2220,2220.k k k k n n n n a a a a a a a a a a a a a a -------<⋅+⋅+⋅+⋅+⋅++⋅+⋅+⋅++⋅+≤≤≤≤将上述1n -个不等式相加得 12121(21)(21)(21)0n n n a a a ---⋅-+⋅-++⋅-<, ①又 123123122220n n n n n a a a a a ----⋅+⋅+⋅++⋅+= ,②两式相减即得 120n a a a +++>. ………………13分。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2018西城二模数学

2018西城二模数学2018年西城区的高中二模考试中,数学科目是很多学生们一直都担心的。
数学作为一门依赖于理解和解题能力的学科,需要学生具备良好的逻辑思维和数学基础。
本文将回顾2018年西城二模数学考试的题型和难点,并提供一些学习和备考的建议。
一、题目分析2018年西城二模数学试卷包含了选择题、填空题、解答题和应用题。
本次考试的题目相对来说难度较大,涵盖了数学的各个知识点。
以下是一些题目的例子:1. 选择题:已知矩形ABCD中,AB=2AD,点E是AB的中点,连接CE交BD于点F,若BE=2,求CF的长度。
2. 填空题:设函数f(x) = a(x - 1)(x - 2)(x - 3),给定f(x)在点x = 0处的函数值为6,求a的取值范围。
3. 解答题:已知函数f(x) = x^2 + 4ax + 3a + 2,其中a为常数,求a的取值范围,使得f(x)的图像在坐标系中的所有点的纵坐标都大于0。
4. 应用题:设甲、乙两人同一时间从A、B两地同时出发相向行驶,甲始终以恒定速度行驶,乙在前2小时内行驶了50公里,然后以与甲相同的恒定速度行驶。
已知甲行驶的时间与乙行驶的距离成正比,请问乙行驶了多少时速?二、难点分析从以上的题目例子可以看出,2018年西城二模数学试卷的难点主要集中在解答题和应用题上。
一方面,这些题目需要学生对数学概念的理解能力和运用能力进行综合性的考察。
另一方面,这些题目要求学生具备良好的逻辑思维和问题解决能力。
对于解答题而言,学生需要具备分析问题、建立方程、解方程等解题技巧。
例如,在第三道题中,学生需要将函数的纵坐标都大于0这个条件转化为数学方程,并通过解方程求解出满足条件的a的取值范围。
对于应用题而言,学生需要能够将数学知识与实际问题相结合,进行问题的建模和求解。
例如,在第四道题中,学生需要根据题目提供的条件,利用比例关系建立数学模型,并通过解方程求解出乙的行驶速度。
三、备考建议在备考2018西城二模数学考试时,学生可以按照以下步骤进行准备:1. 复习基础知识:数学是一门层层递进的学科,建立在扎实的基础知识上。
高三数学-2018西城答案 精品

北京市西城区抽样测试高三数学(文科)答案及评分标准2001 .5一、ACDCBCBACC DD 二、(13)1010-;(14)22;(15)1:10;(16)①②⑤. 三、解答题:其它解法仿此给分.(17)解:∵q =1时122na S n =,1na S =偶数项又01>a 显然11112na na ≠q ≠1 ………………………………………………2分 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 …………………………………4分 依题意221211)1(111)1(qq q a q q a n n --⋅=-- 解之101=q ……………………………………………………………………6分 又421422143),1(q a a a q q a a a =+=+, ………………………………………8分依题意4212111)1(q a q q a =+,将101=q 代入得101=a …………………10分 n n n a --=⋅=2110)101(10………………………………………………………12分 (18)解:由题设知20,πβαβ<<<==且x b tg x a tga …………………………………4分 ∴xabx a b tg tg tg tg tg +-=+-=-βααβαβ1)( …………………………………………6分 ∵ab xab x x ab x =⋅>>且0,0为定值…………………………………………9分 所以,当且仅当x ab x =即ab x =时,xab x +取得最小值ab 2………11分 此时)(αβ-tg 取最大值ab a b 2- ……………………………………………12分 (19)解:(Ⅰ)证明;已知C C F A E B B E A 1111,⊥⊥于于 F ,∵B B 1∥C C 1,∴F A B B 11⊥ ……………………………………………1分 又A F A E A =⋂11.∴EF A B B 11平面⊥所以,平面111BCC B EF A 平面⊥ ………………………………………3分(Ⅱ)因为1111111111,45C A B A C C A AC A AB A B B A =︒=∠==∠=∠,又2.90111111=︒=∠=∠B A FC A EB A∴E B A Rt 11∆≌F C A Rt 11∆,∴211==F A E A∴E B1F C 1,∴EF =211=C B∴22121EF F A E A =+∴EF A 1∆为等腰直角三角形……5分取EF 的中点N ,连N A 1,则EF N A ⊥1,所以111BCC B N A 平面⊥ ………………………………………………………………6分 所以N A 1为点1A 到平面11BCC B 的距离。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.
2018年北京市西城区高考数学二模试卷(文科)(解析版)

2018年北京市西城区高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<1},B={x|x2﹣2x<0},则下列结论中正确的是()A.A∩B=∅B.A∪B=R C.A⊆B D.B⊆A2.(5分)复数=()A.B.C.D.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=cos x D.y=﹣ln|x| 4.(5分)某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是()A.B.C.D.5.(5分)向量,,在正方形网格中的位置如图所示.若向量λ与共线,则实数λ=()A.﹣2B.﹣1C.1D.26.(5分)设a,b∈R,且ab≠0.则“ab>1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)设不等式组表示的平面区域为D.若直线ax﹣y=0上存在区域D上的点,则实数a的取值范围是()A.B.C.[1,2]D.[2,3]8.(5分)地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是()A.A B.B C.D D.E二、填空题(共6小题,每小题5分,满分30分)9.(5分)函数的最大值是.10.(5分)执行如图所示的程序框图,输出的k值为.11.(5分)在△ABC中,a=3,b=2,,则sin A=.12.(5分)双曲线的焦距是;若圆(x﹣1)2+y2=r2(r>0)与双曲线C的渐近线相切,则r=.13.(5分)为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a,则a=.14.(5分)已知函数,其中a∈R.如果函数f(x)恰有两个零点,那么a的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在等差数列{a n}和等比数列{b n}中,a1=b1=1,a2=b2,2+a4=b3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.16.(13分)已知函数.(Ⅰ)求f(x)的定义域;(Ⅱ)求f(x)的取值范围.17.(13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a,b的值;(Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III)某研究机构提出,可以选取常数X0=4.5,若一名从业者该项身体指标检测值大于X0,则判断其患有这种职业病;若检测值小于X0,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.18.(14分)如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,G为AB的中点.CD=DA=AF=FE=2,AB =4.(Ⅰ)求证:DF∥平面BCE;(Ⅱ)求证:平面BCF⊥平面GCE;(Ⅲ)求多面体AFEBCD的体积.19.(13分)已知函数,曲线y=f(x)在x=1处的切线经过点(2,﹣1).(Ⅰ)求实数a的值;(Ⅱ)设b>1,求f(x)在区间上的最大值和最小值.20.(14分)已知椭圆C:的离心率为,经过点(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=x与椭圆C交于A,B两点,斜率为k的直线l与椭圆C交于M,N两点,与直线y=x交于点P(点P与点A,B,M,N不重合).(ⅰ)当k=﹣1时,证明:|P A||PB|=|PM||PN|;(ⅱ)写出以k为自变量的函数式(只需写出结论).2018年北京市西城区高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<1},B={x|x2﹣2x<0},则下列结论中正确的是()A.A∩B=∅B.A∪B=R C.A⊆B D.B⊆A【解答】解:∵集合A={x|0<x<1},B={x|x2﹣2x<0}={x|0<x<2},∴A⊆B.故选:C.2.(5分)复数=()A.B.C.D.【解答】解:原式==i.故选:C.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=cos x D.y=﹣ln|x|【解答】解:y=为奇函数,且在区间(0,+∞)上单调递减;y=x2为偶函数,且在区间(0,+∞)上单调递增;y=cos x为偶函数,且在区间(0,+∞)上不具单调性;y=﹣ln|x|为偶函数,且在区间(0,+∞)上y=﹣lnx单调递减.故选:D.4.(5分)某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是()A.B.C.D.【解答】解:由题意可知几何体是正四棱锥,底面边长为2,高为:3,所以正四棱锥的侧棱长为:=.故选:B.5.(5分)向量,,在正方形网格中的位置如图所示.若向量λ与共线,则实数λ=()A.﹣2B.﹣1C.1D.2【解答】解:根据图形可看出;满足与共线;∴λ=2.故选:D.6.(5分)设a,b∈R,且ab≠0.则“ab>1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若“ab>1”当a=﹣2,b=﹣1时,不能得到“”,若“”,例如当a=1,b=﹣1时,不能得到“ab>1“,故“ab>1”是“”的既不充分也不必要条件,故选:D.7.(5分)设不等式组表示的平面区域为D.若直线ax﹣y=0上存在区域D上的点,则实数a的取值范围是()A.B.C.[1,2]D.[2,3]【解答】解:由不等式组作出可行域如图,∵直线ax﹣y=0过定点O(0,0),要使直线ax﹣y=0上存在区域D上的点,则直线ax﹣y=0的斜率a∈[k OB,k OA],联立,得A(1,3),联立,得B(2,1),∴,.∴a,故选:B.8.(5分)地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是()A.A B.B C.D D.E【解答】解:同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故选:C.二、填空题(共6小题,每小题5分,满分30分)9.(5分)函数的最大值是.【解答】解:函数是偶函数,x<0时是增函数,x>0时是减函数,所以x=0时函数取得最大值:.故答案为:.10.(5分)执行如图所示的程序框图,输出的k值为5.【解答】解:在执行首次循环时,S=1+12=2,k=1则:在执行第二次循环时,S=2+32=11,k=3,在执行第三次循环时,S=11+52=36,k=5.由于:S>20,所以:输出k=5.故答案为:511.(5分)在△ABC中,a=3,b=2,,则sin A=.【解答】解:在△ABC中,a=3,b=2,,sin B==,由正弦定理可得:,可得sin A==.故答案为:.12.(5分)双曲线的焦距是10;若圆(x﹣1)2+y2=r2(r>0)与双曲线C的渐近线相切,则r=.【解答】解:双曲线的焦距是:2c=2×=10;双曲线的渐近线方程为:3x±4y=0,圆(x﹣1)2+y2=r2(r>0)与双曲线C的渐近线相切,可得:r==.故答案为:10;.13.(5分)为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a,则a=25%.【解答】解:由题意可知6.4(1+a)3=12.5,∴(1+a)3=,∴1+a=,故a==25%.故答案为:25%.14.(5分)已知函数,其中a∈R.如果函数f(x)恰有两个零点,那么a的取值范围是.【解答】解:x≤1时,y=a+2x∈(a,2+a],x>1时,y=+a∈(,+∞),两个函数都是增函数,函数f(x)恰有两个零点,可得:,解得a∈[﹣2,).故答案为:[﹣2,).三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在等差数列{a n}和等比数列{b n}中,a1=b1=1,a2=b2,2+a4=b3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【解答】(本小题满分13分)解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.依题意,得………………(2分)解得或(舍去)………………(4分)所以a n=2n﹣1,.………………(6分)(Ⅱ)因为,………………(7分)所以………………(9分)=………………(11分)=.………………(13分)16.(13分)已知函数.(Ⅰ)求f(x)的定义域;(Ⅱ)求f(x)的取值范围.【解答】解:(Ⅰ)由sin x+cos x≠0,得所以,其中k∈Z.所以f(x)的定义域为(Ⅱ)因为=cos x﹣sin x=由(Ⅰ)得,其中k∈Z,所以,所以f(x)的取值范围是.17.(13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a,b的值;(Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III)某研究机构提出,可以选取常数X0=4.5,若一名从业者该项身体指标检测值大于X0,则判断其患有这种职业病;若检测值小于X0,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.【解答】(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为人.………………(2分)a=1﹣0.10﹣0.35﹣0.25﹣0.15﹣0.10=0.05,b=1﹣0.10﹣0.20﹣0.30=0.40.………………(4分)(Ⅱ)指标检测值不低于5的样本中,有患病者40×(0.30+0.40)=28人,未患病者60×(0.10+0.05)=9人,共37人.………………(6分)此地区该项身体指标检测值不低于5的从业者的人数约为人.………………(8分)(Ⅲ)当X0=4.5时,在100个样本数据中,有40×(0.10+0.20)=12名患病者被误判为未患病,………………(10分)有60×(0.10+0.05)=9名未患病者被误判为患病者,………………(12分)因此判断错误的概率为.………………(13分)18.(14分)如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,G为AB的中点.CD=DA=AF=FE=2,AB =4.(Ⅰ)求证:DF∥平面BCE;(Ⅱ)求证:平面BCF⊥平面GCE;(Ⅲ)求多面体AFEBCD的体积.【解答】(本小题满分14分)(Ⅰ)证明:因为CD∥EF,且CD=EF,所以四边形CDFE为平行四边形,所以DF∥CE.……(2分)因为DF⊄平面BCE,……(3分)所以DF∥平面BCE.……(4分)(Ⅱ)连接FG.因为平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,AD⊥AB,所以AD⊥平面ABEF,所以BF⊥AD.………………(6分)因为G为AB的中点,所以AG∥CD,且AG=CD;EF∥BG,且EF=BG,所以四边形AGCD和四边形BEFG均为平行四边形.所以AD∥CG,所以BF⊥CG.………………(7分)因为EF=EB,所以四边形BEFG为菱形,所以BF⊥EG.………………(8分)所以BF⊥平面GCE.………………(9分)所以平面BCF⊥平面GCE.………………(10分)(Ⅲ)设BF∩GE=O.由(Ⅰ)得DF∥CE,所以DF∥平面GCE,由(Ⅱ)得AD∥CG,所以AD∥平面GCE,所以平面ADF∥平面GCE,所以几何体ADF﹣GCE是三棱柱.………………(11分)由(Ⅱ)得BF⊥平面GCE.所以多面体AFEBCD的体积V=V ADF+V B﹣GCE………………(12分)﹣GCE==.………………(14分)19.(13分)已知函数,曲线y=f(x)在x=1处的切线经过点(2,﹣1).(Ⅰ)求实数a的值;(Ⅱ)设b>1,求f(x)在区间上的最大值和最小值.【解答】(本小题满分13分)解:(Ⅰ)f(x)的导函数为,………………(2分)所以f'(1)=1﹣a.依题意,有,即,………………(4分)解得a=1.………………(5分)(Ⅱ)由(Ⅰ)得.当0<x<1时,1﹣x2>0,﹣lnx>0,所以f'(x)>0,故f(x)单调递增;当x>1时,1﹣x2<0,﹣lnx<0,所以f'(x)<0,故f(x)单调递减.所以f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.………………(8分)因为,所以f(x)最大值为f(1)=﹣1.………………(9分)设,其中b>1.………………(10分)则,故h(b)在区间(1,+∞)上单调递增.………………(11分)所以h(b)>h(1)=0,即,………………(12分)故f(x)最小值为.………………(13分)20.(14分)已知椭圆C:的离心率为,经过点(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=x与椭圆C交于A,B两点,斜率为k的直线l与椭圆C交于M,N两点,与直线y=x交于点P(点P与点A,B,M,N不重合).(ⅰ)当k=﹣1时,证明:|P A||PB|=|PM||PN|;(ⅱ)写出以k为自变量的函数式(只需写出结论).【解答】解:(Ⅰ)设椭圆C的半焦距为c.依题意,得,b=1,且a2=b2+c2.解得.所以椭圆C的方程是.(Ⅱ)证明(ⅰ)由得,.k=﹣1时,设直线l的方程为y=﹣x+t.由得4x2﹣6tx+3t2﹣3=0.令△=36t2﹣48(t2﹣1)>0,解得t2<4.设M(x1,y1),N(x2,y2),则,.由得.所以|P A|•|PB|=•|﹣||+|=|.因为,同理.所以==.所以|P A|•|PB|=|PM|•|PN|.(ⅱ).。
北京市西城区2018年高三二模试卷理数 精品

北京市西城区2018年高三二模试卷数学(理科) 2018.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于 (A )1(B )0(C )2-(D )3-2.已知i 是虚数单位,则复数23z i+2i 3i =+所对应的点落在 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.在ABC ∆中,“0AB BC ⋅>”是“ABC ∆为钝角三角形”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分又不必要条件4.已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC .则下列结论不正确...的是 (A )//CD 平面PAF (B )DF ⊥平面PAF (C )//CF 平面PAB (D )CF ⊥平面PAD5.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为(A(B(C )2(D )3 6.函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan APB ∠=(A )10 (B )8(C )87(D )477.已知数列{}n a 的通项公式为13n a n =-,那么满足119102k k k a a a +++++=的整数k(A )有3个 (B )有2个 (C )有1个(D )不存在8.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +(A )最小值为15 (B)最小值为5 (C )最大值为15(D第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在ABC ∆中,若2B A =,:a b =A =_____. 10.在521()x x+的展开式中,2x 的系数是_____. 11.如图,AB 是圆O 的直径,P 在AB 的延长线上,PD切圆O 于点C .已知圆O2OP =,则PC =______;ACD ∠的大小为______.12.在极坐标系中,点(2,)2A π关于直线:cos 1l ρθ=的对称点的一个极坐标为_____.13.定义某种运算⊗,a b ⊗的运算原理如右图所示.设()(0)(2)f x x x x =⊗-⊗.则(2)f =______;()f x 在区间[2,2]-上的最小值为______.14.数列{}n a 满足11a =,11n n n a a n λ+-=+,其中λ∈R , ⋅⋅⋅=,2,1n .①当0λ=时,20a =_____;②若存在正整数m ,当n m >时总有0n a <,则λ的取值范围是_____.三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数cos 2()sin()4x f x x π=+.(Ⅰ)求函数()f x 的定义域; (Ⅱ)若4()3f x =,求s i n 2x 的值.16.(本小题满分13分)如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O =.将菱形ABCD 沿对角线AC 折起,使BD =B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ; (Ⅱ)求二面角A B D O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N点的位置,使得CN =.17.(本小题满分13分)甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.(Ⅰ)求选出的4名选手均为男选手的概率.(Ⅱ)记X 为选出的4名选手中女选手的人数,求X 的分布列和期望. M18.(本小题满分14分)已知函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.(Ⅰ)当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;(Ⅱ)若函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.19.(本小题满分14分)已知椭圆2222:1x y M a b +=(0)a b >>角形周长为246+.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C , 求ABC ∆面积的最大值.20.(本小题满分13分)若,,21A A …m A 为集合,2,1{=A …,n}(n ≥2且)n ∈*N 的子集,且满足两个条件:②U U 21A A …A A m =U ;②对任意的A y x ⊆},{,至少存在一个,3,2,1{∈i …,m},使}{},{x y x A i =⋂或}{y . 则称集合组,,21A A …m A 具有性质P . 如图,作n 行m 列数表,定义数表中的第k 行第l 列的数为⎩⎨⎧∉∈=)(0)(1l l kl A k A k a .(Ⅰ)当4n =时,判断下列两个集合组是否具有性质P ,如果是请画出所对应的表格,如果不是请说明理由;集合组1:123{1,3},{2,3},{4}A A A ===; 集合组2:123{2,3,4},{2,3},{1,4}A A A ===. (Ⅱ)当7n =时,若集合组123,,A A A 具有性质P ,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合123,,A A A ;(Ⅲ)当100n =时,集合组12,,,t A A A 是具有性质P 且所含集合个数最小的集合组,求t 的值及++21A A …+i A 的最小值.(其中||i A 表示集合i A 所含元素的个数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数学试卷文)2018届北京市西城区高三二模试题(含答案解析)第Ⅰ卷(选择题共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合{|01}A x x =<<,2{|20}B x x x =-<,则下列结论中正确的是 (A )A B =∅ (B )A B =R (C )A B ⊆ (D )B A ⊆2.复数11i =- (A )1i 22+ (B )1i22-+(C )1i22--(D )1i 22-3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是 (A )1y x=(B )2y x = (C )cos y x = (D )ln ||y x =-4.某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的 侧棱长是 (A(B(C)(D)5.向量,,a b c 在正方形格中的位置如图所示.若向量λ+a b 与c共线,则实数λ= (A )2-(B )1-(C )1(D )26.设,a b ∈R ,且0ab ≠.则“1ab >”是“1a b>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.设不等式组1,3,25x x y x y ⎧⎪+⎨⎪+⎩≥≥≤表示的平面区域为D .若直线0ax y -=上存在区域D 上的点,则实数a 的取值范围是(A )1[,2]2(B )1[,3]2(C )[1,2](D )[2,3]8.地铁某换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安 全出口,疏散1000名乘客所需的时间如下:(A )A(B )B(C )D(D )E第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.函数1||2y x =+的最大值是____.10.执行如右图所示的程序框图,输出的k 值为____. 11.在△ABC 中,3a =,2b =,4cos 5B =,则sin A =____. 12.双曲线22:1916y x C -=的焦距是____;若圆222(1)(0)x y r r -+=>与双曲线C的渐近线相切,则r =____.13.为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a ,则a =____.14.已知函数2,1,()1,1,2x a x f x x a x ⎧+⎪=⎨+>⎪⎩≤其中a ∈R .如果函数()f x 恰有两个零点,那么a 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,432a b +=. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b +的前n 项和n S . 16.(本小题满分13分)已知函数cos2()sin cos xf x x x=+.(Ⅰ)求()f x 的定义域; (Ⅱ)求()f x 的取值范围. 17.(本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a ,b 的值; (Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III )某研究机构提出,可以选取常数0 4.5X =,若一名从业者该项身体指标检测值大于0X ,则判断其患有这种职业病;若检测值小于0X ,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率. 18.(本小题满分14分)如图,梯形ABCD 所在的平面与等腰梯形ABEF 所在的平面互相垂直,////AB CD EF ,AB AD ⊥,G 为AB 的中点.2CD DA AF FE ====,4AB =. (Ⅰ)求证://DF 平面BCE ;(Ⅱ)求证:平面BCF ⊥平面GCE ; (Ⅲ)求多面体AFEBCD 的体积.19.(本小题满分13分)已知函数ln ()xf x ax x =-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;(Ⅱ)设1b >,求()f x 在区间1[,]b b 上的最大值和最小值.20.(本小题满分14分)已知椭圆C :2222 1 (0)x y a b a b+=>>(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线y x =与椭圆C 交于A ,B 两点,斜率为k 的直线l 与椭圆C 交于M ,N 两点,与直线y x =交于点P (点P 与点A ,B ,M ,N 不重合). (ⅰ)当1k =-时,证明:||||||||PA PB PM PN =; (ⅱ)写出||||||||PA PB PM PN 以k 为自变量的函数式(只需写出结论).西城区高三模拟测试数学(文科)参考答案及评分标准2018.5一、选择题:本大题共8小题,每小题5分,共40分. 1.C2.A3.D4.B 5.D6.D7.B8.C二、填空题:本大题共6小题,每小题5分,共30分.9.1210.511.91012.10,3513.25%14.1[2,)2--注:第12题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分.其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意,得21,2(13).d q d q +=⎧⎨++=⎩………………2分 解得2,3,d q =⎧⎨=⎩或1,0.d q =-⎧⎨=⎩(舍去)………………4分所以21n a n =-,13n n b -=.………………6分 (Ⅱ)因为1213n n n a b n -+=-+,………………7分所以21[135(21)](1333)n n S n -=++++-+++++………………9分[1(21)]13213nn n +--=+-………………11分2312n n -=+.………………13分 16.(本小题满分13分)解:(Ⅰ)由sin cos 0x x +≠,………………2分π)04x +≠,………………3分所以ππ4x k +≠,其中k ∈Z .………………4分所以()f x 的定义域为π{|π,}4x x k k ∈≠-∈R Z .………………5分(Ⅱ)因为22cos sin ()sin cos x xf x x x-=+………………7分cos sin x x =-………………9分π)4x =+.………………11分由(Ⅰ)得ππ4x k +≠,其中k ∈Z ,所以π1cos()14x -<+<,………………12分所以()f x 的取值范围是(.………………13分 17.(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为3.4100408.5⨯=人.………………2分 10.100.350.250.150.100.05a =-----=, 10.100.200.300.40b =---=.………………4分(Ⅱ)指标检测值不低于5的样本中,有患病者40(0.300.40)28⨯+=人,未患病者60(0.100.05)9⨯+=人,共37人.………………6分此地区该项身体指标检测值不低于5的从业者的人数约为378500031450100⨯=人. ………………8分(Ⅲ)当0 4.5X =时,在100个样本数据中, 有40(0.100.20)12⨯+=名患病者被误判为未患病,………………10分有60(0.100.05)9⨯+=名未患病者被误判为患病者, ………………12分 因此判断错误的概率为21100. ………………13分 18.(本小题满分14分)解:(Ⅰ)因为//CD EF ,且CD EF =,所以四边形CDFE 为平行四边形,所以//DF CE .……2分因为DF ⊄平面BCE ,……3分所以//DF 平面BCE .……4分 (Ⅱ)连接FG .因为平面ABCD ⊥平面ABEF ,平面ABCD I 平面ABEF AB =,AD AB ⊥, 所以AD ⊥平面ABEF ,所以BF AD ⊥.………………6分 因为G 为AB 的中点,所以//AG CD ,且AG CD =;//EF BG ,且EF BG =, 所以四边形AGCD 和四边形BEFG 均为平行四边形. 所以//AD CG ,所以BF CG ⊥.………………7分 因为EF EB =,所以四边形BEFG 为菱形, 所以BF EG ⊥.………………8分 所以BF ⊥平面GCE .………………9分所以平面BCF ⊥平面GCE .………………10分 (Ⅲ)设BF GE O =I .由(Ⅰ)得//DF CE ,所以//DF 平面GCE , 由(Ⅱ)得//AD CG ,所以//AD 平面GCE , 所以平面//AD F 平面GCE ,所以几何体AD F GCE -是三棱柱.………………11分 由(Ⅱ)得BF ⊥平面GCE .所以多面体AFEBCD 的体积ADF GCE B GCE V V V --=+………………12分13GCE GCE S FO S BO ∆∆=⋅+⋅43GCE S FO ∆=⋅=14分 19.(本小题满分13分)解:(Ⅰ)()f x 的导函数为221ln ()x ax f x x --'=,………………2分所以(1)1f a '=-. 依题意,有(1)(1)112f a --=--,即1112a a -+=--,………………4分 解得1a =.………………5分(Ⅱ)由(Ⅰ)得221ln ()x xf x x --'=.当0<<1x 时,210x ->,ln 0x ->,所以()0f x '>,故()f x 单调递增;当>1x 时,210x -<,ln 0x -<,所以()0f x '<,故()f x 单调递减.所以()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减.………………8分 因为101b b<<<,所以()f x 最大值为(1)1f =-.………………9分 设111()()()()ln h b f b f b b b b b b =-=+-+,其中1b >.………………10分则21()(1)ln 0h b b b'=->, 故()h b 在区间(1,)+∞上单调递增.………………11分 所以()(1)0h b h >=,即1()()f b f b >,………………12分故()f x 最小值为11()ln f b b b b=--.………………13分20.(本小题满分14分)解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得c a =,1b =,且222a b c =+.………………2分解得a =.………………3分所以椭圆C 的方程是2213x y +=.………………4分(Ⅱ)(ⅰ)由22,33,y x x y =⎧⎪⎨+=⎪⎩得(22A ,()22B .………………5分 1k =-时,设直线l 的方程为y x t =-+.由22,33,y x t x y =-+⎧⎪⎨+=⎪⎩得2246330x tx t -+-=.………………6分 令223648(1)0t t ∆=-->,解得24t <. 设1122(,),(,)M x y N x y ,则1232t x x +=,212334t x x -⋅=.………………8分由,,y x t y x =-+⎧⎨=⎩得(,)22t tP .………………9分所以23||||2t PA PB -=-=.………………10分因为1||PM x =,同理2||PN x =-.所以12||||222t tPM PN x x =-⋅- 2233324224t t t t -=-⋅+232t -=.所以||||||||PA PB PM PN =.………………12分 (ⅱ)22||||13||||2(1)PA PB k PM PN k +=+.………………14分。