QTL underlying iron and zinc toxicity tolerances at seedling stage revealed by two sets of
徐云碧-从分子数量遗传学到分子植物育种

国际上最早的水稻QTL论文之一
博士论文的总结报告 Xu, Yun-Bi, Zong-Tan Shen, Ji-Chen Xu, Ying Chen and LiHuang Zhu. 1993. Mapping quantitative trait loci via restriction fragment length polymorphism markers in rice. Rice Genetics Newsletter 10:135-138.
1
Molecular Quantitative Genetics in China (1990-1994)
数量性状遗传改良的希望和曙光
Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. E. Lincoln and S. D. Tanksley. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721-726. Received 8 July 1988 Accepted 9 September 1988 Google 被引用次数:1155 (8:25am, Aug 24, 2011) Lander, E. S. and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199. Manuscript received August 2, 1988 Accepted for publication October 6, 1988 Google被引用次数:3614 (8:28am, Aug 24, 2011)
马铃薯PIF 家族成员鉴定及其对高温胁迫的响应分析

作物学报 ACTA AGRONOMICA SINICA 2022, 48(1): 86 98/ ISSN 0496-3490; CN 11-1809/S; CODEN TSHPA9E-mail:***************本研究由国家自然科学基金资助项目(32101659), 科技部科技伙伴计划项目(KY201904016), 国家重点研发计划项目(2018YFE0127900)和西南大学人才引进项目(SWU019008, SWU020009)资助。
This study was supported by the National Natural Science Foundation of China (32101659), the Science and Technology Partnership Program, Minis-try of Science and Technology of China (KY201904016), the National Key Research and Development Program of China (2018YFE0127900), and the Talent Introduction Program of Southwest University Project (SWU019008, SWU020009).*通信作者(Corresponding author): 吕典秋,E-mail:***********************同等贡献(Contributed equally to this work)第一作者联系方式: 荐红举,E-mail:*****************.cn;尚丽娜,E-mail:*********************Received (收稿日期): 2020-12-29; Accepted (接受日期): 2021-04-14; Published online (网络出版日期): 2021-05-20. URL: https:///kcms/detail/11.1809.S.20210520.1134.002.htmlDOI: 10.3724/SP.J.1006.2022.04285马铃薯PIF 家族成员鉴定及其对高温胁迫的响应分析荐红举1,2,3,** 尚丽娜1,2,3,** 金中辉1,2,3 丁 艺1 李 燕1,3 王季春1,2,3胡柏耿4 VadimKhassanov 5 吕典秋1,2,3,* 1西南大学农学与生物科技学院, 重庆 400715; 2 南方山地农业教育部工程研究中心, 重庆 400715; 3 薯类生物学与遗传育种重庆市重点实验室, 重庆 400715; 4 国家马铃薯工程技术研究中心, 山东德州 253600; 5 S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue 010011, Astana, Republic of Kazakhstan摘 要: 植物光敏色素作用因子(phytochrome interacting factors, PIFs)属于碱性-螺旋-环-螺旋(basic helix-loop-helix, bHLH)转录因子家族, 通过将光和温度等外部环境信号与植物体内源信号途径相整合, 进而形成复杂的信号转导网络来精密调控植物的生长发育进程。
玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析

作物学报 ACTA AGRONOMICA SINICA 2020, 46(7): 1016 1024 / ISSN 0496-3490; CN 11-1809/S; CODEN TSHPA9 E-mail: zwxb301@本研究由国家重点研发计划项目(2016YFD0101002)和中国农业科学院创新工程专项经费资助。
This work was supported by the National Key Research and Development Program of China (2016YFD0101002) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.*通信作者(Corresponding author): 郑军, E-mail: zhengjun02@ **同等贡献(Contributed equally to this work)第一作者联系方式: 任蒙蒙, E-mail: ren_mm1991@; 张红伟, E-mail: zhanghongwei@Received (收稿日期): 2019-10-12; Accepted (接受日期): 2020-04-15; Published online (网络出版日期): 2020-04-26. URL: /kcms/detail/11.1809.S.20200426.1458.016.htmlDOI: 10.3724/SP.J.1006.2020.93054玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析任蒙蒙1,** 张红伟1,** 王建华2 王国英1 郑 军1,*1中国农业科学院作物科学研究所, 北京100081; 2 中国农业大学农学院, 北京100193摘 要: 干旱是影响玉米(Zea mays L.)产量最主要的环境因素之一, 具有耐深播特性的玉米种质材料能够吸收土壤深层水分, 具有较强的耐旱性, 因此研究玉米耐深播性状的遗传机制具有重要的理论和应用价值。
铜锌复合胁迫下禾本科观赏草的富集、转运效应评价

河南农业科学,2024,53(1):116‑124Journal of Henan Agricultural Sciencesdoi:10.15933/ki.1004-3268.2024.01.013铜锌复合胁迫下禾本科观赏草的富集、转运效应评价许志敏1,2,朱峻熙1,熊志秦1,朱佳1,万艳萍1,丁国昌2(1.江西科技学院,江西南昌330098;2.福建农林大学,福建福州350002)摘要:研究禾本科观赏草在土壤重金属铜、锌复合污染下的富集、转运效应,筛选出耐性品种,为挖掘超富集植物及推动利用植物修复铜、锌污染环境提供参考依据。
以9种常见禾本科观赏草作为试验植材,设置5个胁迫梯度,采用盆栽控制法,探究供试观赏草体内铜、锌含量分布状况并分析其对铜、锌的富集能力与转运特征。
结果表明,不同供试观赏草吸收重金属铜、锌的能力存在差异;不同部位吸收重金属铜、锌的能力亦差异显著,供试观赏草地上部吸收锌的能力强于地下部,而地下部吸收铜的能力强于地上部。
供试观赏草富集、转移锌的能力均强于铜,在锌富集系数、转运系数方面高于铜。
采用隶属函数法及Q 型聚类分析法,当相对距离为7.5时,可将供试观赏草划分为高、中、低铜锌积累型3类,丽色画眉草、细叶芒综合表现最强且属于高铜锌积累型。
关键词:禾本科观赏草;重金属;铜锌复合污染;富集转运效应中图分类号:S688.4文献标志码:A文章编号:1004-3268(2024)01-0116-09收稿日期:2023-08-03基金项目:国家重点研发计划项目(2021YFE0193200);国家林业局森林公园工程中心开放课题(PTJH1500210);福建农林大学园林学院学科专业建设项目(YSYL-bdpy6)作者简介:许志敏(1994-),男,江西南昌人,讲师,硕士,主要从事园林植物与应用等研究。
E-mail :*****************通信作者:丁国昌(1970-),男,福建长汀人,研究员,博士,主要从事园林植物与应用等研究。
三种苹果砧木在水培条件下对缺铁胁迫的耐受性

Agricultural Science & Technology, 2018, 19(3): 21-30Copyright ⓒ 2018, Information Institute of HAAS. All rights reserved1. IntroductionMicronutrient elements such as Cu, Zn, Mn, Fe, Ni and Mo are essential for growth and development in all plants [1]. Iron is one of the most indispensable elements in mineral nutrition of plants, especially in fruit trees [2-3]. The iron-deficiency usually occurs in crops grown in calcareous soils [4], and it is a common nutritional disorder in apples cultivated in northern China [5-6].The horticultural industry of China generates significant revenue by producing the apples. At the end of 2013, approximately 227 million hectares of land was under apple cultivation in China (Ministry of Agriculture, 2013) [7]. The Northwest Loess Plateau is well known area for apple production in China [8]. However, due to the calcareous propertySupported by University Research Project of Education Dpartment (2018A-035).E-mail: 2269436814@A三种苹果砧木在水培条件下对缺铁胁迫的耐受性贾旭梅,朱燕芳,胡 亚,程 丽,赵 通,王延秀*(甘肃农业大学园艺学院,甘肃 兰州730070)摘 要 缺铁是中国黄土高原作物产区最严重的元素缺乏症,选择耐缺铁品种是提高作物产量的有效途径。
海雀稗PvCIPK9基因克隆及耐盐功能鉴定

第31卷 第10期V o l .31 No .10草 地 学 报A C T A A G R E S T I A S I N I C A2023年 10月O c t . 2023d o i :10.11733/j.i s s n .1007-0435.2023.10.005引用格式:宋志钢,刘 颖,刘 瑞,等.海雀稗P v C I P K 9基因克隆及耐盐功能鉴定[J ].草地学报,2023,31(10):2938-2948S O N GZ h i -g a n g ,L I U Y i n g ,L I U R u i ,e t a l .C l o n i n g a n d I d e n t i f i c a t i o n o f S a l tT o l e r a n c eF u n c t i o n o f P a s p a l u mv a gi -n a t u m P v C I P K 9[J ].A c t aA gr e s t i aS i n i c a ,2023,31(10):2938-2948海雀稗P v C I P K 9基因克隆及耐盐功能鉴定宋志钢1,刘 颖2,刘 瑞1,卢少云1*(1.华南农业大学生命科学学院,广东广州510642;2.青海大学农牧学院,青海西宁810016)摘要:盐生植物海雀稗(P a s p a l u m s v a g i n a t i u m )是一种极其耐盐的多年生草本植物㊂本研究从海雀稗转录组数据中筛选对盐胁迫响应的P v C I P K 9基因,克隆了P v C I P K 9基因C D S 序列全长,并对其表达模式㊁启动子元件等进行分析㊂为研究P v C I P K 9基因的耐盐功能,构建了P v C I P K 9过表达载体,采用农杆菌介导的花序侵染法转化拟南芥(A r a b i d o p s i s t h a l i a n a ),获得过表达P v C I P K 9的转基因拟南芥(A r a b i d o ps i s t h a l i a n a ),对转基因拟南芥的耐盐性进行鉴定㊂结果表明,盐胁迫条件下,转基因拟南芥的生长表型显著优于野生型,转基因拟南芥在盐胁迫下的种子萌发率及相对生长量均显著高于野生型;此外,盐处理后转基因拟南芥的抗氧化酶活性也显著高于野生型,以上结果初步说明过表达P v C I P K 9基因增强了拟南芥对盐胁迫的抵抗能力㊂本研究为深入解析海雀稗P v C I P K 9在植物耐盐性中的作用奠定了基础㊂关键词:耐盐性;海雀稗;拟南芥;P v C I P K 9中图分类号:Q 945 文献标识码:A 文章编号:1007-0435(2023)10-2938-11C l o n i n g an d I d e n t i f i c a t i o no f S a l t T o l e r a n c eF u n c t i o no f P a s p a l u m v a gi n a t u mP v C I P K 9S O N GZ h i -g a n g 1,L I U Y i n g 2,L I U R u i 1,L US h a o -yu n 1*(1.C o l l e g e o fL i f eS c i e n c e ,S o u t hC h i n aA g r i c u l t u r a lU n i v e r s i t y ,G u a n g z h o u ,G u a n g d o n g P r o v i n c e 510642,C h i n a ;2.C o l l e g e o fA g r i c u l t u r e a n dA n i m a lH u s b a n d r y ,Q i n g h a iU n i v e r s i t y ,X i n i n g ,Q i n gh a i P r o v i n c e 810016,C h i n a )A b s t r a c t :T h eh a l o p h y t e P a s p a l u mv a gi n a t u m i sa p e r e n n i a lh e r b w i t he x t r e m e l y s a l t t o l e r a n c e .I nt h i ss t u d y ,P v C I P K 9g e n e r e s p o n s i v e t o s a l t s t r e s sw a s s c r e e n e d f r o m t h e t r a n s c r i p t o m e o f P a s p a l u m v a gi n a t u m ,t h e f u l l l e n g t h o f C D S s e q u e n c e o f P v C I P K 9g e n ew a s c l o n e d ,a n d i t s e x p r e s s i o n p a t t e r n a n d p r o m o t e r e l e m e n t sw e r e a n a l yz e d .I n o r d e r t o f u r t h e r s t u d y t h e s a l t s t r e s s r e s i s t a n c e o f P v C I P K 9g e n e ,t h e o v e r e x pr e s s i o nv e c t o r o f P v C I P K 9w a s c o n -s t r u c t e d a n d t r a n s g e n i cA r a b i d o p s i sw a s o b t a i n e d b y a g r o b a c t e r i u m -m e d i a t e d i n f l o r e s c e n c e i n f e c t i o n .S u b s e q u e n t l y,s a l t t o l e r a n c e o f t r a n s g e n i cA r a b i d o p s i sw a s a n a l y z e d .T h e r e s u l t s s h o w e d t h a t t h e g r o w t h p h e n o t y p e o f t r a n s ge n i cA r a b i -d o p s i sw a s s i g n if i c a n t l y b e t t e ru n d e r s a l t s t r e s sc o m p a r e dt ow i l dt y pe ,a n dt h es e e d g e r m i n a t i o nr a t ea n dr e l a t i v e g r o w t h y i e l d of t r a n sg e n i cA r a b i d o p s i sw e r e s i g n i f i c a n t l yhi g h e r u n d e r s a l t s t r e s s t h a n t h a t o fw i l d t y pe .I n a d d i t i o n ,t h e a n t i o x i d a n t e n z y m e a c t i v i t y of t r a n sg e n i cA r a b i d o p s i sw a s a l s o s i g n i f i c a n t l yhi g h e r a f t e r s a l t t r e a t m e n t .T h e a b o v e r e s u l t s s h o w e d t h a t o v e r e x p r e s s i o n o f P v C I P K 9g e n e e n h a n c e d t h e r e s i s t a n c e t o s a l t s t r e s s i nA r a b i d o p s i s .T h i s s t u d yi s h e l p f u l t o f u r t h e r u n d e r s t a n d i n g t h em o l e c u l a r f u n c t i o n o f P v C I P K 9i n r e s po n s e t o s a l t s t r e s s ,a n d p r o v i d e s a t h e o -r e t i c a l b a s i s f o r g e n e t i c i m p r o v e m e n t o f c r o p sa l t t o l e r a n c e .K e y w o r d s :S a l t t o l e r a n c e ;P a s p a l u mv a g i n a t u m ;A r ab i d o p s i s t h a l i a n a ;P v C I P K 9收稿日期:2023-03-16;修回日期:2023-04-25基金项目:国家自然科学基金项目(32271765)资助作者简介:宋志钢(1998-),男,汉族,河南许昌人,硕士研究生,主要从事草坪草种质资源与育种研究,E -m a i l :1375934198@q q.c o m ;*通信作者A u t h o r f o r c o r r e s po n d e n c e ,E -m a i l :t u r f l a b @s c a u .e d u .c n 植物在生长发育过程中会受到各种不利的环境胁迫,如高盐㊁干旱㊁寒冷和病原体等㊂为了应对环境的波动以完成完整的生命周期,植物进化出了复杂的信号转导途径㊂钙是植物细胞信号转导中重要的第二信使,能够将外界信号转化为胞内信息,从而对特定的环境刺激做出相应的反应[1]㊂当植物遭受到环境胁迫后,以游离C a 2+的瞬时变化作为信号将外界环境信息传递到植物细胞内㊂这种C a2+信号Copyright ©博看网. All Rights Reserved.第10期宋志钢等:海雀稗P v C I P K9基因克隆及耐盐功能鉴定首先被钙离子感受器感知解码,再将信号向下游传递㊂高等植物的钙感受器已知有三类:钙依赖性蛋白激酶(C a l c i u m-d e p e n d e n t p r o t e i n k i n a s e s,C D-P K s)㊁钙调素(C a l m o d u l i n s,C a M s)/类钙调素蛋白(C a l m o d u l i n-l i k e p r o t e i n s,C M L s)㊁类钙调磷酸酶B蛋白(C a l c i n e u r i nB-l i k e p r o t e i n s,C B L s)[2-3]㊂C B L 是一类独特的钙感受器,C B L s自身没有酶活性,因此在它结合C a2+后,还需要与其下游互作蛋白C I P K s(C B L-i n t e r a c t i n gp r o t e i nk i n a s e s)结合才能发挥应有的生物学功能[4]㊂C B L s和C I P K s共同形成了以C a2+介导的C B L-C I P K网络,这是近十几年来植物逆境信号转导的研究热点之一[5]㊂C I P K s蛋白主要包含两个结构域:N端激酶结构域(K i n a s e d o m a i n)和C端调节结构域(N A Fd o-m a i n)㊂N端激酶结构域内有一个激活环(A c t i v a-t i o n l o o p),磷酸化激活环可激活蛋白激酶的活性㊂C端调节结构域内有一个保守的N A F结构域, N A F结构域既与C I P K分子内部的自我抑制相关,又可以与C B L特异性结合[6-7]㊂在N A F邻近位置有一个相对保守的P P I基序(P r o t e i n p h o s p h a t a s e i n t e r a c t i o nm o t i f)能够与2C型蛋白磷酸酶(P r o t e i n p h o s h p h a t a s e2C)之间发生蛋白互作[8]㊂作为植物特有的C a2+信号传导网络,C B L-C I P K 信号网络在植物的生长发育㊁生殖及逆境响应等方面都发挥着极其重要的作用㊂许多C B L或C I P K通过调控植物体内N a+/K+和活性氧(R e a c t i v eo x y g e ns p e-c i e s,R O S)平衡,参与植物对盐胁迫的响应,例如玉米(Z e a m a y s)Z m C I P K21[9]㊁小麦(T r i t i c u m a e s t i v u m) T a C I P K24[10]㊁大豆(G l y c i n em a x)G m C I P K10[11]等均参与了对盐胁迫的响应㊂随着对C B L-C I P K信号系统研究的深入,发现了越来越多的C B L和C I P K蛋白参与调控植物对各种逆境胁迫的响应㊂除盐胁迫以外, C B L㊁C I P K也参与对其它逆境的响应㊂拟南芥(A r a b i-d o p s i s t h a l i a n a)A t C B L1-A t C I P K7,水稻(O r y z a s a t i v a) O s C I P K1和O s C I P K3参与植物对冷胁迫的响应[12-13],番茄(S o l a n u m l y c o p e r s i c u m)S l C B L10-S l C I P K6参与植物对丁香假单胞菌(P s e u d o m o n a s s y r i n g a e)病原的免疫反应[14]㊂同一个C B L或C I P K蛋白可以参与植物不同逆境的响应,比如过表达M d C I P K6L同时增强了转基因植株的耐盐性㊁耐旱性和抗冷性[15],O s C I P K15同时参与植物对盐㊁低氧胁迫和微生物病原的响应[16]㊂过表达水稻O s C I P K3提升植株对冷的耐受力,但会导致转基因植株对盐敏感[12,17]㊂大量的研究结果证明了C B L-C I P K具有多种多样的抗逆功能,对C B L-C I P K信号成分的挖掘和鉴定,不仅有助于解析植物在逆境胁迫应答的分子机制,同时为基因工程改良作物的抗逆性提供了基因资源㊂盐生植物海雀稗(P a s p a l u m s v a g i n a t i u m)是禾本科(G r a m i n e a e)黍族(P a n i c e a e)雀稗属(P a s-p a l u m)的一种多年生草本植物[18]㊂海雀稗兼具多种优良特性,如耐盐㊁耐涝㊁耐践踏和耐修剪等,对极端酸性土壤㊁碱性土壤等非生物胁迫也具有较高的耐性[18]㊂目前对海雀稗的研究主要集中在种间或品种间的耐逆性评价[19-20],在海雀稗关键耐盐基因的克隆和功能研究方面较少[21],因此挖掘海雀稗的耐盐基因资源,揭示海雀稗耐盐分子机制迫在眉睫㊂实验室前期研究发现在海雀稗盐胁迫转录组数据中,P v C I P K9基因可能参与响应盐胁迫㊂为了深入研究P v C I P K9基因,克隆得到了P v C I P K9序列全长,并对其蛋白理化性质㊁结构特点等进行了分析和预测㊂为验证P v C I P K9基因在抗逆中的作用,本研究构建了过表达载体并转化拟南芥,获得了过表达P v C I P K9拟南芥植株,验证了过表达P v C I P K9对拟南芥耐盐性的影响㊂1材料与方法1.1试验材料海雀稗(P a s p a l u mv a g i n a t u m O.S w a r t z)品种 S e aS p r a y 植株及拟南芥野生型(C o l-0)种子为本实验室保存㊂1.2海雀稗P v C I P K9基因克隆与生物信息学分析本研究以海雀稗的转录组数据库的序列为参考序列,设计特异性引物,以海雀稗c D N A为模板,利用P C R扩增P v C I P K9基因C D S序列㊂采用生物信息学网站(h t t p s://w e b.e x p a s y.o r g/p r o t p a r a m/)分析该蛋白的理化性质㊂根据在线网站S i g n a l P-4.1(h t t p s:// s e r v i c e s.h e a l t h t e c h.d t u.d k/s e r v i c e s/S i g n a l P-4.1/)对P v C I P K9进行信号肽结构预测,使用在线网站T M-H MM-2.0(h t t p s://s e r v i c e s.h e a l t h t e c h.d t u.d k/s e r v-i c e s/T M H MM-2.0/)预测P v C I P K9蛋白的跨膜结构域㊂利用在线软件S W I S S-M O D E L(h t t p s://s w i s s-m o d e l.e x p a s y.o r g/)进行同源建模㊂使用N C B I(h t-t p s://w w w.n c b i.n l m.n i h.g o v/)进行保守结构域预测㊂从N C B I网站获取模式植物拟南芥和水稻的C I P K家族蛋白序列,使用软件M E G A7.0构建系统进化树,构建方法使用邻接法㊂9392Copyright©博看网. All Rights Reserved.草地学报第31卷1.3启动子元件分析通过植物基因组网站(h t t p s://p h y t o z o m e-n e x t.j g i.d o e.g o v/)获取P v C I P K9基因上游约1500b p序列,利用P l a n t C A R E(h t t p://b i o i n f o r-m a t i c s.p s b.u g e n t.b e/w e b t o o l s/p l a n t c a r e/h t m l)对P v C I P K9基因启动子序列进行分析㊂1.4P v C I P K9基因表达模式分析参照Z h a n g等[22]的方法,构建P v C I P K9与G F P 融合表达载体,以m C h e r r y作为M a r k e r蛋白,同时转化水稻原生质体,28ħ黑暗条件下培养20~24h后,利用荧光显微镜下观察G F P和m C h e r r y荧光㊂其中G F P的激发光和发射光分别为488n m和507n m, m C h e r r y的激发光和发射光分别为587n m和610n m㊂取长势良好且一致的海雀稗幼苗,洗净根部泥土,置于1/2霍格兰营养液中培养一周左右㊂使用含200m m o l㊃L-1N a C l的营养液中进行盐处理,以不含N a C l的营养液为对照,在处理2,6,12,24h 时分别对根和叶进行取样,液氮速冻后于-80ħ冰箱中保存,待提R N A㊂选取生长健壮的海雀稗精心培养至抽穗开花,对海雀稗的根㊁茎㊁叶㊁小穗进行取样,液氮速冻后保存在-80ħ冰箱中,待提R N A㊂使用R N A提取试剂盒R N A i s o p l u s(9109, T a k a r a)进行植物总R N A的提取㊂使用反转录试剂盒(R R047A,T a k a r a)进行反应,获得第一链c D-N A㊂以c D N A为模板,参照q R T-P C R试剂盒T l i R N a s e H P l u s(R R820A,T a k a r a)使用说明书,将反应组分离心混匀后使用荧光定量P C R仪进行扩增,反应程序为:95ħ3m i n;95ħ5s,55ħ30s,进行39个循环;插入熔解曲线65ħ5s,95ħ5s㊂反应结束后确认扩增曲线和熔解曲线,以海雀稗A c t i n 作为内参基因计算基因的相对表达量,数据由软件B i o-R a dC F X M a n a g e r(V e r s i o n3.0)分析并收集㊂1.5植物表达载体构建及拟南芥转化设计含有X b a I和B a m h I酶切位点的引物(表1),扩增P v C I P K9基因C D S序列,得到带有酶切位点的目的基因片段㊂用X b a I和B a m hI双酶切该基因片段和p C AM B I A3301质粒载体,经T4 D N A连接酶连接,将连接产物转化大肠杆菌D H5α,经P C R验证,挑选阳性克隆送生物公司测序,将测序正确的p C AM B I A3301重组质粒转化农杆菌感受态E H A105㊂用花序侵染法转化野生型拟南芥,在含有B a s t a的培养基筛选转基因抗性植株,使用C T A B抽提法提取D N A,通过P C R法鉴定转基因植株阳性苗㊂再经过自交和筛选后得到T3代转基因拟南芥,用于后续试验㊂1.6转基因拟南芥的耐盐性分析挑选籽粒饱满㊁大小均匀的拟南芥种子,放于2m L离心管内㊂在超净工作台内,加入75%乙醇消毒5m i n,灭菌水清洗㊂加入15%次氯酸钠溶液消毒15m i n期间须多次振荡㊂使用无菌水冲洗6~8次㊂将消毒后的种子均匀的点在1/2M S培养基上,放于4ħ冰箱春化处理2~3d㊂将培养皿置于温度25ħ,光暗周期为16hʒ8h,光照为200μm o l㊃m-2㊃s-1的人工智能培养箱内培养㊂培养7d的幼苗,选择长势一致的幼苗转至土壤中培养㊂将生长三周左右的幼苗进行盐处理,先用50m m o l㊃L-1N a C l浇灌4天,再把处理浓度提高至100m m o l㊃L-1N a C l,观察拟南芥生长表型㊂1.6.1种子萌发率取野生型和2个转基因株系,消毒处理后,无菌水清洗种子,分别播种于1/2M S 培养基(对照)和含有100m m o l㊃L-1N a C l的1/2 M S培养基(盐胁迫),每皿播种40粒种子,三次重复㊂春化三天后,置于培养箱培养㊂每天观察并统计种子萌发情况,连续统计5天,计算萌发率㊂以种子萌发突破种皮露白5m m视为萌发㊂1.6.2相对生长量取WT和2个转基因株系进行消毒,无菌水清洗种子,然后播种于1/2M S培养基上㊂播种7天后,取长势一致的幼苗移到培养瓶中,内含等量的1/2M S培养基(分别含有0,100, 150m m o l㊃L-1N a C l),每瓶放5株,光下生长20d 后,分别称根系鲜重和地上部鲜重,计算整株鲜重㊁相对生长量㊂1.6.3抗氧化酶活性粗酶液提取:取0.1g拟南芥叶片,加入2m L的缓冲液(S O D㊁C A T缓冲液(50mM P B S含1%的P V P,p H7.8)㊁A P X缓冲液(50m m o l㊃L-1P B S含15m m o l㊃L-1A s A,0.1 m m o l㊃L-1E D T A,1%的P V P,p H值7.0)),冰上研磨成匀浆,4ħ,12000r㊃m i n-1离心10m i n,上清液即为酶的粗提液㊂参照C h e n和Z h u o的方法[23-24]进行超氧化物歧化酶(S u p e r o x i d e d i s-m u t a s e,S O D),过氧化氢酶(C a t a l a s e,C A T),抗坏血酸过氧化物酶(A s c o r b a t e p e r o x i d a s e,A P X)活性的测定㊂采用考马斯亮蓝G-250测定酶粗提液的蛋白质含量[25]㊂0492Copyright©博看网. All Rights Reserved.第10期宋志钢等:海雀稗P v C I P K 9基因克隆及耐盐功能鉴定1.7 数据统计与分析所有数据均进行三次重复,利用I B M S P S S19.0进行统计分析,采用方差分析差异显著性,计算各指标的平均值和标准误,数据均采用3个独立样本的平均值和标准误表示,采用E x c e l 作图,W o r d 制表㊂不同小写字母表示差异显著性(P <0.05)㊂实验中用到的所有引物用P r i m e rP r e m i e r 5.0软件设计,引物序列见表1㊂表1 引物信息T a b l e 1 P r i m e r u s e d i n t h e s t u d y引物名N a m eo f p r i m e r引物序列(5'-3')S e qu e n c eo f p r i m e r s (5'-3')用途A p pl i c a t i o n P 1-FC T T C T C T C A G C A C T T T C C A A C A 内参基因A c t i n 定量P C R 上游引物F o r w a r d p r i m e r o f i n t e r n a l c o n t r o l g e n e A c t i n f o r q R T -P C RP 1-R A A A C A T A A C C T G C A A T C T C T C C 内参基因A c t i n 定量P C R 下游引物R e v e r s e p r i m e r o f i n t e r n a l c o n t r o l g e n e A c t i n f o r q R T -P C RP 2-FC G T T G A T G G A G G C G A G C T A T P v C I P K 9定量P C R 上游引物F o r w a r d p r i m e r o f P v C I P K 9f o r q R T -P C RP 2-R G G T A C A C T C C A C G G C T A T G G P v C I P K 9定量P C R 下游引物R e v e r s e p r i m e r o f P v C I P K 9f o r q R T -P C R P 3-F G C T C T A G A A T G G C G G C G G C C G G C G G G A带酶切位点的P v C I P K 9基因克隆上游引物F o r w a r d p r i m e r s f o r P v C I P K 9g e n e c l o n i n g w i t hr e s t r i c t i o ns i t e s P 3-R CG G G A T C C T G A C T T T G T C A G T T T C T T A C T T G A G T C A G A T T带酶切位点的P v C I P K 9基因克隆下游引物R e v e r s e p r i m e r s f o r P v C I P K 9g e n e c l o n i n g wi t hr e s t r i c t i o ns i t e s B a r -F G C T G C C A G A A A C C C A C GB a r 基因PC R 鉴定上游引物F o r w a r d p r i m e r o f B a r f o rP C RB a r -RC T G C A C C A T C G T C A A C C A C B a r 基因P C R 鉴定下游引物R e v e r s e p r i m e r o f B a r f o rP C R2 结果与分析2.1 海雀稗P v C I P K 9基因的克隆及生物信息学分析通过克隆获得海雀稗P v C I P K 9基因的C D S 全长序列(图1a ),P v C I P K 9基因的开放阅读框(O pe n r e a d -i n gf r a m e ,O R F )全长为1332b p,编码443个氨基酸,蛋白分子量为49.87K D a ,理论等电点为8.02,不稳定指数36.34,属于稳定蛋白,亲水性总平均值(G R A V Y )为-0.412,属于亲水性蛋白(图1b )㊂P v C I P K 9蛋白没有信号肽结构(图1c ),预测该蛋白在第197~216个氨基酸间存在一个跨膜结构域(图1d )㊂该蛋白具有典型的激酶结构域和N A F 结构域(图1f)㊂图1 P v C I P K 9的生物信息学分析F i g .1 B i o i n f o r m a t i c s a n a l ys i s o fP v C I P K 9注:(a )克隆P v C I P K 9基因(b )海雀稗P v C I P K 9蛋白亲水性分析;(c )海雀稗P v C I P K 9蛋白信号肽预测;(d )海雀稗P v C I P K 9蛋白跨膜结构域预测;(e )海雀稗P v C I P K 9蛋白三级结构模型;(f )海雀稗P v C I P K 9蛋白保守结构域预测N o t e :(a )C l o n e P v C I P K 9g e n e ;(b )A n a l y s i so fh y d r o p h i l i c i t y o fP v C I P K 9p r o t e i n i n P .v a gi n a t u m ;(c )P r e d i c t i o no fP v C I P K 9p r o t e i ns i g n a l p e p t i d e i n P .v a g i n a t u m ;(d )P r e d i c t i o no ft r a n s m e m b r a n ed o m a i no fP v C I P K 9p r o t e i ni n P .v a gi n a t u m ;(e )T e r t i a r y s t r u c t u r e m o d e lo f P v C I P K 9p r o t e i n i n P .v a g i n a t u m ;(f )P r e d i c t i o no f t h e c o n s e r v e dd o m a i no f P v C I P K 9p r o t e i n i n P .v a gi n a t u m 1492Copyright ©博看网. All Rights Reserved.草地学报第31卷将P v C I P K9分别与拟南芥26个C I P K s以及水稻33个C I P K s家族成员构建进化树㊂进化分析结果显示,P v C I P K9分别与拟南芥A t C I P K9(图2a)和水稻O s C I P K9亲缘关系最近(图2b)㊂图2P v C I P K9与拟南芥和水稻C I P K s的进化分析F i g.2 E v o l u t i o n a r y A n a l y s i s o fP v C I P K9a n dA r a b i d o p s i sC I P K s a n dR i c eC I P K s注:(a)P v C I P K9与A t C I P K s的进化分析;(b)P v C I P K9与O s C I P K s的进化分析N o t e:(a)E v o l u t i o n a r y A n a l y s i s o f P v C I P K9a n dA t C I P K s;(b)E v o l u t i o n a r y A n a l y s i s o f P v C I P K9a n dO s C I P K s2.2启动子分析在海雀稗基因组数据中获取P v C I P K9基因上游基因约1500b p序列,利用p l a n t C A R E对海雀稗P v C I P K9基因启动子元件进行分析,发现启动子区包含多个参与光反应的元件如G-B o x,A R E等;多种激素响应元件如生长素反应元件T G A-e l e-m e n t,脱落酸响应元件A B R E,水杨酸响应元件T C A-e l e m e n t,茉莉酸响应元件T G A C G-m o t i f,C G T C A-m o t i f;逆境胁迫响应元件如L T R,A B R E等㊂图3海雀稗P v C I P K9基因启动子元件分析F i g.3G e n e p r o m o t e r e l e m e n t a n a l y s i s o f P v C I P K92.3P v C I P K9的表达模式分析2.3.1P v C I P K9的亚细胞定位将融合载体和m C h e r r y共转化水稻原生质体,以G F P和m C h e r r y共转为对照,通过激光扫描共聚焦显微镜观察荧光信号出现部位㊂结果显示,P v C I P K9-G F P荧光信号与m C h e r r y荧光信号明显重叠在细胞核(图4),表明P v C I P K9主要存在于细胞核中㊂2492Copyright©博看网. All Rights Reserved.第10期宋志钢等:海雀稗P v C I P K 9基因克隆及耐盐功能鉴定图4 P v C I P K 9的亚细胞定位F i g.4 S u b c e l l u l a r l o c a l i z a t i o no fP v C I P K 9注:G F P 为绿色荧光信号;m C h e r r y 为红色荧光信号;B r i g h t f i e l d 为明场;M e r ge 为叠加视野N o t e :G F P r e p r e s e n t s g r e e nf l u o r e s c e n t s ig n a l ;M Ch e r r y r e p r e s e n t s r e d f l u o r e s c e n c e si g n a l ;B r i g h t f i e l d ;M e r g e r e p r e s e n t s s u p e r i m po s e d f i e l d o f v i e w 2.3.2 P v C I P K 9的组织特异性表达分析 利用R T -q P C R 检测海雀稗不同器官组织中的P v C I P K 9基因表达量,结果表明,正常生长条件下,P v C I P K 9基因在根㊁茎㊁叶㊁穗中均有不同程度的表达,在叶中的表达量最高且显著高于其他组织(图5)㊂2.3.3 海雀稗P v C I P K 9盐胁迫响应分析 以野生型海雀稗作为材料,通过q R T -P C R 分析200m m o l ㊃L -1N a C l 盐胁迫不同时间对叶片和根系中P v C I P K 9基因表达的影响㊂结果显示,与正常生长条件下的海雀稗相比较,盐处理后,海雀稗叶片中的P v C I P K 9基因表达量呈上升趋势,在根中,P v C I P K 9的基因表达量在2,6,24h 时显著上升(P <0.05),在12h 时无显著差异(图6)㊂图5 P v C I P K 9的组织特异性表达分析F i g .5 A n a l y s i s o f t i s s u e s p e c i f i c e x pr e s s i o no f P v C I P K9图6 海雀稗P v C I P K 9盐响应胁迫分析F i g .6 A n a l y s i s o f s a l t r e s p o n s e o f P a s p a l u m s v a gi n a t i u m P v C I P K 9注:海雀稗叶片(a )和根(b )中P v C I P K 9的基因表达分析㊂不同小写字母表示处理组与对照组差异显著(P <0.05)N o t e :A n a l y s i s o f g e n e e x p r e s s i o no f P v C I P K 9i n l e a v e s (a )a n d r o o t s (b )o f P a s p a l u m s v a gi n a t i u m .D i f f e r e n tm i n u s c u l e i n d i c a t e s i g n i f i -c a n t d i f f e r e n c e b e t w e e n t r e a t m e n t g r o u p a n d c o n t r o l g r o u p (P <0.05)2.4 过表达P v C I P K 9遗传材料的表型鉴定2.4.1 过表达P v C I P K 9拟南芥植株的获得 用花序侵染法转化野生型拟南芥,在含有B a s t a 的培养基上筛选得到两个株系㊂以转基因拟南芥D N A 为模板,采用引物B a r -F 和B a r -R 进行P C R 检测鉴定,检测结果符合B a r 基因的片段大小(图7a)㊂进一步采用引物扩增载体上启动子部分片段和目的片段全长,扩增长度1756b p ,电泳结果符合预期(图7b )㊂通过实时荧光定量P C R 鉴定转入基因的表达情况,结果显示,过表达株系的目的基因表达量均显著高于野生型拟南芥(图7c )㊂为方便我们把P v C I P K 9-1和P v C I P K 9-8转基因株系分别命名为O E 1和O E 8㊂3492Copyright ©博看网. All Rights Reserved.草 地 学 报第31卷图7 转基因拟南芥的检测鉴定F i g .7 D e t e c t i o na n d I d e n t i f i c a t i o no fT r a n s g e n i c A r a b i d o ps i s 注:(a )P C R 检测B a r 基因(b )P C R 检测P v C I P K 9基因(c )定量P C R 检测P v C I P K 9基因表达量㊂M ,D L 2000M a r k e r ; ,野生型;+,pC AM B I A 3301-P v C I P K 9质粒;1,8,过表达转基因拟南芥株系N o t e :(a )P C Rf o r B a r g e n e (b )P C Rf o r P v C I P K 9g e n e (c )P v C I P K 9g e n e e x p r e s s i o nb yq P C R.M ,D L 2000M a r k e r ; ,W i l d t y pe ;+,p C AM B I A 3301-P v C I P K 9v e c t o r ;1,8,O v e r e x p r e s s i o nof t r a n sg e n i c A r a b i d o ps i s l i n e s 2.4.2 盐胁迫对转基因拟南芥种子萌发率的影响连续统计5天的种子萌发率(图8a ),不含N a C l 的1/2M S 培养基上,转基因和野生型拟南芥均在第2天开始萌发,第4天时转基因株系和野生型株系的萌发率分别为87%,94%和82%,且无显著性差异(图8a )㊂在含100m m o l ㊃L -1N a C l 的1/2M S 培养基上,所有株系在第3天开始萌发,第4天时,野生型株系的萌发率仅有8%~10%,而过表达株系的萌发率分别为40%~64%,60%~73%,显著高于野生型(图8b )㊂说明盐处理对过表达P v C I P K 9拟南芥种子萌发的抑制作用显著小于野生型㊂图8 过表达P v C I P K 9提高盐胁迫下转基因拟南芥的种子萌发率F i g .8 O v e r e x p r e s s i o no f P v C I P K 9e n h a n c e s s e e d g e r m i n a t i o n r a t e o f t r a n s g e n i c A r a b i d o ps i s u n d e r s a l t s t r e s s注:(a )在指定的时间点测量种子萌发率;(b )4d 后的种子萌发率;(c )在4天后拍摄照片㊂图中不同小写字母代表盐胁迫下转基因株系与C K 相比差异显著(P <0.05),下同N o t e :(a )M e a s u r i n g t h e s e e d g e r m i n a t i o n r a t e a t t h e s p e c i f i e d t i m e p o i n t ;(b )S e e d g e r m i n a t i o n r a t e a f t e r 4d a y s ;(c )T a k i n gp h o t o s a f t e r 4d a y s .D i f f e r -e n t l o w e r c a s e l e t t e r s r e p r e s e n t s i g n i f i c a n t d i f f e r e n c e s b e t w e e n t r a n s ge n i c l i n e s a n dC Ku n d e r s a l t s t r e s s (P <0.05),t h e s a m e a s b e l o w 2.4.3 盐胁迫对转基因拟南芥相对生长量的影响正常条件下,过表达P v C I P K 9转基因株系的整株㊁地上部和根的鲜重略低于野生型,但差异不显著㊂在含盐培养基上,转基因株系的整株㊁地上部和4492Copyright ©博看网. All Rights Reserved.第10期宋志钢等:海雀稗P v C I P K9基因克隆及耐盐功能鉴定根的鲜重显著高于野生型(图9a,9b,9c)㊂进一步计算相对生长量,发现过表达株系的整株,地上部及根的相对生长量均显著高于野生型㊂以上结果说明过表达P v C I P K9提高了转基因拟南芥的耐盐性㊂图9盐胁迫处理对野生型与过表达P v C I P K9拟南芥的生长影响F i g.9 E f f e c t o f s a l t s t r e s s t r e a t m e n t o n t h e g r o w t ho f P v C I P K9t r a n s g e n i c A r a b i d o p s i s a n d WT注:盐处理后整株(A)㊁地上部(B)和根(C)的鲜重;(D)将7天龄的幼苗分别在含0,100,150m m o l㊃L-1N a C l的1/2M S培养基上生长18 d后的生长状况N o t e:A f t e r s a l t t r e a t m e n t,f r e s hw e i g h t o fw h o l e p l a n t(A),s h o o t(B)a n dr o o t(C);(D)T h e g r o w t hs t a t u so f7-d a y-o l ds e e d l i n g sa f t e rg r o w i n g o n1/2M Sm e d i u mc o n t a i n i n g0,100a n d150m m o l㊃L-1N a C l f o r18d a y s2.4.4盐胁迫对转基因拟南芥抗氧化酶活性的影响正常条件下,转基因株系和野生型株系的S O D酶活性没有显著性差异㊂盐处理后,与WT相比,过表达P v C I P K9株系的S O D酶活性显著提高(图10a);在正常条件下,过表达株系的C A T活性与野生型无显著差异,盐处理后,过表达株系的C A T活性显著高于野生型(图10b);无论是在正常生长条件还是盐胁迫条件下,所有株系间的A P X活性均无显著性差异(图10c)㊂上述结果说明过表达P v C I P K9提高了盐胁迫下转基因拟南芥S O D和C A T的活性,对A P X的活性无影响㊂图10盐胁迫对转基因拟南芥抗氧化酶活性的影响F i g.10 E f f e c t o f t h e a n t i o x i d a n t e n z y m e a c t i v i t y o f t r a n s g e n i c A r a b i d o p s i s u n d e r s a l t s t r e s s注:盐处理14天后,测定拟南芥的S O D(A)㊁C A T(B)和A P X(C)的活性N o t e:A f t e r14d a y s o f s a l t t r e a t m e n t,t h e a c t i v i t i e s o f S O D(A),C A T(B)a n dA P X(C)w e r em e a s u r e d i n A r a b i d o p s i s2.4.5盐胁迫下转基因拟南芥的表型观察通过土壤栽培,观察自然环境下转基因材料对盐胁迫的耐受性,由图11所示,盐胁迫条件下,野生型植株叶片稀疏,叶面细小,受到明显的伤害,而5492Copyright©博看网. All Rights Reserved.草 地 学 报第31卷转基因株系的叶片较大且数量多,长势更好,盐处理对过表达P v C I P K 9拟南芥植株的伤害较小,表明过表达P v C I P K 9基因能够提高拟南芥的耐盐性㊂图11 盐胁迫对过表达P v C I P K 9拟南芥表型的影响F i g .11 E f f e c t o f t h e p h e n o t y p e o f o v e r e x p r e s s e d P v C I P K 9A r a b i d o ps i s u n d e r s a l t s t r e s s 注:三周大小的拟南芥幼苗,先用50m m o l ㊃L -1N a C l 处理四天,再用100m m o l ㊃L -1N a C l 处理16天的生长情况N o t e :T h e g r o w t ho f t h r e e -w e e k -s i z e d A r a b i d o ps i s s e e d l i n g s t r e a t e dw i t h 50m m o l ㊃L -1N a C l f o r f o u r d a y s a n d t h e n 100m m o l ㊃L -1N a C l f o r 16d a ys 3 讨论海雀稗作为具有极强耐盐性的盐生植物之一,在盐碱地改良与修复上有着巨大的应用潜力[21]㊂但是关于海雀稗耐逆性,特别是耐盐性的机制研究报道甚少㊂作为植物特有的蛋白激酶,C I P K s (C B L 相互作用蛋白激酶)家族在解码和转导胁迫产生的C a 2+信号中发挥着重要作用[26]㊂本文从盐生植物海雀稗中克隆得到一个C I P K s 家族的新成员 P v C I P K 9㊂该基因与水稻和拟南芥中的O s C I P K 9和A t C I P K 9同源关系较近㊂进一步分析发现P v C I P K 9在海雀稗根㊁茎㊁叶和小穗中均有表达,广泛的空间分布表明P v C I P K 9可能参与了多种生理响应过程,其中叶中表达量最高,这与A t C I P K 9主要在根中表达不同[27],这可能与海雀稗作为盐生植物独有的盐腺有关[28]㊂分析P v C I P K 9在盐胁迫下的表达水平,结果表明根系和叶片中P v C I P K 9的转录水平均随着盐胁迫的诱导而上调,与拟南芥A t C I P K 9和水稻O s -C I P K 9受盐胁迫诱导上调的结果一致[27,29]㊂不同基因的启动子区含有不同功能的顺式作用元件,植物响应环境胁迫与这些顺式作用元件有关[30]㊂进一步分析P v C I P K 9上游1500b p 左右的启动子元件,发现海雀稗P v C I P K 9的启动子区含有多种顺式作用元件,包括多种光反应响应元件㊁激素响应元件㊁逆境胁迫响应元件等,但并未发现仅对盐胁迫有响应的顺式作用元件,如G T -1㊂同一顺式作用元件也不只对同一种环境胁迫做出响应,如A B R E不仅对A B A 有响应,还响应干旱和盐,D R E 不只响应干旱,也对A B A ㊁低温㊁高盐有响应[31]㊂本文中海雀稗P v C I P K 9虽不含特定的盐响应元件,但可能会通过其他顺式作用元件对盐胁迫作出响应㊂一般认为C I P K 的亚细胞定位取决于C B L -C I P K 复合体中C B L 的亚细胞定位[32]㊂同一个C I P K 与不同的C B L 相互作用,有着不同的亚细胞定位,从而发挥不同的功能[33]㊂当C I P K 单独存在时,一般在细胞核㊁细胞质和质膜上广泛分布,C I P K在细胞内的广泛分布有利于其与不同的C B L 结合发挥不同的功能,与大多数C I P K 不同的是,P v C I P K 9的亚细胞定位仅定位于细胞核中,推测P v C I P K 9可能会与同样定位于核中的某一个或几个C B L s 特异性结合发挥特定的功能㊂为进一步探究P v C I P K 9的耐盐性功能,将P v C I P K 9过表达转化拟南芥,对获得转基因拟南芥植株进行盐胁迫下的耐受性分析㊂结果表明,盐胁迫下,与野生型WT 相比,过表达P v C I P K 9转基因拟南芥株系叶片更大,且数量较多,受到的伤害更小㊂进一步测定种子萌发率和相对生长量也发现转基因株系有着更高的萌发率和相对生长量,表明过6492Copyright ©博看网. All Rights Reserved.第10期宋志钢等:海雀稗P v C I P K9基因克隆及耐盐功能鉴定表达P v C I P K9能够提高转基因拟南芥对盐胁迫的耐受性,有研究表明白刺(N i t r a r i at a n g u t o r u m) N t C I P K9与植物耐盐性有关,过表达N t C I P K9拟南芥株系在盐胁迫下表现出更高的种子萌发率以及更长的根长[34]㊂此外,拟南芥A t C I P K9参与K+稳态,且A t C I P K9与V D A C3互作调节拟南芥的氧化应激反应[35],还有报道油菜(B r a s s i c a n a p u s)B n-C I P K9在介导葡萄糖转化和A B A信号转导之间的相互作用以调节油菜籽中的油代谢中发挥着重要作用[36],这些与P v C I P K9同源关系较近的基因报道的各种基因功能,为研究P v C I P K9除盐胁迫耐受性以外的功能提供了借鉴,说明P v C I P K9具有潜在的功能多样性,为后续探索P v C I P K9的其他功能提供了理论基础㊂逆境胁迫下,植物自身可以通过一系列复杂的抗氧化防御体系来减轻和修复因逆境产生的活性氧造成的伤害[37]㊂在本研究中对过表达P v C I P K9拟南芥进行盐胁迫处理,发现过表达P v C I P K9拟南芥的S O D,C A T酶活性显著高于野生型,这说明在盐胁迫条件下转基因拟南芥具有更强的活性氧清除能力,可以减轻盐胁迫对拟南芥的伤害㊂有研究表明番茄中过表达S O D基因能显著提高转基因番茄的耐盐性[38],在盐胁迫条件下,与盐敏感的黄瓜(C u c u m i s s a t i v u s)植株相比,耐盐黄瓜的抗氧化酶活性显著提高[39],说明植株的高耐盐性与较强的抗氧化酶活性的有关㊂综上,可推测提高抗氧化酶活性是P v C I P K9提高植物耐盐性的一种途径㊂盐超敏感(S a l t o v e r l y s e n s i t i v e,S O S)途径是植物中最先被发现的C B L-C I P K通路,参与植物对盐胁迫的响应,该通路的作用机制主要是通过排出细胞内多余的N a+,从而维持体内的N a+/K+平衡,提高耐盐性[40-41]㊂A t C I P K9已经被证实是低K+胁迫相关的调节因子[42],后续研究发现,A t C I P K9可靶向下游的V D A C3,A P2C1或H A K5等调节K+稳态[35,43-44],根据进化分析的结果,P v C I P K9与A t C I P K9同源性较高,作为同源基因,P v C I P K9可能具有同样的功能,即通过调节K+稳态来维持N a+/K+平衡,进而提高植物耐盐性,这为进一步探究P v C I P K9具体的分子调控机制提供了方向㊂4结论本研究通过前期海雀稗盐胁迫条件下转录组测序筛选出对盐胁迫有响应的P v C I P K9基因,对该基因进行了生物信息学和表达模式等分析,发现该基因编码稳定的亲水性蛋白,无信号肽结构,存在一个跨膜结构域;P v C I P K9定位于细胞核中;P v C I P K9在海雀稗的根㊁茎㊁叶和穗均有表达,在叶中的基因表达量最高;盐胁迫下P v C I P K9在根和叶中表达均上调㊂对转基因拟南芥进行盐胁迫处理,测定转基因拟南芥在盐胁迫条件下的种子萌发率㊁相对生长量㊁抗氧化酶酶活性等生理指标,结果表明转基因拟南芥的耐盐性明显优于野生型拟南芥,说明过表达P v C I P K9提高了拟南芥的耐盐性,这为揭示海雀稗耐盐机制及挖掘新的耐盐基因资源奠定了基础㊂参考文献[1] L U A N S,K U D L AJ,R O D R I G U E Z-C O N C E P C I O N M,e t a l.C a l m o d u l i n sa n dc a l c i n e u r i n B-l i k e p r o t e i n s[J].T h e P l a n tC e l l,2002,14(s u p p l1):S389-S400[2] K U D L AJ,B A T I S T I CO,H A S H I MO T O K.C a l c i u mS i g n a l s:T h e l e a dc u r r e n c y o f p l a n t i n f o r m a t i o n p r o c e s s i n g[J].T h e P l a n tC e l l,2012,22(3):541-563[3] D E F A L C O T A,B E N D E R K W,S N E D D E N W A.B r e a k i n gt h e c o d e:C a2+s e n s o r si n p l a n ts i g n a l l i n g[J].B i o c h e m i c a l J o u r n a l,2010,425(1):27-40[4] G O N G D,G U OY,S C HUMA K E RKS,e t a l.T h e S O S3f a m i-l y o f c a l c i u ms e n s o r s a n d S O S2f a m i l y o f p r o t e i nk i n a s e s i nA r-a b i d o p s i s[J].P l a n tP h y s i o l o g y,2004,134(3):919-926[5]HA S H I M O T O K,K U D L AJ.C a l c i u m d e c o d i n g m e c h a n i s m si n p l a n t s[J].B i o c h i m i e,2011,93(12):2054-2059[6] B A T I S T I CO,K U D L AJ.P l a n t c a l c i n e u r i nB-l i k e p r o t e i n s a n dt h e i r i n t e r a c t i n gp r o t e i nk i n a s e s[J].B i o c h i m i c ae tB i o p h y s i c aA c t a(B B A)-M o l e c u l a rC e l lR e s e a r c h,2009,1793(6):985-992[7] A L B R E C H TV.T h eN A Fd o m a i n d e f i n e s a n o v e l p r o t e i n-p r o-t e i n i n t e r a c t i o nm o d u l ec o n s e r v e d i nC a2+-r e g u l a t e dk i n a s e s[J].T h eE M B OJ o u r n a l,2001,20(5):1051-1063[8] O H T A M,G U O Y,H A L F T E R U,e ta l.A n o v e l d o m a i n i nt h e p r o t e i nk i n a s eS O S2m e d i a t e s i n t e r a c t i o nw i t ht h e p r o t e i n p h o s p h a t a s e2CA B I2[J].T h eN a t i o n a lA c a d e m y o fS c i e n c e s o f t h eU S A,2003,100(20):11771-11776[9] C H E N X,HU A N G Q,Z H A N G F,e t a l.Z m C I P K21,am a i z eC B L-i n t e r a c t i n g k i n a s e,e n h a n c e s s a l t s t r e s s t o l e r a n c e i n A r a-b i d o p s i s t h a l i a n a[J].I n t e r n a t i o n a l J o u r n a l o f M o l ec u l a rS c i-e n c e s,2014,15(8):14819-14834[10]S U NT,W A N G Y,W A N G M,e t a l.I d e n t i f i c a t i o n a n d c o m p r e h e n-s i v e a n a l y s e s o f t h e C B L a n d C I P K g e n e f a m i l i e s i nw h e a t(T r i t i c-u ma e s t i v u m L.)[J].B M CP l a n t B i o l o g y,2015,15(1):12870 [11]李慧,路依萍,汪小凯,等.C B L互作蛋白激酶G m C I P K10增强大豆耐盐性[J].作物学报,2023,49(5):1272-1281[12]HU A N G C,D I N GS,Z H A N G H,e t a l.C I P K7i s i n v o l v e d i nc o ld re s p o n s e b y i n t e r a c t i n g w i t hC B L1i n A r a b i d o p s i s t h a l i-a n a[J].P l a n t S c i e n c e,2011,181(1):57-64[13]K I M K N,L E EJ S,H A N H,e t a l.I s o l a t i o na n d c h a r a c t e r i z a t i o no f a n o v e l r i c e C a2+-r e g u l a t e d p r o t e i n k i n a s e g e n e i n v o l v e d i n r e-7492Copyright©博看网. All Rights Reserved.草地学报第31卷s p o n s e s t od i v e r s es i g n a l s i n c l u d i n g c o l d,l i g h t,c y t o k i n i n s,s u g a r sa n d s a l t s[J].P l a n tM o l B i o l,2003,52(6):1191-1202[14]D E L A T O R R E F,G U T I E R R E Z-B E L T R A N E,P A R E J A-J A I M EY,e t a l.T h e t o m a t oc a l c i u ms e n s o r c b l10a n d i t s i n-t e r a c t i n gp r o t e i nk i n a s ec i p k6d e f i n eas i g n a l i n gp a t h w a y i n p l a n t i m m u n i t y[J].T h eP l a n tC e l l,2013,25(7):2748-2764 [15]K U R U S U T,H AMA D AJ,N O K A J I MA H,e t a l.R e g u l a t i o no fm i c r o b e-a s s o c i a t e dm o l e c u l a r p a t t e r n-i n d u c e dh y p e r s e n s i t i v ec e l lde a t h,p h y t o a l e x i n p r o d u c t i o n,a n d d ef e n s eg e n e e x p r e s s i o nb yc a l c i n e u r i n B-l i k e p r o t e i n-i n t e r a c t i n gp r o t e i n k i n a s e s,O s-C I P K14/15,i n r i c e c u l t u r e d c e l l s[J].P l a n tP h y s i o l o g y,2010,153(2):678-692[16]R A OX,Z H A N GX,L IR,e t a l.Ac a l c i u ms e n s o r-i n t e r a c t i n g p r o-t e i nk i n a s e n e g a t i v e l y r e g u l a t e s s a l t s t r e s s t o l e r a n c e i n r i c e(O r y z a s a t i v a)[J].F u n c t i o n a l P l a n t B i o l o g y,2011,38(6):441 [17]L E E G,C A R R OW R N,D U N C A N R R.P h o t o s y n t h e t i cr e-s p o n s e s t o s a l i n i t y s t r e s s o f h a l o p h y t i c s e a s h o r e p a s p a l u me c o-t y p e s[J].P l a n t S c i e n c e,2004,166(6):1417-1425 [18]解新明,卢小良.海雀稗种质资源的优良特性及其利用价值[J].华南农业大学学报,2004(S2):64-67[19]宗俊勤,高艳芝,陈静波,等.淹水胁迫对4种暖季型草坪草光合特性的影响[J].热带作物学报,2021,42(1):130-139 [20]刘一明,程凤枝,王齐,等.四种暖季型草坪植物的盐胁迫反应及其耐盐阈值[J].草业学报,2009,18(3):192-199 [21]吴雪莉,郭振飞,陈申秒,等.海滨雀稗耐逆性研究进展[J].草地学报,2019,27(5):1117-1125[22]Z H A N G Y,S UJ,D U A NS,e t a l.Ah i g h l y e f f i c i e n t r i c e g r e e nt i s s u e p r o t o p l a s ts y s t e m f o rt r a n s i e n t g e n e e x p r e s s i o n a n d s t u d y i n g l i g h t/c h l o r o p l a s t-r e l a t e d p r o c e s s e s[J].P l a n t M e t h-o d s,2011,7(1):30[23]C H E NJ,G U OZ,F A N GJ,e t a l.P h y s i o l o g i c a l r e s p o n s e so f ac e n t i p ede g r a s sm u t a n t t oc h i l l i n g s t r e s s[J].A g r o n o m y J o u r-n a l,2013,105(6):1814-1820[24]Z HU OC,L I A N GL,Z H A O Y,e t a l.Ac o l d r e s p o n s i v e e t h y l-e n e r e s p o n s i v ef a c t o r f r o m M e d i c ag o f a l c a t a c o n f e r s c o l d t o l-e r a n c eb y u p-r e g u l a t i o n of p o l y a m i n et u r n o v e r,a n t i o x i d a n tp r o t e c t i o n,a n d p r o l i n ea c c u m u l a t i o n[J].P l a n t,C e l l&E n v i-r o n m e n t,2018,41(9):2021-2032[25]B R A D F O R D M M.Ar a p i d a n d s e n s i t i v em e t h o d f o r t h e q u a n-t i t a t i o no fm i c r o g r a m q u a n t i t i e s o f p r o t e i nu t i l i z i n g t h e p r i n c i-p l e o f p r o t e i n-d y eb i n d i n g[J].A n a l y t i c a lB i o c h e m i s t r y,1976, 1-2(72):248-254[26]T A N G RJ,WA N GC,L IK,e t a l.T h eC B L–C I P Kc a l c i u ms i g n a l i n g n e t w o r k:U n i f i e d p a r a d i g mf r o m20y e a r s o f d i s c o v e r-i e s[J].T r e n d s i nP l a n t S c i e n c e,2020,25(6):604-617[27]P A N D E YGK,C H E O N GY H,K I MBG,e t a l.C I P K9:a c a l c i u ms e n s o r-i n t e r a c t i n g p r o t e i nk i n a s e r e q u i r e d f o r l o w-p o t a s s i u mt o l e r-a n c e i nA r ab i d o p s i s[J].C e l l R e s e a rc h,2007,17(5):411-421[28]周三,韩军丽,赵可夫.泌盐盐生植物研究进展[J].应用与环境生物学报,2001,7(5):496-501[29]C H E N X,G UZ,F E N GL IU,e t a l.M o l e c u l a r a n a l y s i s o f r i c eC I P K s i n v o l v e d i nb o t hb i o t i c a n d a b i o t i c s t r e s s r e s p o n s e s[J].R i c eS c i e n c e,2011,18(1):1-9[30]贾会丽,王学敏,高涛,等.转M s L E A4-4基因拟南芥株系的耐盐性分析[J].草地学报,2020,28(3):597-605 [31]徐金龙,张文静,向凤宁.植物盐胁迫诱导启动子及其顺式作用元件研究进展[J].植物生理学报,2021,57(4):759-766[32]B A T I S T I C O,WA A D T R,S T E I N H O R S T L,e t a l.C B L-m e-d i a te d t a r g e t i n g o fC I P K sf a c i l i t a t e st h ed e c o d i ng o fc a l c i u ms i g n a l s e m a n a t i n g f r o md i s t i n c t c e l l u l a r s t o r e s[J].T h eP l a n t J o u r n a l,2010,61(2):211-222[33]WA A D TR,S C HM I D TL K,L O H S E M,e t a l.M u l t i c o l o rb i-m o l e c u l a r f l u o r e s c e n c ec o m p l e m e n t a t i o nr e v e a l ss i m u l t a n e o u sf o r m a t i o no fa l t e r n a t i v e C B L/C I P K c o m p l e x e s i n p l a n t a[J].T h eP l a n t J o u r n a l,2008,56(3):505-516[34]L U L,C H E N X,Z HU L,e t a l.N t C I P K9:a c a l c i n e u r i nB-l i k ep r o t e i n-i n t e r a c t i n gp r o t e i nk i n a s e f r o mt h eh a l o p h y t eN i t r a r i a t a n g u t o r u m,e n h a n c e sA r a b i d o p s i s s a l t t o l e r a n c e[J].F r o n t i e r si nP l a n t S c i e n c e,2020(11):11-12[35]K A NWA RP,S A N Y A LSK,MA H I WA LS,e t a l.C I P K9t a r-g e t sV D A C3a n dm o d u l a t e s o x i d a t i v e s t r e s s r e s p o n s e s i nA r a-b i d o p s i s[J].T h eP l a n t J o u r n a l,2022,(109):241-260[36]WA N G N,T A OB,MA I J,e t a l.K i n a s eC I P K9i n t e g r a t e s g l u-c o s e a nd a b s c i s i c a c i d s i g n a l i n g t o re g u l a t e s e e d o i lm e t a b o l i s mi n r a p e s e e d[J].P l a n t P h y s i o l o g y,2023,191(3):1836-1856[37]G A R CÍAG,C L E M E N T E-M O R E N O MJ,DÍA Z-V I V A N C O S P,e ta l.T h e a p o p l a s t i c a n ds y m p l a s t i ca n t i o x i d a n t s y s t e mi no n i o n:R e-s p o n s e t o l o n g-t e r ms a l t s t r e s s[J].A n t i o x i d a n t s,2020,9(1):67 [38]H E R NÁN D E Z-H E R NÁN D E Z H,J UÁR E Z-MA L D O N A D OA,B E N A V I D E S-M E N D O Z AA,e t a l.C h i t o s a n-P V Aa n d c o p-p e rn a n o p a r t i c l e si m p r o v e g r o w t ha n do v e r e x p r e s st h eS O Da n d J A g e n e s i nt o m a t o p l a n t su n d e r s a l t s t r e s s[J].A g r o n o-m y,2018,8(9):175[39]N A L I WA J S K I M,S K L O D OW S K A M.T h er e l a t i o n s h i p b e-t w e e nt h ea n t i o x i d a n ts y s t e m a n d p r o l i n e m e t a b o l i s mi nt h e l e a v e s o f c u c u m b e r p l a n t s a c c l i m a t e d t os a l t s t r e s s[J].C e l l s, 2021,10(3):609[40]Q I U Q S,G U O Y,D I E T R I C H M A,e ta l.R e g u l a t i o n o fS O S1,a p l a s m am e m b r a n eN a+/H+e x c h a n g e r i n A r a b i d o p-s i s t h a l i a n a,b y S O S2a n dS O S3[J].T h eN a t i o n a lA c a d e m y o f S c i e n c e s o f t h eU S A,2002,99(12):8436-8441[41]Z HUJ.R e g u l a t i o no f i o nh o m e o s t a s i su n d e r s a l t s t r e s s[J].C u r r e n tO p i n i o n i nP l a n tB i o l o g y,2003,6:441-445[42]L I U L,R E N H,C H E N L,e t a l.A p r o t e i nk i n a s e,c a l c i n e u r i nB-l i k e p r o t e i n-i n t e r a c t i n gp r o t e i nk i n a s e9,i n t e r a c t sw i t h c a l c i-u ms e n s o r c a l c i n e u r i nB-l i k e p r o t e i n3a n dr e g u l a t e s p o t a s s i u mh o m e o s t a s i su n d e rl o w-p o t a s s i u m s t r e s si n A r a b i d o p s i s[J].P l a n t P h y s i o l o g y,2013,161(1):266-277[43]L A R A A,RÓD E N A SR,A N D RÉSZ,e ta l.A r a b i d o p s i sK+t r a n s p o r t e r H A K5-m e d i a t e dh i g h-a f f i n i t y r o o tK+u p t a k e i s r e g u l a t e db yp r o t e i nk i n a s e sC I P K1a n dC I P K9[J].J o u r n a l o fE x p e r i m e n t a l B o t a n y,2020,71(16):5053-5060[44]S I N G H A,Y A D A V A K,K A U R K,e t a l.A p r o t e i n p h o s p h a t a s e2C,A P2C1,i n t e r a c t sw i t h a n dn e g a t i v e l y r e g u l a t e s t h e f u n c t i o no fC I P K9u n d e r p o t a s s i u m-d e f i c i e n tc o n d i t i o n si n A r a b i d o p s i s[J].J o u r n a l o f E x p e r i m e n t a l B o t a n y,2018,69(16):4003-4015(责任编辑刘婷婷)8492Copyright©博看网. All Rights Reserved.。
利用Δ15N_值评估不同硝态氮浓度下的桑树幼苗无机氮供需关系

而逐渐增加ꎬ然而ꎬ桑树幼苗的碳积累量在硝态氮浓度为 2.0 mmolL  ̄1 和 8.0 mmolL  ̄1 时无明显变化ꎮ ( 3)
桑树幼苗的硝态氮同化产物的稳定氮同位素分馏值在硝态氮浓度为 2.0 mmolL  ̄1 时达到最小ꎮ 综上所述ꎬ
concentration exceeded 2.0 mmol L ̄1 ꎬ more nitrate nitrogen supply ( 8.0 mmol L ̄1 ) did not lead to a significant
increase in the chlorophyll contentꎬ net photosynthetic rate and biomass. (2) Increasing the nitrate nitrogen supply could
硝态氮浓度为 2.0 mmolL  ̄1 时的无机氮供应量接近桑树幼苗的无机氮需求量ꎬ外部氮供应量与植株氮需求
量接近平衡意味着植物体内的碳氮代谢能够有效协调ꎬ进而实现了碳氮同化产物的同步增长ꎮ
关键词: 硝态氮ꎬ 桑树ꎬ 碳氮代谢ꎬ 稳定氮同位素分馏ꎬ 氮需求
中图分类号: Q945.1 文献标识码: A 文章编号: 1000 ̄3142( 2024) 03 ̄0576 ̄10
concentrations of 2.0 mmolL ̄1 and 8.0 mmolL ̄1 . (3) The stable nitrogen isotope fractionation values of the nitrate
nitrogen assimilates in the whole M. alba seedlings reached the minimum value at 2. 0 mmol L ̄1 . Thereforeꎬ the
小麦种质芽期和苗期的耐盐性鉴定评价_张巧凤

空、垫有 20 目筛网的塑料杯中,塑料杯置于悬浮的
泡沫板上,先在蒸馏水中培养 3 d,再分别在含不同 浓度 NaCl 的改良霍格兰营养液[16]中处理 5 d,每个
处理随机取 3 株测量苗高、根长,2 次重复。计算不
同盐浓度的相对生长量作为研究小麦苗期不同种质
对盐胁迫的反映指标:
相对苗高 = 处理芽长 /对照芽长;
供试种子数 × 100
发芽 期 相 对 盐 害 指 数 ( RGER) = ( 对 照 发 芽
率 - 处理发芽率) / 对照发芽率 × 100
小麦芽期耐盐级别参考《小麦种质资源描述规 范和数据标准》[14],分 5 级评价参试材料的耐盐性。
1. 3 苗期耐盐鉴定方法
根据芽期鉴定结果,随机选择相对盐害指数小
液,对照组每个培养皿加入 10 mL 去离子水,将其置
于温度 25 ± 1℃ 的恒温箱中,光、暗处理各 12 h,3 d
后调查种子发芽数,每隔 1 d 调查 1 次,至没有新种
子发芽为止,根 据 下 列 公 式 计 算 相 对 盐 害 指 数,并
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QTL underlying iron and zinc toxicity tolerances at seedling stage revealed by two sets of reciprocal introgression populations of rice (Oryza sativa L.)Huan Liu a,1,Aijaz Soomro b,1,Yajun Zhu c ,Xianjin Qiu a ,Kai Chen c ,Tianqing Zheng b ,Longwei Yang a ,Danying Xing a,⁎,Jianlong Xu b,c,d,⁎⁎aHubei Collaborative Innovation Center for Grain Industry,Yangtze University,Jingzhou 434025,Chinab Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,China cAgricultural Genomics Institute at Shenzhen,Chinese Academy of Agricultural Sciences,Shenzhen 518120,China dShenzhen Institute of Breeding for Innovation,Chinese Academy of Agricultural Sciences,Shenzhen 518120,ChinaA R T I C L E I N F OA B S T R A C TArticle history:Received 22February 2016Received in revised form 14May 2016Accepted 6June 2016Available online 14June 2016Iron and zinc are two trace elements that are essential for rice.But they are toxic at higher concentrations,leading to severe rice yield losses especially in acid soils and inland valleys.In this study,two reciprocal introgression line (IL)populations sharing the same parents were used with high-density SNP bin markers to identify QTL tolerant to iron and zinc toxicities.The results indicated that the japonica variety 02,428had stronger tolerance to iron and zinc toxicities than the indica variety Minghui 63.Nine and ten QTL contributing to iron and zinc toxicity tolerances,respectively,were identified in the two IL populations.The favorable alleles of most QTL came from 02,428.Among them,qFRRDW2,qZRRDW3,and qFRSDW11appeared to be independent of genetic background.The region C11S49–C11S60on chromosome 11harbored QTL affecting multiple iron and zinc toxicity tolerance-related traits,indicating partial genetic overlap between the two toxicity tolerances.Our results provide essential information and materials for developing excellent rice cultivars with iron and/or zinc tolerance by marker-assisted selection (MAS).©2016Crop Science Society of China and Institute of Crop Science,CAAS.Production andhosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(/licenses/by-nc-nd/4.0/).Keywords:RiceReciprocal introgression lines Iron tolerance Zinc toleranceQuantitative trait locus/loci (QTL)1.IntroductionRice is one of the main crops providing nutrition and trace elements to humans.In the face of the rapidly increasing world population,improving production efficiency is an important measure for increasing rice yield.However,many abiotic and biotic stresses limit crop yield capacity.For example,iron and zinc,acting as cofactors for manyT H E C R O P J O U R N A L 4(2016)280–289⁎Corresponding author.⁎⁎Corresponding author at:Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,China.E-mail addresses:xujlcaas@ (J.Xu)xingdy_2006@ (D.Xing)Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.1These authors contributed equally to this work./10.1016/j.cj.2016.05.0072214-5141/©2016Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/4.0/).A v a i l a b l e o n l i n e a t w w w.s c i e n c e d i r e c t.c o mScienceDirect.,enzymes[1],are two trace elements essential for humans, plants and animals,but are toxic to most plants and animals at higher concentrations[2–3].Ferrous iron(Fe2+) and zinc(Zn2+)toxicity harm rice production,especially in acidic soil in southeast Asia,West Africa,and Brazil[4–6]. In general,yield losses associated with iron toxicity commonly range from15%to30%,but complete crop failure can occur in response to severe toxicity at early growth stages[7].Besides iron toxicity,acidic soil is often associated with zinc toxicity[8].This problem further damages the health of rice plants,increasing rice yield loss[9].In fact,iron and zinc toxicities may occur in normal fields at low soil pH when harmful organic acids and hydrogen sulfide accumulate,a problem frequently found in the rice sowing and transplanting periods in China.Breeding rice varieties with iron and zinc toxicity tolerance is the most effective and economic means of minimizing yield loss resulting from iron and zinc toxicity stresses.Tolerances to iron and zinc toxicities in rice are genetically complex traits,and there is large genotypic variation in the primary rice gene pool.Previous studies screening many iron-tolerant genotypes[4,10–16]have suggested that environmental conditions,timing and level of iron stress,the screening system,and other factors play crucial roles in determining genotype responses to iron toxicity[16].For this reason, specialized varieties matching individual environments and varieties adapted to a wide range of iron toxicity environments should be bred.For rice zinc tolerance,few screening experi-ments have been performed.Asominori and Lemont are two relatively tolerant cultivars[9,15],and TY-167is a zinc-tolerant genotype[17].Genetic of tolerances to iron and zinc toxicities in rice appears to be quantitatively inherited.Many QTL for iron toxicity tolerance[7,10–11,12,15,16,18,19]and several QTL for zinc toxicity tolerance[9,15]have been identified using biparental populations or germplasm resources.Among them,no QTL has been fine-mapped except for tLBS5for iron tolerance on chromosome1[20].Many iron and zinc transporter proteins in rice mediating metal ion uptake, distribution and homeostasis have been cloned,and some play important roles in tolerance to iron or zinc toxicity.For instance,OZT1confers rice tolerance to Zn and Cd ion stress [21],and OsFRO1enhances tolerance to Fe toxicity of rice in the vegetative stage[22].However,their value for breeding is uncertain.Advanced-backcross QTL analysis is a method combining QTL analysis with cultivar development[23].Following this strategy,our research groups have reported several success-ful applications of a large-scale backcross(BC)breeding strategy to improve abiotic stress tolerance in rice[24–27], and to identify QTL and mine favorable alleles for complex traits[28–30].In the present study,QTL tolerances to iron and zinc toxicities were identified using two sets of reciprocal introgression lines(ILs)derived from Minghui63×02,428 and high-density SNP bin markers.The QTL and the elite lines with iron tolerance and/or zinc tolerance will provide essential information and materials for developing new rice cultivars with iron and/or zinc tolerance by marker-assisted selection(MAS).2.Materials and methods2.1.Development of two sets of ILs populationMinghui63(MH63),the male parent of the widely adapted hybrid indica variety Shanyou63,whose distribution covers more than21°of longitude and20°of latitude in China[31],was crossed with02,428,a typical japonica with tolerance to low CO2 concentration stress selected from mutant progenies derived from a cross between two landraces,Pang-Xie-Gu and Ji-Bang-Dao[32].The F1plants were simultaneously backcrossed to the two parents to develop two BC1F1populations,each of around 80plants.The BC1F1plants were then used as male parents in backcrosses with the corresponding parents to produce two BC2F1populations.The BC progenies were selfed successively for seven generations with no selection from BC2F1to BC2F8. Ultimately,two sets of reciprocal ILs,consisting of198BC2F8 introgression lines(ILs)in the02,428background(designated as 02,428-ILs)and226BC2F8ILs in the MH63background (MH63-ILs),were developed after removal of lines with heading dates too late for QTL detection.In addition,262F8recombinant inbred lines(RILs),derived from the same parents,were developed by single-seed descent from the F2population and used to construct a genetic map.2.2.Phenotyping iron and zinc toxicity tolerancesEvaluations of iron and zinc toxicity tolerances at the seedling stage were performed in turn in the greenhouse in Agricul-tural College of Yangtze University in year2014.The method and workflow described by Zhang et al.[15]were applied with slight changes.Plump seeds of each IL and the parents were selected and placed in an oven at50°C for3days to break dormancy.Seeds were sterilized with1%sodium hypochlorite solution.After washing twice with distilled water,all seeds were placed into an incubator at37°C for24h.Germinating seeds were selected and placed in holes in a thin Styrofoam board(10holes in one row were taken as a replication for one line)with a nylon net bottom,which floated on water in a plastic box.Each line had six replications and each replication had10holes with two germinating seeds per hole.After7days, one seedling per hole was kept so that all seedlings of a line would experience similar growth conditions.Two replicates selected randomly were then defined as controls and trans-ferred to standard Yoshida's culture solution[33],two replicates were transferred to the same solution supplemented with 300mg L−1Fe2+(added as FeSO4·7H2O),and the remaining two replicates were transferred to the same solution supple-mented with200mg L−1Zn2+(added as ZnSO4).The tempera-ture in the greenhouse was set to30°C/25°C(day/night)and the relative humidity was maintained at50–70%.The solution in plastic boxes was changed every5days and the pH was maintained at4.5.When differences between controls and treatments were clearly observed(about15days after treat-ment),the root dry weight(RDW)and shoot dry weight(SDW)of treatment and control plants were measured.The derived trait, total dry weight(TDW),was calculated as the sum of RDW and SDW.The indexes of toxicity tolerance,relative root dry weight (RRDW),relative shoot dry weight(RSDW)and relative total dry281T H E C R O P J O U R N A L4(2016)280–289weight(RTDW)were calculated according to the following formula:Relative value%ðÞ¼trait value in treatmentðÞ=trait value in controlðÞÂ100: 2.3.Genotyping and map constructionIn comparison with reciprocal ILs,which are skewed towards one parent or the other in genome due to successive backcrossing with the recurrent parent,RILs,which are a random mixture of MH63and02,428backgrounds,are more suitable for map construction.Genomic DNA of MH63,02,428,the two sets of ILs, and the RILs was isolated using a DNeasy mini Kit(Qiagen) and the genotypes of the RILs were determined based on SNPs generated by whole-genome sequencing with the Illumina Genome Analyzer IIx as described previously[34].MH63and02,428were subjected to whole-genome resequencing and a total of5,336,108,154and5,562,905,674 nucleotides of data were obtained.Alignment was performed against the MSU6.1assembly of the Nipponbare sequence as the reference genome.In total,5,062,106,567and5,278,080,725 nucleotides of consistent sequence were obtained for MH63 and02,428,covering respectively96.57%and94.03%of the whole genome.Single-nucleotide polymorphisms(SNPs)be-tween these two sequences were ing evidence from more than3,4,or5reads,respectively48,498,42,124, and36,410SNPs were found between MH63and02,428.A total of384SNPs evenly distributed along the genome were chosen for the design of an Illumina SNP chip[35]for genotyping the two sets of ILs and RILs using their parents and F1as control. The framework map was constructed based on genotypic data of the RIL population using QTL IciMapping[36].Further map filling was performed by restriction association site DNA(RAD) sequencing[37]for the two sets of ILs as well as the two parents. Finally,58,936qualified SNPs were identified and integrated into the framework map,with an average distance of77kb between adjacent SNPs.A bin was defined as coverage of series of SNPs with same genotype along a chromosome,resulting in a total of 4568chromosome bins for12chromosomes.2.4.Data analysisThe phenotypic value of each line in a test environment was taken as the average of two replicates.One-way ANOVA in SAS9.3(SAS Institute Inc.Cary,NC)was applied to analyze the variances in target traits in the two populations.Before phenotypic data analysis and QTL mapping,the extreme values for each trait were removed from the dataset.QTL mapping was conducted using the inclusive interval mapping(ICIM)function in the IciMapping4.0software[38]. In this function,marker selection is first conducted via stepwise regression considering all SNP marker information simulta-neously.Then the phenotypic values are adjusted by all markers retained in the regression equation,omitting the two markers flanking the current mapping interval.The adjusted phenotypic values are then used for one-dimensional scanning.Based on experience,the LOD threshold was set at2.5for claiming a putative QTL.3.Results3.1.Linkage map and characteristics of introgression in the reciprocal ILsThe linkage map was constructed using the RIL population derived from MH63×02,428.The map spanned1496.3cM with a mean distance of0.33cM between adjacent markers.The inheritance of parental segments across the genomes of ILs was characterized using high-density informative bin markers.The ILs showed marked variations in introgressed segments from donor parents,and almost all ILs contained more recurrent parent genome than donor parent genome.On average,the introgressed donor–genome proportion in02,428-ILs was21.9%, with a range from1.64%to88.07%,whereas the introgressed donor–genome proportion in MH63-ILs was7.98%,ranging from 0.02%to87.06%.The reciprocal sets of ILs were well separated, without overlap,with respect to the frequency distribution of the MH63genome(Fig.1).3.2.Performance of toxicity tolerance of the parents and their ILs under iron and zinc stress conditionsIron and zinc stress tests were administered to same popula-tions and parents in the greenhouse.Under normal conditions, the RDW,SDW,and TDW of MH63were all higher than those of 02,428in both tests,and differences in RDW and TDW between parents were highly significant(P≤0.01)and significant (P≤0.05),respectively(Table1).These results implied that MH63showed greater growth than02,428at seedling stage under normal cultivation conditions.Except that MH63showed markedly higher RDW under iron stress and SDW under zinc stress,the two parents showed no significant differences in TDW,RDW,and SDW under the two stress conditions. However,the RRDW and RTDW of02,428were significantly higher than those of MH63under both conditions and the RSDW of02,428was significantly higher than that of MH63under the iron stress condition(Table1,Fig.2),suggesting that02,428had significantly stronger tolerance to iron and zinc toxicities than MH63.Transgressive segregations were observed for RRDW, RSDW,and RTDW of iron and zinc stresses tonormalFig.1–The frequency distribution of MH63genome in two sets of ILs derived from a cross between MH63and02,428.282T H E C R O P J O U R N A L4(2016)280–289conditions in the two IL populations (Fig.3).MH63-ILs had average RRDW,RSDW,and RTDW of 71.67%,67.21%,and 70.24%with ranges of 29.35–94.97%,15.66–92.16%,and 18.10–91.58%,respectively,under iron stress,and average RRDW,RSDW and RTDW of 54.83%,59.66%,and 58.88%with ranges of 19.32–81.40%,24.07–86.19%,and 23.49–85.86%,re-spectively,under zinc stress (Table 2).Similarly,02,428-ILs had average RRDW,RSDW,and RTDW of 75.12%,72.86%,and 74.07%with ranges of 36.05–95.00%,23.09–94.16%,and 25.56–94.81%,respectively,under iron stress,and average RRDW,RSDW and RTDW of 74.10%,68.66%,and 69.65%with ranges of 24.74–94.62%,34.82–94.63%,and 38.24–93.76%,re-spectively,under zinc stress (Table 2).As shown in Fig.2,variations of relative RDW,SDW,and TDW in the two sets of ILs all showed normal distribution or skewed but continuous distribution under the two stress conditions,indicating that these two sets of IL populations had abundant diversity in iron and zinc toxicity tolerances and suggesting that some lines carried QTL for iron and/or zinc toxicity tolerances,in view of their tolerant phenotypes.Table 1–Performance of iron and zinc toxicity tolerance-related traits between two parents under iron and zinc stress conditions.ConditionTrait 1)ParentMean ±SD 2)ConditionTraitParentMean ±SDControl (g)RDW 024280.027±0.005A Control (g)RDW 024280.022±0.002A MH630.039±0.039B MH630.032±0.008B SDW 024280.152±0.028a SDW 024280.152±0.036a MH630.176±0.031a MH630.179±0.026a TDW024280.171±0.028a TDW024280.182±0.029a MH630.212±0.037b MH630.218±0.031b Iron stress (g)RDW 024280.021±0.003A Zinc stress (g)RDW 024280.018±0.004a MH630.027±0.004B MH630.016±0.003a SDW 024280.111±0.024a SDW 024280.089±0.019A MH630.117±0.028a MH630.108±0.019B TDW024280.136±0.024a TDW024280.113±0.017a MH630.148±0.030a MH630.124±0.019a Relative ratio (%)RRDW 0242885.26±9.00A Relative ratio (%)RRDW 0242872.11±4.05A MH6370.83±3.74B MH6340.42±3.94B RSDW 0242870.88±5.87A RSDW 0242856.23±4.01a MH6354.35±7.35B MH6353.92±6.41a RTDW0242872.99±5.37A RTDW0242859.84±4.47a MH6361.84±5.41BMH6350.60±5.60b1RDW,root dry weight;SDW,shoot dry weight;TDW,total dry weight;RRDW,relative root dry weight;RSDW,relative shoot dry weight;RTDW,relative total dry weight.2Significant differences at P ≤0.01and 0.05for upper-and lowercase letters,respectively,between 02,428and MH63based on t-test.Fig.2–Performance of the two parents at 15days after treatment with iron and zinc stresses.283T H E C R O P J O U R N A L 4(2016)280–2893.3.Detection of QTL for iron toxicity toleranceFour and five QTL underlying RRDW and RSDW were identified under iron stress in the MH63-IL and 02,428-IL populations,respectively (Table 3,Fig.4).Specifically,three QTL (qFRRDW1–1,qFRRDW1–2,and qFRRDW2)for RRDW and one QTL (qFRSDW11)for RSDW were identified on chromo-somes 1,2,and 11in MH63-ILs with favorable alleles all from the donor parent,02,428.Four QTL (qFRRDW2,qFRRDW3,qFRRDW9–1,and qFRRDW9–2)for RRDW and one QTL (qFRSDW11)for RSDW were identified on chromosomes 2,3,9,and 11in 02,428-ILs.The favorable alleles at qFRRDW2and qFRSDW11were from 02,428,whereas those at the other three QTL were from MH63.Among the above QTL,two QTL,qFRRDW2on chromo-some 2and qFRSDW11on chromosome 11were simulta-neously detected in both genetic backgrounds,suggesting that expressions of both QTL are independent of genetic background.The average phenotypic variances explained (PVE)of qFRRDW-2and qFRSDW-11were 12.20%and 11.66%,respectively,indicating that they were major QTL for toler-ance to iron toxicity.3.4.Detection of QTL for zinc toxicity toleranceFour and six QTL for the three traits,RRDW,RSDW,and RTDW,were identified under zinc stress in MH63-and 02,428-IL populations,respectively (Table 4,Fig.4).Two QTL (qZRRDW3and qZRRDW11)for RRDW,one (qZRSDW2)for RSDW and one (qZRTDW11)for RTDW were mapped on chromosomes 2,3,and 11in MH63-ILs.The 02,428alleles at all QTL increased trait values.The qZRRDW11for RRDW was located in the region overlapping with that of qZRTDW11for RTDW,suggesting the two QTL may be allelic.Two QTL (qZRRDW3and qZRRDW7)for RRDW,two (qZRSDW11–1and qZRSDW11–2)for RSDW and two (qZRTDW3and qZRTDW11)for RTDW were identified on chromosomes 3,7,and 11in 02,428-ILs.The 02,428alleles at all QTL except qZRTDW3increased trait values.The qZRSDW11–2for RSDW may be allelic to the qZRTDW11forFig.3–Frequency distributions of relative RDW,SDW,and TDW of iron and zinc stresses to normal conditions in two sets of ILs derived from MH63×02,428.Arrows point to the averages of the recurrent parents.Table 2–Performance for iron and zinc toxicity tolerance-related traits in two sets of ILs under iron and zinc stress conditions.Condition TraitMH63-ILs 02,428-ILs Range (%)Mean (%)Range (%)Mean (%)Iron stressRRDW 29.35–94.9771.6736.05–95.0075.12RSDW 15.66–92.1667.2123.09–94.1672.86RTDW 18.10–91.5870.2425.56–94.8174.07Zinc stressRRDW 19.32–81.4054.8324.74–94.6274.10RSDW 24.07–86.1959.6634.82–94.6368.66RTDW23.49–85.8658.8838.24–93.7669.65RDW,root dry weight;SDW,shoot dry weight;TDW,total dry weight;RRDW,relative root dry weight;RSDW,relative shoot dry weight;RTDW,relative total dry weight.284T H E C R O P J O U R N A L 4(2016)280–289RTDW,in view of their location in the adjacent regions sharing the same marker C11S115.Among the above QTL,qZRRDW3for RRDW was simulta-neously detected on chromosome3in both backgrounds, suggesting that expression of the QTL is independent of genetic background.3.5.Genetic relationship between iron and zinc toxicity tolerancesThe QTL mapping results(Tables3and4;Fig.4)indicated that qFRSDW11for RSDW was simultaneously detected under both iron and zinc stress conditions in02,428-ILs,suggesting a genetic overlap between the two stress tolerances.Addition-ally,the region of C11S49–C11S60on chromosome11har-bored qFRSDW11,qZRSDW11,qZRRDW11,and qZRTDW11 affecting the iron and zinc toxicity tolerance-related traits RSDW,RRDW,and RTDW and detected in both backgrounds, hinting that the region contains genetically overlapping loci for iron and zinc toxicity tolerances.4.Discussion4.1.Detection of QTL for iron and zinc toxicity tolerancesUsing RRDW,RSDW,and their derived trait RTDW as indexes of iron and zinc toxicity tolerance as recommended by Wu et al.[16],nine and ten QTL contributing to iron and zinc toxicity tolerances,respectively,were identified in the two sets of reciprocal IL populations in this study(Tables2and3). Comparison of QTL identified in this study with previously reported iron toxicity tolerance QTL on the japonica Kato GRAMENE annotation sequence map2009[39],revealed that some were located in the same regions as QTL previously reported,or in adjacent regions.For instance,qFRRDW1–1with flanking markers C1S110and C1S124on chromosome1,which affected RRDW in MH63-ILs,was mapped in the same region as a QTL for RRDW under iron stress[11],and partially overlapped with QRdw1affecting root dry weight under iron and zinc stresses[15].qFRRDW2,located in the region C2S139–C2S143on chromosome2,which affected RRDW under iron stress in both MH63-and02,428-ILs,was mapped in a region adjacent to qRRL2–2for relative root length under iron stress[40].QTL regions for the iron and zinc toxicity tolerances mentioned above that were identified in different mapping populations and diverse environments could be beneficial for MAS breeding of iron and zinc toxicity-tolerant cultivars.It is noteworthy that QTL in the region C11S55–C11S59on chromosome11that affected multiple iron and zinc toxicity tolerance-related traits in both MH63-and02,428-ILs,was an important QTL with a large additive effect and genetic background independence.It merits confirmation in other populations and fine-mapping for map-based cloning.4.2.Effect of genetic background on detection of QTL for iron and zinc toxicity tolerancesIn this study,the reciprocal ILs were skewed towards one parent or the other in genome due to successive backcrossing with the recurrent parent and showed relatively uniform genetic background,thus ensuring that QTL mapping of stress tolerance was not strongly affected by genetic“noise”from cosegregating,non-target traits such as heading date and plant size.Accordingly,background effect on QTL detection can be revealed by comparison of mapping results from the two reciprocal IL populations.Of the19QTL affecting iron or zinc toxicity tolerance identified in the reciprocal back-grounds,only two(10.5%)were simultaneously identified in both backgrounds,clearly suggesting that most QTL detected in one background were not identified in another,so that there were genetic background effects on QTL detection for iron and zinc toxicity tolerance.This finding suggests that special care should be taken when QTL mapping informationTable3–QTL for iron toxicity tolerance identified in MH63-IL and02,428-IL populations.Population Trait1)QTL Chr.Marker/physical interval(bp)LOD A2)PVE(%)MH63-ILs RRDW qFRRDW1-11C1S110–C1S12410514742–113899912.520.04829.00qFRRDW1-21C1S130–C1S14211788361–123874542.510.04979.24qFRRDW22C2S139–C2S14315875115–162022062.570.14988.68RSDW qFRSDW1111C11S55–C11S594342500–47883633.070.081410.9502428-ILs RRDW qFRRDW22C2S139–C2S14315875115–162022063.090.074315.72qFRRDW33C3S256–C3S26016186851–165240312.53–0.050310.41qFRRDW9-19C9S119–C9S1249104463–93126532.96–0.053514.75qFRRDW9-29C9S185–C9S19013496238–137887973.09–0.056615.02RSDW qFRSDW1111C11S55–C11S604342500–48214013.370.086412.361RRDW,relative root dry weight;RSDW,relative shoot dry weight.2Additive effect resulting from the substitution of MH63alleles by02428alleles.285T H E C R O P J O U R N A L4(2016)280–289286T H E C R O P J O U R N A L4(2016)280–289is applied to breeding for iron and zinc toxicity tolerance using MAS,as genetic backgrounds may differ greatly between mapping and breeding populations.It is essential that QTL mapping be combined with MAS-based breeding in the same population,a practice that has been strongly recommended for complex quantitative traits [23,26].4.3.Genetic overlap between iron and zinc toxicityGenetic overlap has been previously found in various fields,such as human disease [41]and plant stress tolerance [29,42–43].Some chromosome regions harbor QTL for toler-ance to more than one metal ion stress [9,18,44–45].In a previous study in our laboratory,Zhang et al.[15]detected two zinc toxicity tolerance-related QTL,QSdw2a and QSdw5,which were mapped together with a iron toxicity tolerance QTL.In the present study,a 777kb region flanked by C11S49–C11S60on chromosome 11contained one iron toxicity tolerance QTL (qFRSDW11)and three zinc toxicity tolerance QTL (qZRRDW11,qZRTDW11,and qZRSDW11–1.qZRRDW3)associated with RRDW was mapped together with two QTL for tolerance to iron toxicity in a previous study [10,46].These results show that there is at least partial genetic overlap between iron and zinc stress tolerances.Recently,functional and comparative genomic studies have revealed many multifunctional metal transporters.For instance,OZT1confers plant tolerance to Zn and Cd ions [21],and OsHMA3not only reduces the toxicity of Ca 2+to rice seedling but also maintains Zn 2+balance in the rice stem [47–48].These reports provide additional evidence of genetic overlap among different metal toxicity stresses.Themolecular mechanisms underlying different stress tolerances await deeper investigation.4.4.Potential application in breeding of iron and zinc toxicity tolerancesDuring long domestication and artificial selection,some favorable alleles have been intentionally or inadvertently introgressed into modern varieties from wild rice or landrace [49].02,428,which was selected from a cross between two landraces,showed tolerance not only to low CO 2concentra-tion stress [32]but also to iron and zinc toxicities,as demonstrated in this study.Two QTL (qFRRDW2and qFRSDW11)for tolerance to iron toxicity and two QTL (qZRRDW3and qZRSDW11)contributing to zinc toxicity toler-ance were simultaneously identified in the two genetic backgrounds,and their favorable alleles all came from 02,428.This finding shows that favorable genes for iron and zinc toxicity tolerance “hidden ”in 02,428could be used by introgression and further pyramiding in elite modern cultivar backgrounds using molecular marker technologies.Acidic soils with iron toxicity are always associated with zinc toxicity [8].Thus,genetically overlapping loci provide a strategy for development of a cultivar tolerant to both stress toxicities that can not only simplify the process of MAS and reduce its cost but also improve the efficiency of development of a stress-tolerant variety.In this respect,the unique QTL,qFRSDW11,which affected iron and zinc toxicity tolerances in MH63-and 02,428-ILs,could be applied in breeding excellent rice varieties with tolerances to iron and zinc toxicities.Table 4–QTL for zinc toxicity tolerance identified in MH63-IL and 02,428-IL populations.PopulationTrait 1)QTLChr.Marker interval (bp)LODA 2)PVE (%)MH63-ILsRRDWqZRRDW33C3S66–C3S693873340–4079319 3.08530.0451 5.31qZRRDW1111C11S55–C11S594342500–4788363 3.36960.086412.36RSDW qZRSDW22C2S169–C2S177********–19486553 3.15840.05858.06RTDW qZRTDW1111C11S49–C11S604043766–4821401 2.60000.0756 6.9702428-ILsRRDWqZRRDW33C3S66–C3S693873340–4079319 2.86340.0451 6.05qZRRDW77C7S28–C7S302677013–2856141 2.56970.05097.26RSDWqZRSDW11-111C11S49–C11S604043766–4821401 2.86480.05238.01qZRSDW11-211C11S115–C11S1258925976–9573028 2.7870.05187.86RTDWqZRTDW33C3S70–C3S734139255–4251555 2.900–0.05317.43qZRTDW1111C11S115–C11S1278925976–95730284.6000.063411.791RRDW,relative root dry weight;RSDW,relative shoot dry weight;RTDW,relative total dry weight.2Additive effect resulting from the substitution of MH63alleles by 02,428alleles.Fig.4–Distribution of QTL affecting iron and zinc toxicity tolerances identified in MH63-and 02,428-IL populations on a linkage map constructed using 265framework SNP markers based on RILs derived from 02,428×MH63.287T H E C R O P J O U R N A L 4(2016)280–289。