自动控制原理试题与答案解析
自动控制原理习题及解答

对于本例,系统的稳态误差为
本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以
系统的稳态误差为
解毕。
例3-21控制系统的结构图如图3-37所示。假设输入信号为r(t)=at( 为任意常数)。
解劳斯表为
1 18
8 16
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。
例3-17已知系统特征方程为
试判断系统稳定性。
解本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
(3)写中间变量关系式
式中,α为空气阻力系数 为运动线速度。
(4)消中间变量得运动方程式
(2-1)
此方程为二阶非线性齐次方程。
(5)线性化
由前可知,在=0的附近,非线性函数sin≈,故代入式(2-1)可得线性化方程为
例2-3已知机械旋转系统如图2-3所示,试列出系统运动方程。
图2-3机械旋转系统
解:(1)设输入量作用力矩Mf,输出为旋转角速度。
运动方程可直接用复阻抗写出:
整理成因果关系:
图2-15电气系统结构图
画结构图如图2-15所示:
求传递函数为:
对上述两个系统传递函数,结构图进行比较后可以看出。两个系统是相似的。机一电系统之间相似量的对应关系见表2-1。
表2-1相似量
机械系统
xi
x0
自动控制原理习题及解答

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式 (4) 消中间变量得 (5) 化标准形 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程解:(1)设输入外作用力为零,输出为摆角? ,摆球质量为m 。
(2)由牛顿定律写原始方程。
其中,l 为摆长,l ? 为运动弧长,h 为空气阻力。
(3)写中间变量关系式 式中,α为空气阻力系数dtd lθ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在? =0的附近,非线性函数sin ? ≈? ,故代入式(2-1)可得线性化方程为例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度? 。
(2)列写运动方程式 式中, f ?为阻尼力矩,其大小与转速成正比。
(3)整理成标准形为 此为一阶线性微分方程,若输出变量改为?,则由于代入方程得二阶线性微分方程式例2-4 设有一个倒立摆安装在马达传动车上。
如图2-4所示。
图2-2 单摆运动图2-3 机械旋转系统倒立摆是不稳定的,如果没有适当的控制力作用在它上面,它将随时可能向任何方向倾倒,这里只考虑二维问题,即认为倒立摆只在图2-65所示平面内运动。
控制力u 作用于小车上。
自动控制原理试题和答案解析

一、 单项选择题〔每小题1分,共20分1. 系统和输入已知,求输出并对动态特性进行研究,称为〔 CA.系统综合B.系统辨识C.系统分析D.系统设计2. 惯性环节和积分环节的频率特性在〔 A 上相等。
A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为〔 CA.比较元件B.给定元件C.反馈元件D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为〔 AA.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个〔 BA.比例环节B.微分环节C.积分环节D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为〔 C A.1 B.2 C.5 D.107. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是〔 B A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统8. 若保持二阶系统的ζ不变,提高ωn ,则可以〔 BA.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为〔 A A.45°B.-45°C.90°D.-90°10.最小相位系统的开环增益越大,其〔 DA.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 〔 AA.稳定B.临界稳定C.不稳定D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s k s G ,当k =〔 C 时,闭环系统临界稳定。
A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有〔 CA.0B.1C.2D.314.单位反馈系统开环传递函数为()ss s s G ++=652,当输入为单位阶跃时,则其位置误差为〔 CA.2B.0.2C.0.5D.0.0515.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种〔 D A.反馈校正B.相位超前校正C.相位滞后—超前校正D.相位滞后校正16.稳态误差e ss 与误差信号E <s >的函数关系为〔 BA.)(lim 0s E e s ss →=B.)(lim 0s sE e s ss →= C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→= 17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是〔 AA.减小增益B.超前校正C.滞后校正D.滞后-超前18.相位超前校正装置的奈氏曲线为〔 BA.圆B.上半圆C.下半圆D.45°弧线19.开环传递函数为G <s >H <s >=)3(3+s s K ,则实轴上的根轨迹为〔 C A.<-3,∞> B.<0,∞> C.<-∞,-3> D.<-3,0>20.在直流电动机调速系统中,霍尔传感器是用作〔 B 反馈的传感器。
自动控制原理典型习题含答案

自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以: 32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。
(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。
三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值解:(1)求出系统的闭环传递函数为:因此有:(2) %44%100e %2-1-=⨯=ζζπσ(3)为了使σ%=16%,由式可得5.0=ζ,当T 不变时,有:四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。
2.求使系统稳定的K 值范围,及临界状态下的振荡频率。
解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -=②渐进线1条π ③入射角同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入222K K-0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω五.(20分)某最小相角系统的开环对数幅频特性如下图所示。
要求(1) 写出系统开环传递函数;(2) 利用相角裕度判断系统的稳定性;(3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
解(1)由题图可以写出系统开环传递函数如下:(2)系统的开环相频特性为截止频率 1101.0=⨯=c ω相角裕度:︒=+︒=85.2)(180c ωϕγ故系统稳定。
(3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数其截止频率 10101==c c ωω而相角裕度 ︒=+︒=85.2)(18011c ωϕγγ=故系统稳定性不变。
自动控制原理试题及答案

自动控制原理试题及答案一、单项选择题(每题2分,共20分)1. 自动控制系统中,开环系统与闭环系统的主要区别在于()。
A. 是否有反馈B. 控制器的类型C. 系统是否稳定D. 系统的响应速度答案:A2. 在控制系统中,若系统输出与期望输出之间存在偏差,则该系统()。
A. 是闭环系统B. 是开环系统C. 没有反馈D. 是线性系统答案:B3. 下列哪个是控制系统的稳定性条件?()A. 所有闭环极点都位于复平面的左半部分B. 所有开环极点都位于复平面的左半部分C. 所有闭环极点都位于复平面的右半部分D. 所有开环极点都位于复平面的右半部分答案:A4. PID控制器中的“P”代表()。
A. 比例B. 积分C. 微分D. 前馈答案:A5. 在控制系统中,超调量通常用来衡量()。
A. 系统的稳定性B. 系统的快速性C. 系统的准确性D. 系统的鲁棒性答案:C6. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则闭环传递函数T(s)是()。
A. G(s)H(s)B. G(s)H(s)/[1+G(s)H(s)]C. 1/[1+G(s)H(s)]D. 1/G(s)H(s)答案:B7. 根轨迹法是一种用于()的方法。
A. 系统稳定性分析B. 系统性能分析C. 系统设计D. 系统故障诊断答案:B8. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则T(s)的零点是()。
A. G(s)的零点B. H(s)的零点C. G(s)和H(s)的零点D. G(s)和H(s)的极点答案:A9. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则T(s)的极点是()。
A. G(s)的零点B. H(s)的零点C. 1+G(s)H(s)的零点D. G(s)和H(s)的极点答案:C10. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则系统的稳态误差与()有关。
自动控制原理试卷有参考答案

自动控制原理试卷有参考答案The document was finally revised on 2021一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。
2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。
3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率=n ω ,阻尼比=ξ , 该系统的特征方程为 2220s s ++= ,该系统的单位阶跃响应曲线为 衰减振荡 。
5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为1050.20.5s s s s+++。
6、根轨迹起始于 开环极点 ,终止于 开环零点 。
7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 (1)(1)K s s Ts τ++。
1、在水箱水温控制系统中,受控对象为水箱,被控量为 水温 。
2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统 ;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统 ;含有测速发电机的电动机速度控制系统,属于 闭环控制系统 。
3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 稳定 。
判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用 奈奎斯特判据。
4、传递函数是指在 零 初始条件下、线性定常控制系统的 输出拉氏变换 与 输入拉氏变换 之比。
5、设系统的开环传递函数为2(1)(1)K s s Ts τ++ 相频特性为arctan 180arctan T τωω--(或:2180arctan 1T T τωωτω---+) 。
(完整)自动控制原理复习题20套答案

自动控制原理试卷1答案一.填空 1. 微分方程、传递函数、频率特性、结构图。
2. 闭环极点都位于S 平面左侧;系统的特性方程的根都在Z 平面上以原点为圆心的单位圆内.3. 5.02+S ;0;8。
4. 4,Ⅱ;62.5.5. 110100+S ;10。
6. P-I;利用G(s )的负斜率使ωC 减小,改善静态性能。
7. 将连续信号变为离散信号;0。
二.(14分) 解:(1)(2)C (Z)=)()(1)()(1232321Z H Z H G G Z G G Z RG •+•三.(20分)解:(1)F (s)=[]T s st f 111)(+-=(2)F (s )=525125151)5(122++-=+s s ss s(3)G 1(s )=s s s s s s s s s s 321030)2(10)2(3101)2(102+=++=+⨯++G 2(s )=ss s a s )32(10)(2+⨯+sa s s a s s s s a s a s s R s C 1010321010)32(10)(10)()()(232++++=++⨯+⨯+=∴ a s s s s A 101032)(23+++=∴ 要使系统稳定,则必须满足{{032010101032><>>⨯⇒a a a a320<<∴a (两内项系数乘积>两外项系数乘积)521634432125152125143321521251243213211352126346321251132122111)1()()(1001)()(G G G G G G G G G G G G G G G G G G G G G G G G s R s C G G G G G G G G P G G G P L G G G L G G G G G G G G G G L L L L P P s R s C +-+++++++=∴+++=∆==∆==∑=∑+---=∑∑-∑+∑-=∆∆∆+∆= t e t s F 5125125151)]([f(t)--+-== (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分)(1分)(4分) (4分)(3分) (3分)(3分)(1分)(2分) (1分)(1分) (2分)(每空1分。
自动控制原理试题与答案解析

课程名称: 自动控制理论(A/B卷闭卷)一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用就是通过给定值与反馈量得差值进行得。
2、复合控制有两种基本形式:即按输入得前馈复合控制与按扰动得前馈复合控制。
3、两个传递函数分别为G1(s)与G2(s)得环节,以并联方式连接,其等效传递函数为,则G(s)为G1(s)+G2(s)(用G1(s)与G2(s)表示)。
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率,阻尼比,该系统得特征方程为,该系统得单位阶跃响应曲线为 .5、若某系统得单位脉冲响应为,则该系统得传递函数G(s)为。
6、根轨迹起始于极点 ,终止于零点或无穷远。
7、设某最小相位系统得相频特性为,则该系统得开环传递函数为。
8、PI控制器得输入-输出关系得时域表达式就是 ,其相应得传递函数为,由于积分环节得引入,可以改善系统得性能。
二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则()A、一定能使闭环系统稳定;B、系统动态性能一定会提高; C、一定能使干扰引起得误差逐渐减小,最后完全消除;D、需要调整系统得结构参数,才能改善系统性能。
2、下列哪种措施对提高系统得稳定性没有效果( ).A、增加开环极点;B、在积分环节外加单位负反馈;C、增加开环零点;D、引入串联超前校正装置.3、系统特征方程为,则系统( )A、稳定;B、单位阶跃响应曲线为单调指数上升;C、临界稳定;D、右半平面闭环极点数.4、系统在作用下得稳态误差,说明( )A、型别;B、系统不稳定;C、输入幅值过大;D、闭环传递函数中有一个积分环节。
5、对于以下情况应绘制0°根轨迹得就是( )A、主反馈口符号为“-” ;B、除外得其她参数变化时;C、非单位反馈系统; D、根轨迹方程(标准形式)为。
6、开环频域性能指标中得相角裕度对应时域性能指标( )。
A、超调 B、稳态误差C、调整时间 D、峰值时间7、已知开环幅频特性如图2所示, 则图中不稳定得系统就是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称: 自动控制理论 (A/B 卷 闭卷)一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。
2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。
3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率=n ω ,阻尼比=ξ ,该系统的特征方程为 ,该系统的单位阶跃响应曲线为 。
5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 。
6、根轨迹起始于 极点 ,终止于 零点或无穷远 。
7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 。
8、PI 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。
二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则 ( )A 、一定能使闭环系统稳定;B 、系统动态性能一定会提高;C 、一定能使干扰引起的误差逐渐减小,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提高系统的稳定性没有效果 ( )。
A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引入串联超前校正装置。
3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( )A 、稳定;B 、单位阶跃响应曲线为单调指数上升;C 、临界稳定;D 、右半平面闭环极点数2=Z 。
4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( )A 、 型别2<v ;B 、系统不稳定;C 、 输入幅值过大;D 、闭环传递函数中有一个积分环节。
5、对于以下情况应绘制0°根轨迹的是( )A 、主反馈口符号为“-” ;B 、除r K 外的其他参数变化时;C 、非单位反馈系统;D 、根轨迹方程(标准形式)为1)()(+=s H s G 。
6、开环频域性能指标中的相角裕度γ对应时域性能指标( ) 。
A 、超调%σB 、稳态误差ss eC 、调整时间s tD 、峰值时间p t7、已知开环幅频特性如图2所示, 则图中不稳定的系统是( )。
系统① 系统② 系统③图2A 、系统①B 、系统②C 、系统③D 、都不稳定8、若某最小相位系统的相角裕度0γ>o ,则下列说法正确的是 ( )。
A 、不稳定;B 、只有当幅值裕度1g k >时才稳定;C 、稳定;D 、不能判用相角裕度判断系统的稳定性。
9、若某串联校正装置的传递函数为1011001s s ++,则该校正装置属于( )。
A 、超前校正 B 、滞后校正 C 、滞后-超前校正 D 、不能判断 10、下列串联校正装置的传递函数中,能在1c ω=处提供最大相位超前角的是:A 、 1011s s ++B 、1010.11s s ++C 、210.51s s ++D 、0.11101s s ++三、(8分)试建立如图3所示电路的动态微分方程,并求传递函数。
图3四、(共20分)系统结构图如图4所示:1、写出闭环传递函数()()()C s s R s Φ=表达式;(4分) 2、要使系统满足条件:707.0=ξ,2=n ω,试确定相应的参数K 和β;(4分)3、求此时系统的动态性能指标s t ,00σ;(4分)4、t t r 2)(=时,求系统由()r t 产生的稳态误差ss e ;(4分)5、确定)(s G n ,使干扰)(t n 对系统输出)(t c 无影响。
(4分)五、(共15分)已知某单位反馈系统的开环传递函数为2()(3)r K G s s s =+: 1、绘制该系统以根轨迹增益K r 为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);(8分)2、确定使系统满足10<<ξ的开环增益K 的取值范围。
(7分)六、(共22分)某最小相位系统的开环对数幅频特性曲线0()L ω如图5所示:图41、写出该系统的开环传递函数)(0s G ;(8分)2、写出该系统的开环频率特性、开环幅频特性及开环相频特性。
(3分)3、求系统的相角裕度γ。
(7分)4、若系统的稳定裕度不够大,可以采用什么措施提高系统的稳定裕度(4分)试题一答案一、填空题(每题1分,共15分)1、给定值2、输入;扰动;3、G 1(s)+G 2(s);42; 20.7072=;2220s s ++=;衰减振荡 5、1050.20.5s s s s+++; 6、开环极点;开环零点7、(1)(1)K s s Ts τ++ 8、1()[()()]p u t K e t e t dt T =+⎰;1[1]p K Ts +; 稳态性能 二、判断选择题(每题2分,共 20分)1、D2、A3、C4、A5、D6、A7、B8、C9、B 10、B三、(8分)建立电路的动态微分方程,并求传递函数。
解:1、建立电路的动态微分方程根据KCL 有200i 10i )t (u )]t (u )t (d[u )t (u )t (u R dt C R =-+- (2分)即)t (u )t (du )t (u )()t (du i 2i 21021021R dtC R R R R dt C R R +=++ (2分)2、求传递函数对微分方程进行拉氏变换得 )(U )(U )(U )()(U i 2i 21021021s R s Cs R R s R R s Cs R R +=++ (2分) 得传递函数 2121221i 0)(U )(U )(R R Cs R R R Cs R R s s s G +++== (2分) 四、(共20分)解:1、(4分) 22222221)()()(n n n s s K s K s K sK s K s Ks R s C s ωξωωββ++=++=++==Φ 2、(4分) ⎩⎨⎧=====2224222n n K K ξωβω ⎩⎨⎧==707.04βK 3、(4分) 0010032.42==--ξξπσe 83.2244===n s t ξω4、(4分) )1(1)(1)(2+=+=+=s s K s s K sK s Ks G βββ ⎩⎨⎧==11v K K β 414.12===βKss K A e5、(4分)令:0)()(11)()()(=s s G s s K s N s C s n n ∆-⎪⎭⎫ ⎝⎛+==Φβ 得:βK s s G n +=)(五、(共15分)1、绘制根轨迹 (8分)(1)系统有有3个开环极点(起点):0、-3、-3,无开环零点(有限终点);(1分)(2)实轴上的轨迹:(-∞,-3)及(-3,0); (1分)(3) 3条渐近线: ⎪⎩⎪⎨⎧︒︒±-=--=180,602333a σ (2分) (4) 分离点: 0321=++d d 得: 1-=d (2分) 432=+⋅=d d K r(5)与虚轴交点:096)(23=+++=r K s s s s D [][]⎩⎨⎧=+-==+-=06)(Re 09)(Im 23r K j D j D ωωωωω ⎩⎨⎧==543r K ω (2分) 绘制根轨迹如右图所示。
2、(7分)开环增益K 与根轨迹增益K r 的关系:⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+=139)3()(22s s K s s K s G r r 得9r K K = (1分)系统稳定时根轨迹增益K r 的取值范围:54<r K , (2分)系统稳定且为欠阻尼状态时根轨迹增益K r 的取值范围:544<<r K , (3分) 系统稳定且为欠阻尼状态时开环增益K 的取值范围:694<<K (1分) 六、(共22分)解:1、从开环波特图可知,原系统具有比例环节、一个积分环节、两个惯性环节。
故其开环传函应有以下形式 12()11(1)(1)KG s s s s ωω=++ (2分) 由图可知:1ω=处的纵坐标为40dB, 则(1)20lg 40L K ==, 得100K = (2分) 1210ωω=和=100 (2分)故系统的开环传函为 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1100110100)(0s s s s G (2分) 2、写出该系统的开环频率特性、开环幅频特性及开环相频特性:开环频率特性 0100()1110100G j j j j ωωωω=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭(1分) 开环幅频特性0()A ω= (1分)开环相频特性: 110()900.10.01s tg tg ϕωω--=---o (1分)3、求系统的相角裕度γ:求幅值穿越频率,令0()1A ω== 得31.6/c rad s ω≈(3分)11110()900.10.0190 3.160.316180c c c tg tg tg tg ϕωωω----=---=---≈-o o o (2分) 0180()1801800c γϕω=+=-=o o o (2分)对最小相位系统0γ=o临界稳定4、(4分)可以采用以下措施提高系统的稳定裕度:增加串联超前校正装置;增加串联滞后校正装置;增加串联滞后-超前校正装置;增加开环零点;增加PI 或PD 或PID 控制器;在积分环节外加单位负反馈。
试题二一、填空题(每空 1 分,共15分)1、在水箱水温控制系统中,受控对象为 ,被控量为 。
2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 ;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 ;含有测速发电机的电动机速度控制系统,属于 。
3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 。
判断一个闭环线性控制系统是否稳定,在时域分析中采用 ;在频域分析中采用 。
4、传递函数是指在 初始条件下、线性定常控制系统的 与 之比。
5、设系统的开环传递函数为2(1)(1)K s s Ts τ++,则其开环幅频特性为 ,相频特性为 。
6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率c ω对应时域性能指标 ,它们反映了系统动态过程的 。
二、选择题(每题 2 分,共20分)1、关于传递函数,错误的说法是 ( )A 传递函数只适用于线性定常系统;B 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响;C 传递函数一般是为复变量s 的真分式;D 闭环传递函数的极点决定了系统的稳定性。