基于单片机的交通信号灯模拟控制系统_课程设计报告

合集下载

基于51单片机的交通信号灯模拟控制系统设计

基于51单片机的交通信号灯模拟控制系统设计

XXXX学院毕业设计(论文)课题名称交通信号灯模拟控制系统学生姓名X X X学号XXXXXXXXXXXXX系别自动化工程系专业班级机电一体化X班指导教师X X技术职务讲师XXXXXX学院教务处制指导教师:XXX 2016年9月5 日用51单片机设计交通信号灯模拟控制系统机电一体化X班XXX 指导老师:XXX摘要:城市交通信号灯模拟控制系统模拟了能够对信号灯进行远程投时的城市十字路口控制系统功能。

借助于单片机开发板上的已有资源,构建了模拟实际系统功能的单片机扩N82C55控制LED灯模块、8位七段数码管显示控制模块和板上扩展接线模块。

在分析实际系统工作流程的基础上,给出了针对单片机开发板的模拟系统C51控制程序流程。

用于实际系统时,只需要将代码移植到现场设备并进行具体设置和适当修改即可,可以在满足客户需求的前提下最小化系统开发成本。

交通信号灯模拟控制系统模拟了能够对信号灯进行远程授时的城市十字路口控制系统功能。

基于AT89C51单片机的性能参数和工作原理,应用Keil单片机编译软件的C语言编程以及使用该软件开发单片机程序,说明设计的交通信号灯模拟控制系统的工作原理、程序流程和硬件结构等相关技术,指出该系统的特点。

设计一种基于AT89C51超低功耗单片机的交通信号灯模拟控制系统,详细阐明了交通信号灯模拟控制系统的工作原理,实现了一般交通信号灯控制系统的主要功能及要求,具有实用性。

该系统充分利用了AT89C51单片机的特点,使用现今单片机广泛采用的C语言编制了系统程序,并利用Keil uVision3软件进行编译运行,最终通过Proteus完成了模拟控制系统的仿真。

关键词:AT89C51单片机K eil单片机编译软件仿真软件Proteus 6 C语言交通灯XXXXX学院毕业设计(论文)指导记录表注:指导情况须填明学生在毕业设计(论文)撰写过程中存在的问题,指导教师要求修改的内容或改进措施。

指导情况填写不包括下达任务书和开题报告意见。

单片机课程设计——交通灯

单片机课程设计——交通灯

单片机课程设计报告书题目:交通信号灯学院:班级:姓名:学号:课程名称:指导老师:日期:一.设计任务:交通灯的硬件和软件设计二.设计目的课程设计是本专业集中实践环节的主要内容之一。

训练正确地应用单片机,培养解决工业控制、工业检测等领域具体问题的能力。

学生通过所做课题,熟悉单片机应用系统开发研制的过程,软硬件设计的工作方法、内容及步骤,对学生进行基本技能训练。

例如组成系统、编程、调试、绘图等。

使学生理论联系实际,提高动手能力和分析问题、解决问题的能力。

通过本课程设计,主要达到以下目的:1.使学生增进对单片机的感性认识,加深对单片机理论方面的理解。

2.使学生掌握单片机的内部功能模块的应用,如定时器/计数器、中断、片内外存贮器、I/O口、串行口通讯等。

3.使学生了解和掌握单片机应用系统的软/硬件设计过程、方法及实现,为以后设计和实现单片机应用系统打下良好基础三.设计思路交通灯的变化规律按照常规我们假设一个十字路口为东西南北走向。

初始状态为状态1,南北方向绿灯通车,东西方向红灯。

经过过一段时间(25S)转换状态2,南北方向绿灯闪几次转亮黄灯,延时5S,东西方向仍然红灯。

再转换到状态3,东西方向绿灯通车,南北方向红灯。

过一段时间(25S)转换到状态4,东西方向绿灯闪几次转亮黄等,延时5S,南北方向仍然红灯。

最后循环至南北绿灯,东西红灯。

在这些状态下,有时钟倒数计时。

四.硬件介绍基础知识交通灯控制器实例主要使用了89C51单片机的定时器/计数器,基础知识主要包括交通灯的变化规律、定时器/计数器的概念、定时器/计数器的相关寄存器、定时器/计数器的4种工作方式、以及定时器/计数器的变成。

4.1定时器/计数器定时器/计数器是单片机中最常用、最重要的功能模块之一,本节通过交通灯控制器实例来演示定时器的使用,并复习如何使用散转程序。

首先介绍交通灯以及定时器/计数器的基础知识,接着介绍本实例的硬件电路构成,然后逐步分析定时器的变成以及程序的全貌,最后总结一下本实例的技巧与注意点。

基于单片机的交通信号灯的控制系统设计

基于单片机的交通信号灯的控制系统设计

基于单片机的交通信号灯的控制系统设计交通信号灯是城市交通管理中非常重要的一部分,它通过灯光信号来指示道路上车辆和行人的行动。

基于单片机的交通信号灯控制系统可以实现对交通信号的自动控制,并能根据实际交通情况和时间变化进行灵活调整,提高道路交通的效率和安全性。

1.系统设计需求分析:
-实现红、黄、绿三种信号灯的循环显示,时间可设定;
-根据实际交通情况和时间变化,动态调整红、黄、绿三种信号灯的显示时间;
-配备感应器,检测行人和车辆的存在,根据情况自动调整信号灯时间。

2.系统硬件设计:
-选择合适的单片机,如AT89C52;
-使用LED灯作为信号灯显示器件;
-选择适当的传感器,如红外传感器用于检测行人,光敏电阻用于检测车辆;
-选择适当的电路板进行连接。

3.系统软件设计:
-编写单片机的控制程序,实现红、黄、绿三种信号灯的循环显示;
-设定初始的信号灯显示时间;
-利用定时器和中断控制程序,实现对信号灯显示时间的控制,可以根据设定的时间进行调整;
-设定感应器的检测程序,当检测到行人或车辆时,调整信号灯显示时间。

4.系统工作流程:
(1)初始化系统,设定初始的信号灯显示时间;
(2)通过定时器和中断控制程序实现循环显示红绿黄信号灯;
(3)检测行人和车辆的存在,根据情况调整信号灯显示时间;
(4)循环执行步骤2和步骤3,实现自动控制交通信号灯。

5.系统优化方案:
-根据实际交通数据和研究结果,优化信号灯显示时间;
-利用流量监测技术,实时监测道路交通情况,进一步优化信号灯的控制策略;
-可以加入数据通信模块,将采集到的交通数据上传到中央交通管理系统,实现更智能化的交通信号灯控制。

基于单片机的交通信号灯控制系统设计

基于单片机的交通信号灯控制系统设计

基于单片机的交通信号灯控制系统设计交通信号灯控制系统是城市交通管理中必不可少的一个重要元素,通过对车辆行驶状态的监测,协调红绿灯信号,来确保道路交通的流畅和安全。

本文将介绍一种基于单片机的交通信号灯控制系统设计方案。

1. 系统功能描述该交通信号灯控制系统的主要功能是控制红绿灯信号的循环变换,保证各个车辆道路的交通流畅。

同时,系统具备故障检测和自适应调整的功能,当出现交通拥堵状况时,系统能够自动调整信号灯的时间,实现道路交通的快速畅通。

2. 系统设计框架此系统主要分为硬件系统和软件系统两部分。

硬件系统主要由单片机、红绿灯、电源、车辆检测器等部分组成。

其中,单片机作为系统的核心部分,主要实现了信号灯的周期控制和车辆检测。

软件系统主要由整合了单片机编程语言和相关算法所组成。

系统中的单片机程序主要完成红绿灯变换和车辆检测等功能,还会实现一些复杂的算法,如故障检测和自适应调整等。

3. 系统设计过程基于单片机的交通信号灯控制系统设计主要分为以下几个方面。

1) 系统需求分析:针对不同的交通场景,分析交通信号灯的需要,确定系统设计的需求。

2) 硬件选型:根据系统的需求,选择单片机、传感器、红绿灯等硬件设备。

3) 软件设计:在单片机上设计系统软件,实现各个部分的功能。

如控制红绿灯变换,实现车辆检测器的功能等。

4) 系统测试:对系统进行全面测试,验证其性能和功能是否满足设计要求。

5) 发布与维护:发布系统,并在运营过程中不断优化和维护。

4. 系统实现效果基于单片机的交通信号灯控制系统设计方案,通过软硬件体系的配合,能够高效准确地控制红绿灯信号的变换,有效降低交通拥堵,提高交通运行效率。

同时,该系统具备自适应调整和故障检测等功能,能够根据实际交通情况快速调整相应的红绿灯信号,确保道路交通的畅通和安全。

综上所述,基于单片机的交通信号灯控制系统设计,是一种高效实用的解决方案。

其系统感知性强,性能稳定可靠,可广泛应用于城市和道路交通的管理中,促进交通资源的有效分配,在实现城市交通快速、高效、安全运行的同时,也为市民提供了更好的出行环境。

基于单片机的交通信号灯模拟控制系统设计_毕业设计(论文)任务书

基于单片机的交通信号灯模拟控制系统设计_毕业设计(论文)任务书

毕业设计(论文)基于单片机的交通信号灯模拟控制系统设计The MCU Control System Design Of Traffic Light一.选题意义及背景现代城市生活中,交通显得日渐重要。

车辆的逐渐增多、城市道路的拥挤不堪都需要良好的城市道路交通管理,信号灯控制非常重要,本课题针对十字路口的交通情况设计相应的控制时间和控制流程,利用单片机良好的控制功能来进行设计,实用性强。

本课题主要利用红、绿、黄三种颜色的发光二极管做信号指示灯,通过编写程序控制信号灯的颜色显示和保持时间,让学生增强动手能力,并进一步了解单片机的工作原理。

二.毕业设计(论文)主要内容:交通灯控制系统主要包括硬件部分设计制作和软件程序设计两大部分。

要求设计的系统能对东西方向和南北方向的车流进行控制,按照设定的时间准确进行显示部分的剩余时间的显示和切换。

应完成的主要工作包括单片机的选型、硬件电路设计、电路图绘制、软件程序的设计、实物电路制作等。

熟练使用Proteus 软件和伟福仿真软件编写程序,模拟电路运行,并完成毕业论文。

利用单片机丰富的IO端口,及其控制的灵活性,实现基本的信号切换和时间显示。

三.计划进度:第8周确定分组以及在小组中的分工,通过各种途径查阅资料,确定总体系统设计,购买原材料第9周——第10周系统设计,电路板制作,开始撰写论文第11周硬件系统基本完成,调试修缮。

论文初稿完成第12周论文修改完善,准备答辩第13周答辩四.毕业设计(论文)结束应提交的材料:1、毕业设计实物2、毕业设计论文3、任务书4、教师评阅书指导教师:林蒙丹、徐冬云教研室主任:张明金2011年10月17日2011年10月17日论文真实性承诺及指导教师声明学生论文真实性承诺本人郑重声明:所提交的作品是本人在指导教师的指导下,独立进行研究工作所取得的成果,内容真实可靠,不存在抄袭、造假等学术不端行为。

除文中已经注明引用的内容外,本论文不含其他个人或集体已经发表或撰写过的研究成果。

基于单片机的智能交通红绿灯控制系统设计

基于单片机的智能交通红绿灯控制系统设计

基于单片机的智能交通红绿灯控制系统设计智能交通红绿灯控制系统是一种基于单片机的电子设备,用于智能化控制交通信号灯的工作。

本文将详细介绍如何设计一套基于单片机的智能交通红绿灯控制系统。

首先,我们需要选择适合的单片机作为控制器。

在选择单片机时,我们需要考虑其功能、性能和价格等因素。

一些常用的单片机型号有8051、AVR、PIC等。

我们可以根据具体的需求选择合适的单片机型号。

接下来,我们需要设计硬件电路。

智能交通红绿灯控制系统的硬件电路主要包括单片机、传感器、继电器和LED等组件。

传感器可以用来感知交通流量和车辆信息,继电器用于控制交通灯的开关,LED用于显示交通灯的状态。

在硬件设计中,我们需要将传感器与单片机相连接,以便将传感器获取的信息传输给单片机。

同时,我们还需要将单片机的控制信号传输给继电器和LED,以实现对交通灯的控制。

在软件设计中,我们需要编写相应的程序代码来实现智能交通红绿灯的控制逻辑。

首先,我们需要对传感器获取的信息进行处理,根据交通流量和车辆信息来确定交通灯的状态和切换规则。

例如,当交通流量较大时,可以延长绿灯亮起的时间;当有车辆等待时,可以提前切换到红灯。

此外,我们还可以在程序中添加自适应控制算法,用于根据交通流量动态调整交通灯的周期和切换时间,以进一步提高交通流量的效率和道路通行能力。

最后,我们需要将程序代码烧录到单片机中,并进行调试和测试。

在测试过程中,我们可以模拟不同的交通流量和车辆信息,以验证智能交通红绿灯控制系统的正常运行和控制效果。

综上所述,基于单片机的智能交通红绿灯控制系统设计主要包括硬件设计和软件设计两个方面。

通过合理的硬件电路设计和程序编写,可以实现对智能交通红绿灯的智能化控制,提高交通流量的效率和道路通行能力,实现交通拥堵的缓解和交通安全的提升。

基于单片机的交通灯课程设计报告(含源程序+仿真)

基于单片机的交通灯课程设计报告(含源程序+仿真)

基于单片机的交通灯课程设计报告(含源程序+仿真)
一、课程设计目的
本课程设计的目的是使用单片机实现二级智能信号灯控制系统,实现智能交通控制。

对于二级智能信号灯控制装置,电路中涉及到各种元器件,包括单片机控制器、执行元件、电源元件、信号识别器等,采用单片机作为控制器,在单片机编程时,配合交通信息识别器,实现自主的交通控制系统,实现智能控制。

根据交通控制装置的物理结构,开发出相应的单片机程序控制系统。

具体的程序设计和控制流程如下:
1、根据需要确定路口的信号方案;
2、在单片机软件模块中添加车辆检测功能;
3、控制信号灯运行,当检测到车辆时,调整信号灯运行;
4、编写交通控制程序,实现对信号灯及其信号闪烁序列的控制;
5、编写车辆检测控制程序,实现对道路中车辆的检测和判断;
6、完成软件调试,将控制程序上传至单片机;
7、实现仿真测试,检验交通控制系统的实际效果。

本课程设计最终实现了一个完整的实时交通控制系统,它具有以下特性:
(1)具有交通灯自动变换功能;
(2)拥堵及女性模式,即可以根据车流量多少,判断如何安排红绿灯;
(3)可以根据实际情况,启动信号灯控制系统,控制信号灯的变换。

本课程设计实现了对交通控制系统的简单控制,可以满足城市交通的需求,减少城市交通拥堵的程度。

交通灯单片机课程设计报告

交通灯单片机课程设计报告

课程设计报告:交通灯单片机控制系统1. 设计目的本课程设计旨在让学生通过使用单片机开发一个简单的交通灯控制系统来加深对单片机编程和控制原理的理解。

该系统可以模拟道路上的交通灯,实现红灯、绿灯和黄灯的循环控制,并可以通过按键进行手动控制。

2. 设计原理2.1 交通灯状态交通灯状态包括红灯、黄灯和绿灯,它们按照固定的时间间隔循环切换。

2.2 按键控制设计中使用一个按键用于手动控制交通灯状态切换。

按下按键时,会切换到下一个灯状态。

3. 硬件方案3.1 单片机本设计采用ATmega328P单片机,它具有足够的GPIO引脚用于控制交通灯的LED。

3.2 LED使用红色、黄色和绿色LED模拟交通灯的三种状态。

3.3 按键一个按键连接到单片机的GPIO引脚,用于手动切换交通灯状态。

4. 软件方案4.1 控制逻辑编写单片机程序,实现交通灯状态的循环切换和按键控制逻辑。

4.2 定时器使用定时器来控制交通灯状态切换的时间间隔。

4.3 中断配置按键的中断,以便在按下按键时进行状态切换。

5. 实施过程连接硬件组件,包括LED、按键和单片机。

编写单片机程序,包括交通灯状态切换逻辑、定时器配置和按键中断处理。

编译并烧录程序到单片机。

运行程序,观察交通灯的状态切换和按键控制是否正常。

6. 测试结果经过测试,交通灯控制系统能够正常运行。

交通灯状态按照预定的时间间隔循环切换,同时按下按键可以手动切换状态,符合设计要求。

7. 问题解决在实施过程中,遇到了一些问题,如硬件连接错误和程序逻辑错误。

通过仔细检查和调试,成功解决了这些问题。

8. 总结本课程设计使我深入了解了单片机编程和控制系统的原理,通过实际动手操作,更好地掌握了这些概念。

设计交通灯控制系统是一个有趣且教育性的项目,我对单片机编程有了更深入的理解,这对我的学习和职业发展都有所帮助。

这个示例课程设计报告可以作为参考,你可以根据具体的课程设计要求和硬件平台的不同来进行调整和扩展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北建筑工程学院课程设计报告课程名称:交通信号灯模拟控制系统系:电气工程系专业:电子信息工程交通信号灯模拟控制系统设计一、课程设计的性质和目的本课程设计的主要目的是通过对电子技术及单片机原理的学习,综合掌握电子电路综合设计的过程,设计要求和具体的设计方法。

通过设计更好的复习、理解模拟电子、数字电子和单片机等课程内容,使理论和实际相结合,加强学生的动手能力以及查阅相关资料解决实际问题的能力,培养学生从事设计工作的整体观念。

二、设计任务:1.完成交通灯的变化规律,即一个十字路口为东西向和南北向,四个路口均有红黄绿三等和两个LED数码显示管。

交通灯上电以后进入初始状态即东西红灯,南北红灯。

5s后转状态1:南北绿灯亮通车,东西红灯亮,禁止通行,持续30s;30s后转状态2:南北绿灯灭转黄灯闪亮,延迟5s,东西仍然红灯;5s后转状态3:东西绿灯亮通车,南北转红灯,持续30s;30s后转状态4:东西绿灯灭转亮黄闪灯,延迟5s,南北仍然红灯。

最后循环至状态1。

2.用8个LED数码管(各方向均有两个LED数码管,分别表示个位和十位),显示倒计时。

倒计时用于提醒驾驶员或者行人信号灯发生改变的时间,以便他们在“停止”和“通行”两者做出合适的选择。

3.紧急状态下,通过K1键手动设置,将所有路口的灯变为红灯。

三、设计方案及原理:方案一、采用74LS138译码器和CD4511译码器的交通灯系统图 1 方案一采用74LS138和CD4511译码器的交通灯系统框图该方案使用了CD4511显示译码器和74LS138译码器。

通过CD4511将单片机输出的BCD8421码转换成为七段码然后送LED数码管显示;通过74LS138译码器将单片机输出的三位二进制码转换成八位只有一个低电平的代码,从而对LED数码管进行片选。

时钟电路和复位电路为单片机提供正常的工作环境。

按键电路为在紧急情况下的应急处理系统,作用是使东西南北的等变为红灯。

红绿灯电路由单片机I/O口直接驱动。

方案二、直接进行片选和驱动LED数码显示的交通灯系统图 2 方案二直接进行片选和驱动LED数码显示的交通灯系统该方案直接采用单片机的I/O口对LED数码管进行数字显示和片选的驱动。

时钟电路和复位电路为单片机提供正常的工作环境。

按键电路为在紧急情况下的应急处理系统,作用是使东西南北的等变为红灯。

红绿灯电路由单片机I/O 口直接驱动。

方案比较:方案一采用了CD4511译码器和74LS138译码器,理论上为单片机的使用节省了9个I/O口,实际需要29个而采用该方案以后仅仅使用了20个,但是由于使用了两个译码器,所以在成本上增加了花销。

方案二直接用单片机的I/O口进行LED数码管字位驱动,使用的I/O口比较多,但是成本较低。

通过比较两种方案,结合交通灯的实际情况,红绿灯和数码管的东西方向和南北方向一致,所以可以节省10个I/O口,因此此系统仅仅需要19个I/O口就足够了,使用CD4511和74LS138不仅增加了成本,而且也没起到什么太大的作用,采用方案一节省下来的I/O口在该系统中也没有什么用处,而且在编程的时候也大大增加了编程的难度,电路也相对复杂了。

所以综合考虑,我们采用方案二的设计。

四、元件清单1.AT89C52单片机AT89C52 是美国 ATMEL 公司生产的低电压,高性能 CMOS 8 位单片机,片内含 8k bytes 的可反复擦写的只读程序存 储器(PEROM)和 256 bytes 的随机存取数据存储器(RAM) ,器件采用 ATMEL 公司的高密度,非易失性存储技术生产, 与标准 MCS-51 指令系统及 8052 产品引脚兼容, 片内置通用 8 位中央处理器 (CPU) Flash 存储单元, 和 功能强大 AT89C52 单片机适合于许多较为复杂控制应用场合. AT89C52为8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC 内部寄存器、数据RAM 及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR 的接收解码及与主板CPU 通信等。

主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。

RST/Vpd9 脚)为复位输入端口,外接电阻电容组成的复位电路。

VCC (40 脚)和VSS (20 脚)为供电端口,分别接+5V 电源的正负端。

P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR 输入端,10 脚和11脚定义为I2C 总线控制端口,分别连接N1的SDAS (18脚)和SCLS (19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。

本实验硬件电路搭建采用STC89C52单片机,软件仿真的时候采用的是AT89C52单片机,虽然两个单片机电路功能稍有区别,但是在使用及编程的时候引脚通用,编程无影响。

所以硬件编程代码同样适用于软件仿真。

2.LED 数码管LED 数码管实际上是由七个发光管组成8字形构成的,加上小数点就是8个。

这些段分别由字母a,b,c,d,e,f,g,dp 来表示。

当数码管特定的段加上电压后,这些特定的段就会发亮,以形成我们眼睛看到的2个8数码管字样了。

如:显示一个“2”字,那么不同之分,也有0.5寸、1寸等不同的尺寸。

小尺寸数码管的显示笔画常用一个发光二极管组成,而大尺寸的数码管由二个或多个发光二极管组成,一般情况下,单个发光二极管的管压降为30mA 。

发光二极管的阳极连接到一起连接到电源正极的称为共阳数码管,发光二极管的阴极连接到一起连接到电源负极的称为共阴数码管。

常用LED 数码管显示的数字和字符是0、1、2、3、4、5、6、7、8、9、A 、B 、C 、D 、E 、F 。

LED 数码管分为共阴极和共阳极两种,本实验在硬件电路搭建的时候采用的是共阳极LED 数码管,这样使用单片机容易驱动,而采用共阴极则不易驱动二极管。

而在proteus 软件仿真的时候由于采用共阴极数码管时出现乱码,在寻找错误时也没有发现什么不对的地方,为了方便起见在软件仿真时选用了共阴极LED 数码管,这时就需要在P0口驱动的时候加上一个反相器其结果才和硬件电路一样。

3.发光二级管它是半导体二极管的一种,可以把电能转化成光能;LED 。

发光二极管与普通二极管一样是由一个PN 单向导电性。

当给发光二极管加上正向电压后,从P 区注入到区的空穴和由N 区注入到P 区的电子,在PN 别与N 区的电子和P 的半导体材料中电子和空穴所处的能量状态不同。

合时释放出的能量多少不同,释放出的能量越多,长越短。

常用的是发红光、绿光或黄光的二极管。

发光二极管和数码二极管一样分为共阴极和共阳极两种,本 实验在硬件电路搭建的时候采用的是共阳极发光二级管,这样使用单片机容易驱动,而采用共阴极则不易驱动二极管,有时候采用高电平驱动则会产生单片机电压过低而无法点亮二极管致使单片机烧毁的情况。

在proteus 软件仿真的时候软件给出的发光二级管如图所示,该红绿灯模块为共阴极发光二级管模块,所以仿真时采用的驱动方式是高电平驱动。

由于是软件仿真,所以不会出现无法驱动的情况,真实情况下需要考虑其驱动情况。

五、硬件电路图1.单片机主电路 如右图所示,单片机的主电路主要包括时钟电路和复位电路,以及5V 电压和接地电压等。

这几部分保证了单片机可以正常的工作。

时钟振荡电路采用内部时钟产生方式,在XTAL1和XTAL2两端跨接晶体或陶瓷振荡器,与内部反相器构成稳定的自击震荡。

其发出的时钟脉冲直接送入片内定时控制部件。

复位电路采用上电+按钮电平复位方式,当按下按钮时,RST 管脚高电平触发。

为保证复位可靠,RC 时间常数应大于两个机器周期,电容取10uf ,电阻取1000欧。

2.交通灯接口电路图 7 交通等接口电路交通灯接口电路如上图所示。

硬件电路的发光二级管是共阳极的,采用低电平驱动点亮方式,而在软件中提供的交通灯模块是共阴极的,本汇编程序最初编写是根据硬件电路共阳极二极管采用低电平驱动编写而成,所以在软件仿真的时候需要加一个非门来将P1口输出的低电平变成高电平来驱动交通灯模块发光,经过实验得出其结果和硬件仿真的完全相同。

由于是软件仿真,所以不会出现无法驱动的情况,真实情况下需要考虑其驱动情况。

南北和东西的交通灯显示相同,所以本系统仅仅使用了六个I/O 口来进行交通灯的控制。

3.LED 数码管显示电路图 6 单片机主电路码管,所以采用的驱动方式是低电平驱动,而在软件仿真的时候采用的是共阴极数码管,由于程序在编写的时候是对实际搭建的硬件电路编写的,因此在软件电内部没有上拉电阻,所以在使用P0口是需要外接上拉电阻。

P2口的2.4、2.5、2.6、2.7四个口作为八个数码管的片选信号,低电平有效,由于南北和东西两个方向的数码管显示相同,所以八个数码管只需要四个片选信号即可,软件程序仿真电路图结果如上图所示。

4键盘接口电路 键盘接口电路如右图所示。

该电路比较简单,原理是先将P3口全部置1,然后在延迟代码段中加入检测P3口高低电平的代码,观察P3口是否变化,如果有变化则进入紧急情况的处理代码,在紧急情况处理代码中继续检测P3口状态,如果变回全部为1则跳到初始状态重新开始。

由程序代码可得,该电路连至P3任意一口都是可以的。

用单片机最小系统和单片机学习模板块搭建的交通等系统如下图所示图 9 键盘接口电路图10 交通灯系统实物电路用proteus绘制的整体电路图如下图图11 交通灯系统电路图六、软件设计1.程序流程图图 12 程序流程图2.主要功能模块①设置状态模块该模块设置程序的状态初始值,分为初始状态,状态1和状态2,代码段主要如下:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;设置初始状态;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;INIT:MOV 42H,#1 ;闪烁标志位MOV R0,#0 ;R0为状态标志位MOV SP,#60H ;设置堆栈指针MOV DPTR,#TABLE ;将TABLE送DPTRMOV P2,#0FFH ;所有计数器片选置1MOV R7,#0 ;计数器1十位MOV R6,#5 ;计数器1个位MOV R5,#60 ;循环次数MOV R2,#0 ;计数器2十位MOV R1,#5 ;计数器3个位MOV P1,#0F6H ;红绿灯状态LJMP SCAN ;跳计数器扫描段代码②循环扫描模块该模块主要功能为扫描数码管的显示计数器时间,以及显示红绿灯的状态。

相关文档
最新文档