UASB和IC反应器异同比较
UASB与IC及USR区别

1、UASB与IC的区别UASB与IC在运行上最大的差别表现在抗冲击负荷方面,IC可以通过内循环自动稀释进水,有效保证了第一反应室的进水浓度的稳定性。
其次是它仅需要较短的停留时间,对可生化性好的废水的确是优点。
大家同意因为IC运行稳定,抗冲击负荷效果好,容积负荷高,投资省等许多优于UASB的优点,是否就应该因此而放弃再选有UASB了呢?IC缺点尤其在污水可生化性不是太好的情况下,由于水力停留时间比较短去除率远没有UASB高,增加了好氧的负担。
另外,IC由于气提内循环,特别是对进水水质不太稳定的厂,导致IC出水水量极不稳定,出水水质也相对不稳定,有时可能还会出现短暂不出水现象,对后序处理工艺是有影响的。
UASB比IC突出优点就是去除率高,出水水质相对稳定。
但IC优点还是很多的,特别是对于高SS进水,比UASB有明显优势,由于IC上升流速很大,SS不会在反应器内大量积累,污泥可以保持较高活性。
对于有毒废水也是如此!IC运行温度的设计完全和UASB一样,在调试运行上和UASB区别不大,只是在刚进水调试时尽可能采用水力负荷高些,然后逐步交互提升水力、有机负荷,尽可能在负荷提升过程中保证第一反应室上升流速大于10m/小时,但最大水力负荷最好控制在20m/小时以下,这样即保证第一反应室污泥床的传质效果,也避免污泥流失.冬季进水管道及反应器最好保保温,因为厌氧菌对温度波动特敏感,对负荷波动适应要相对好的多.其实IC的调试比UASB要好调的多,能调试好UASB的,应该调试好IC没有太大问题.不是应为上升流速大,会不好控制而延长调试周期.IC它对进水水质的要求仅是相对稳定就行,它要求高的上升流速仅是满足第一反应室污泥床处于膨化状态,加大传质效果,IC的高度较高,你不必太担心会有污泥流失,因为内部它有两层三相分离,更何况第一反应室产气量较大,绝大部分沼气被第一反应室分离收集提升到顶部的气水分离气包进行气与泥水的分离.第二反应室气量少泥水更易分离沉降.若接种颗粒污泥基本一个月便可达到设计负荷是没有问题的,絮状污泥可能需三到五个月。
IC厌氧反应器

由于这些条件的限制,会造成很大一部分工业废水发无法采用常规厌氧反应器来处理,因此市场迫切需要一种能真正处理工业废水的厌氧反应器,我公司采用脉冲厌氧反应器对几十种工业废水处理实践证明,该脉冲厌氧反应器耐毒性强,工艺简单,运行管理方便,处理效果优于常规厌氧反应器,是工业废水处理行之有效的厌氧技术。
3
高效脉冲厌氧反应器是南京伊万特环境工程有限公司开发并多次改进的新型高效厌氧生物反应器
第二反应区的液相上升流速小于第一反应区,一般仅为2~10 m/h。这个区域除了继续进行生物反应之外,由于上升流速的降低,还充当第一反应区和沉淀区之间的缓冲段,对解决跑泥、确保沉淀后出水水质起着重要作用。
IC
①
②
③
④
先后应用于大型淀粉厂、酒精废水、生物制药厂、农药废水废水处理系统。
1
2
目前应用的厌氧反应器一般均基于
铁碳微电解填料是铁炭微电解技术的一次技术革命。它的广泛应用将为化工等行业的发展带来新的生机。
铁碳微电解填料采用固定流化床运行方式,其操作维护方便,运行安全可靠。
同时脉冲厌氧反应器可以根据废水性质来确定反应的容积,反应器的大小不受其它条件影响,完全可以根据水质需求来确定反应的容积,因此比较适用于处理工业废水。
4
◆
◆
◆
◆
5
UASB和IC反应器的原理及设计汇总

目录UASB反应器1一、UASB原理1二、UASB反应器的构成21、三相分离器的原理32、进水和配水系统的要求3三、UASB反应器的主要设备41、反应器的池体42、三相分离器的设计83、进水分配系统10四、其他设计考虑141、配水管道设计142、出水系统的设计153、排泥系统的设计154、浮渣清除方法的考虑165、防腐措施16五、附属设备171、剩余沼气燃烧器172、保温加热设备173、监控设备17 IC反应器18一、IC反应器的原理18二、IC反应器的设计201、COD容积负荷的确定202、三相分离器203、配水系统204、循环系统215、高径比的控制216、其他22UASB反应器一、UASB原理UASB反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。
厌氧反应发生在废水和污泥颗粒接触的过程。
在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。
在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。
上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。
气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。
置于极其使单元缝隙之下的挡板的作用为气体发射器和防止沼气气泡进入沉淀区,否则将引起沉淀区的絮动,会阻碍颗粒沉淀。
包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。
由于分离器的斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。
由于流速降低污泥絮体在沉淀区可以絮凝和沉淀。
累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,其将滑回反应区,这部分污泥又将与进水有机物发生反应。
二、UASB反应器的构成UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。
在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。
IC厌氧反应器运行注意事项

IC厌氧反应器运行注意事项IC反应器,即内循环厌氧反应器,相似由2层UASB反应器串联而成。
其由上下两个反应室组成。
与UASB反应器相比,在获取相同处理速率的条件下,IC反应器具有更高的进水容积负荷和污泥负荷率,IC反应器的平均升流速度可达到处理同类废水UASB反应器的20倍左右。
以下是简易示意图。
IC反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。
(1). 容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。
(2). 节省投资和占地面积:IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积相当于普通反应器的1/4—1/3左右,大大降低了反应器的基建投资;而且IC反应器高径比很大(一般为4~8),所以占地面积少。
(3). 抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L)时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环流量可达进水量的10~20倍。
大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。
IC反应器在运行过程中的日常注意事项由于该污水站厌氧工艺处理设备主要是IC厌氧反应器,其主要的控制参数有以下内1、污泥菌种的成分污泥菌种的成分:厌氧污泥中具有处理污染物能力的就是细菌等有机物质,菌群的组成及菌种的成分决定了其颗粒强度、产甲烷活性及对污水的适应能力。
一般来说,污泥中有机物的成分占70%左右,污泥外部菌种主要为丝菌,污泥内部主要为杆菌、球菌等。
2、PH值:反应器进水PH值要求控制在6.5~7.5之间,过高或过低的PH值会对工艺造成巨大影响,其影响主要体现在对厌氧菌(主要是产甲烷菌)的方面,包括①影响菌体及酶系统的生理功能和活性②影响环境的氧化还原电位③影响基质的活性。
UASB和IC反应器异同比较

UASB和IC反应器异同比较及应用摘要:本文扼要介绍了UASB和IC反应器的概念和其工作原理及基本构造,并通过列举应用实例详细比较了两者的异同点,最后总结了UASB和IC工艺的特点及前景。
关键词:UASB;IC;比较;啤酒废水Similaritiesanddifferences of USAB and ICAbstract: Thisarticle succinctlyintroduced UASB and IC’s concept and its principleof work andthe fundamental construction, and throughenumerated theapplication exampleto compare bothsimilaritiesanddifferences spotin detail,finally summarized UASB and IC’s craft characteristic andthe prospect.Keywords: UASB;IC; compare; beer waste water1.UASB和IC反应器工艺原理1.1 UASB反应器1.1.1 UASB简介上流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB,由荷兰Lettinga教授于1977年发明。
污水自下而上通过UASB。
反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。
因水流和气泡的搅动,污泥床之上有一个污泥悬浮层。
反应器上部有设有三相分离器,用以分离消化气、消化液和污泥颗粒。
消化气自反应器顶部导出;污泥颗粒自动滑落沉降至反应器底部的污泥床;消化液从澄清区出水。
UASB负荷能力很大,适用于高浓度有机废水的处理。
运行良好的UASB有很高的有机污染物去除率,不需要搅拌,能适应较大幅度的负荷冲击、温度和pH变化。
UASB EGSB和IC三种厌氧反应器比较

UASB 、EGSB 和IC 三种厌氧反应器比较UASB 、EGSB 和IC 是在高负荷有机废水处理中最常见的三种厌氧反应器。
这三种反应器结构不同,处理能力各异,今天我们将这三种厌氧反应器进行详细比较,分别说一说他们的优缺点。
1. 厌氧生物处理的基本原理厌氧生物处理,就是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生甲烷气体的一种经济而有效的处理技术。
废水厌氧生物处理技术(厌氧消化),就是在在无分子氧条件下,通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等。
厌氧与好氧过程的根本区别,就是不以分子态氧作为受氢体,而以化合态的氧、碳、硫、氢等作为受氢体。
COD →微生物CH 4+CO 2+H 2O+H 2S+NH 3+微生物2. 厌氧处理技术发展历史3. 三代厌氧反应器的演变4. 三种厌氧反应器比较(1) UASB反应器UASB反应器是第二代厌氧反应器,它的优缺点如下:优点:•有机负荷居第二代反应器之首•污泥颗粒化使反应器对不利条件抵抗性增强•简化工艺,节约投资与运行费用•提高容积利用率,避免堵塞问题缺点:•内部泥水混合较差不利于微生物和有机物之间的传质•当液相和气相上升流速较高时会出现污泥流失,导致运行不稳定•水力负荷和反应器有机负荷无法进一步提高(2) EGSB反应器EGSB反应器相当于改进型UASB反应器,属于第三代厌氧反应器,它的优缺点如下:优点:•提高反应器内的液体上升流速,•颗粒污泥床层充分膨胀•污水与微生物之间充分接触,加强传质效果•避免反应器内死角和短流的产生•占地面积较UASB小缺点:•反应器较高•采用外循环,动力消耗大(3) IC反应器IC反应器属于第三代厌氧反应器,它的内部结构相当于两个UASB叠加。
优点:•内循环结构,利用沼气膨胀做功,无须外加能源,实现内循环污泥回流•实现了“高负荷与污泥流失相分离”•引入分级处理,并赋予其新的功能•抗冲击负荷能力强•基建投资省,占地面积少,节能缺点:•进水需预处理•结构复杂,维护困难•出水需后处理。
详解IC厌氧反应器工作原理及优势

详解I
IC厌氧反应器即内循环厌氧反应器,是在UASB反应器基础上研发的第三代高效厌氧反应器。山东绿创环境科技有限公司在现有IC厌氧反应器基础上研发了新型LIC厌氧反应器,并在工程实践中得到了运用。
IC厌氧反应器对比UASB反应器的优势
IC与UASB反应器的不同之处仅仅在于运行方式。最大速度高达2.5~6.0m/h,远远大于UASB反应器中采用的约0.5~2.5m/h的最大速度。因此,在IC反应器内颗粒污泥床处于“膨胀状态”,而且在高的最大速度和产气的搅拌作用下,废水与颗粒污泥间的接触更充分,水力停留时间更短,从而可大大提高反应器的有机负荷和处理效率。由于采用较大的高径比和回流比,在高的最大速度和产气的搅动下,废水与颗粒污泥间的接触更充分,使IC内物质向颗粒污泥内的传质优于混合强度较低的UASB反应器。由于良好的混合传质作用,IC反应器内所有的活性的细菌,包括颗粒污泥内部的细菌都能得到来自废水的有机物。也就是说,在IC内更多微生物参与了水处理过程。因此可允许废水在反应器中有很短的水力停留时间。
6、内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实现的,而 IC 反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。
7、出水稳定性好:利用二级 UASB 串联分级厌氧处理,可以补偿厌氧过程中 K s 高产生的不利影响。Van Lier 在 1994 年证明,反应器分级会降低出水 VFA 浓度,延长生物停留时间,使反应进行稳定。
关于UASB和IC的技术比较

有较长的停留时间,能保证难溶有机物的去除效果
发酵细菌通过胞外酶作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸和醇类等,该类细菌水解过程相当缓慢。IC反应器较短的水力停留时间势必影响不溶性有机物的去除效果
出水效果
稳定
出水中会有许多污泥颗粒,增加后续处理单元负担;在污水可生化性不是太好的情况下,由于水力停留时间比较短去除率远没有UASB高,增加了好氧的负担。另外,IC由于气提内循环,特别是对进水水质不太稳定的,导致IC出水水量极不稳定,出水水质也相对不稳定,有时可能还会出现短暂不出水现象,对后序处理工艺是有影响的
占地面积
大
小
建设难度
工艺成熟、建设简单
结构复杂,设计施工难度高
运行控制难度
方便
难度较高
运行费用
一般
高径比大,增加进水泵动力消耗,增加运行费用
去除率
较高
在厌氧反应中,有机负荷、产气量和处理程度三者之间存在着密切的联系和平衡关系。一般较高的有机负荷可获得较大的产气量,但处理程度会降低。因此,IC反应器的总体去除效率相比UASB反应器来讲要低
调试难度
调试相对简单,具备一定厌氧调试经验即可。
国内缺乏在IC反应器水力条件下培养活性和沉降性能良好的颗粒污泥关键技术。目前国内引进的IC反应器均采用荷兰进口的颗粒污泥接种,增加了工程造价。
运行稳定性
系统构造简单实用,不易产生问题
内循环中泥水混合液的上升易产生堵塞现象,使内循环瘫痪,处理效果变差
建设投资
下面,我将两个系统各自优缺点进行归纳一下:
比较项目
UASB系统
IC系统
容积负荷
5~20kgCOD/m3·d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U A S B和I C反应器异同比较Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998UASB和IC反应器异同比较及应用摘要:本文扼要介绍了UASB和IC反应器的概念和其工作原理及基本构造,并通过列举应用实例详细比较了两者的异同点,最后总结了UASB和IC工艺的特点及前景。
关键词:UASB;IC;比较;啤酒废水Similarities and differences of USAB and ICAbstract: This article succinctly introduced UASB and IC’s concept and its principle of work and the fundamental construction, and through enumerated the application example to compare both similarities and differences spot in detail, finally summarized UASB and IC’s craft characteristic and the prospect.Key words: UASB; IC; compare; beer waste water和IC反应器工艺原理UASB反应器UASB简介上流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB,由荷兰Lettinga教授于1977年发明。
污水自下而上通过UASB。
反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。
因水流和气泡的搅动,污泥床之上有一个污泥悬浮层。
反应器上部有设有三相分离器,用以分离消化气、消化液和污泥颗粒。
消化气自反应器顶部导出;污泥颗粒自动滑落沉降至反应器底部的污泥床;消化液从澄清区出水。
UASB 负荷能力很大,适用于高浓度有机废水的处理。
运行良好的UASB 有很高的有机污染物去除率,不需要搅拌,能适应较大幅度的负荷冲击、温度和pH变化。
UASB构造UASB构造上的特点是集生物反应与沉淀于一体,是一种结构紧凑的厌氧反应器。
反应器主要由进水配水系统,反应区,三相分离器,气室,处理水排除系统这几个部分组成。
图1 UASB反应器UASB工作原理UASB反应器中的厌氧反应过程与其他厌氧生物处理工艺一样,包括水解,酸化,产乙酸和产甲烷等。
通过不同的微生物参与底物的转化过程而将底物转化为最终产物——沼气、水等无机物。
UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。
在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。
要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。
沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。
沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
IC反应器IC简介随着生产发展与资金、能耗、占地等因素间矛盾的进一步突出, 水处理工作者必须努力寻求技术经济更优化的厌氧工艺, 尤其是如何处理生产发展带来的新的高浓度有机废水更使得这一努力成为必要。
内循环厌氧反应器( IC )即是这一背景下产生的新型反应器, 是厌氧废水处理理论与工程实践相结合的产物,体现了厌氧工艺自身发展要求。
1985年, 荷兰 PAQU ES 公司建立了第一个IC中试反应器, 1988年, 第一座生产性规模的IC 反应器投入运行。
目前, IC 反应器已成功应用于啤酒生产、食品加工等行业的生产污水处理中。
由于其处理容量高、投资少、占地省、运行稳定等特点, 引起了各国水处理人员的瞩目,有人视之为第三代厌氧生化反应器的代表工艺之一[1]。
进一步研究开发 IC反应器、推广其应用范围已成为厌氧废水处理的热点之一。
IC构造IC反应器由两个UASB反应器上下叠加串联构成,高度可达16~25m, 高径比一般为4~8, 由5个基本部分组成: 混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。
其中内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等组成。
图2 IC反应器IC工作原理经过调节 pH 和温度的生产废水首先进入反应器底部的混合区 , 并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床进行COD的生化降解, 此处的COD容积负荷很高, 大部分进水COD在此处被降解 , 产生大量沼气。
沼气由一级三相分离器收集。
由于沼气气泡形成过程中对液体所作的膨胀功产生了气体提升作用 , 使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器 , 沼气在该处与泥水分离并被导出处理系统。
泥水混合物则沿泥水下降管进入反应器底部的混合区 , 并与进水充分混合后进入污泥膨胀床区, 形成所谓内循环。
根据不同的进水 COD负荷和反应器的不同构造 , 内循环流量可达进水流量的0. 5~5倍[2]。
经膨胀床处理后的废水除一部分参与内循环外 , 其余污水通过一级三相分离器后, 进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程 , 提高和保证了出水水质。
由于大部分 COD已被降解, 所以精处理区的COD负荷较低 , 产气量也较小。
该处产生的沼气由二级三相分离器收集, 通过集气管进入气液分离器并被导出处理系统。
经过精处理区处理后的废水经二级三相分离器作用后, 上清液经出水区排走 , 颗粒污泥则返回精处理区污泥床。
和IC反应器国内外研究现状UASB反应器国内外研究现状UASB 反应器作为如今高效厌氧反应器中应用最广泛的反应器之一,具有能耗低、造价低、能产生生物能等特点,因而是值得推广应用的一种新型生化厌氧处理反应器。
长期以来被广泛应用于各种类型的废水处理,在国内外的应用研究中也常常出现。
在国外如美国、芬兰、泰国、瑞士、加拿大和奥地利都曾利用UASB反应器处理各种生产废水,如甜菜制糖加工废水、啤酒和酒精加工废水、生活污水、牛奶废水的处理等,都取得了较好的处理效果。
我国于1981年开始了对UASB反应器的试验研究,许多单位在处理高浓度有机废水时采用 UASB 反应器进行处理,已取得了较好的成效。
对于UASB反应器等厌氧处理构筑物处理高浓度有机废水,其出水一般未能达到废水的最终排放要求,所以往往采取与其他处理工艺相结合的方式。
在90年代末期出现了UASB与其他工艺联合使用的例子,如 UASB-AF工艺处理维生素C废水,上流式厌氧污泥床过滤器处理涤纶废水等,提高了处理效果[3]。
IC反应器国内外研究现状从 IC 反应器的工程实践看,国内沈阳、上海率先采用了 IC工艺处理啤酒生产废水。
以沈阳华润雪花啤酒有限公司采用的IC反应器为例[4], 反应器高16 m, 有效容积70 m 3 , 每天处理平均COD浓度为4300 mg / L 的啤酒废水 400 m 3 ,在COD去除率稳定在80%的条件下, 容积负荷高达25~30 kg /m 3·d。
公司在解决处理生产废水问题的同时, 经济上也获得较大收益:每年节省排污费 75万元 , 沼气回收利用价值 45万元, 相比之下, 反应器年运行费用仅为62万元。
可见, IC 工艺达到了技术经济的优化。
IC 工艺在国外的应用以欧洲较为普遍, 运行经验也较国内成熟许多, 不但已在啤酒生产、土豆加工、造纸等生产领域内的废水处理上有成功应用, 而且正日益扩展其应用范围, 规模也越来越大。
荷兰SEN SUS 公司就建造了容积为 1100 m 3的IC 反应器处理菊粉 ( inuline ) 生产废水[5] , 而据估算, 如采用UASB反应器处理同样废水,反应器容积将达 2200 m 3 ,投资及占地也将大大增加。
1995年该反应器初期运行时,日处理 COD浓度约为7200 mg / L 的废3960 m 3 ,水力负荷达 30 kg COD /m 3·d, COD去除率稳定在70%~80%。
和IC反应器异同比较UASB在国内广泛应用,也得到许多水处理专业人士的认可。
IC是一种内循环反应器,其构造就相当于将两个UASB叠加起来,可以看成UASB的衍生系统。
IC反应器与UASB 反应器处理相同废水的对比结果如表1[6]。
表1在给出 IC反应器实际应用的同时, 对采用UASB工艺处理相同废水进行了比较。
可以看出, IC反应器很大程度上解决了UASB的相对不足, 大大提高了单位反应器容积的处理容量。
和IC的应用实例山东青援食品集团玉米淀粉废水UASB处理工艺玉米淀粉废水含有丰富的碳水化合物及氮、磷等营养物, COD Cr界于10000~20000 mg/L 之间, 属可生化性较好的高浓度有机废水, 适宜采用生化处理工艺。
废水中悬浮物及胶体蛋白含量较高, 含量过高对厌氧污泥系统的发展会产生不利影响。
玉米浸泡过程中会有少量 SO32-及SO42-进入废水系统, 在厌氧处理过程中, 这些含硫的化合物被微生物还原为硫化氢, 当亚硫酸盐及硫化氢超过一定值时, 就会对厌氧系统产生一定的抑制作用。
原水→初沉池→调节池→UASB装置→厌沉池→CASS池→出水浓缩池污泥脱水图3 玉米淀粉废水处理工艺流程该工程 UASB 装置设计尺寸为:θ8×16 m , 有效容积750 m3 , 停留时间36 h。
UASB装置的主要作用是将废水中高分子有机物降解为低分子有机物, 并去除废水中大部分有机物。
燕京啤酒集团啤酒废水IC处理工艺流程2004年5月,燕京集团总部投资500多万元,从上海荷兰帕斯公司引进了好氧、厌氧相结合的污水处理系统的IC反应器,新技术工艺不仅大大节约了用水量,各项污染物排放指标也远低于国家规定的排放标准,使污水排放达到绿色奥运标准。
沼气原水→提升泵→格栅→调节池→提升泵→IC反应器→SBR反应池→出水污泥浓缩池→污泥外运图4 改造后的污水处理工艺流程简图原水中COD值一般在1300-1500 mg/L,经过IC反应器后,COD降到600-700 mg/L,通过SBR处理后,出水COD在60 mg/L以下,符合二级出水标准。