平面直角坐标系整套中考真题一
专题08 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题08 平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,43.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( ) A .()0,1- B .1,05⎛⎫- ⎪⎝⎭ C .1,05⎛⎫ ⎪⎝⎭ D .()0,17.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .95x y =⎧⎨=-⎩8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( )A .向左平移2个单位B .向左平移1个单位C .向右平移2个单位D .向右平移1个单位 9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.10.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A .甲B .乙C .丙D .丁13.(2022·江西)甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m h 随飞行时间()s t 的变化情况,则这只蝴蝶飞行的最高高度约为( )A .5mB .7mC .10mD .13m15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .119.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( ) A . B .C . D . 20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .二、填空题 22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.29.(2022·浙江杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________. 30.(2022·甘肃武威)若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.32.(2022·湖北黄冈)如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?38.(2022·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市y与停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km x之间的对应关系.离开学生公寓的时间min请根据相关信息,解答下列问题:(1)填表:(2)填空:①阅览室到超市的距离为________km ;②小琪从超市返回学生公寓的速度为________km /min ; ③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.39.(2022·浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .40.(2022·陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.。
2023中考数学平面直角坐标系历年真题及答案

2023中考数学平面直角坐标系历年真题及答案【2023中考数学平面直角坐标系历年真题及答案】一、2019年中考数学真题及答案题目:在平面直角坐标系中,已知点A(2,3),B(5,5),C (4,4)和D(1,2),那么△ABC和△ABD的面积之比是多少?(答案:2:1)解析:我们可以利用平面直角坐标系中两点间距离的公式来计算△ABC和△ABD的底边和高的长度,进而得出它们的面积。
设△ABC的底边为BC,高为AH,△ABD的底边为BD,高为EK。
根据两点间距离的公式,可得:BC = √[(x2 - x1)² + (y2 - y1)²]BD = √[(x4 - x2)² + (y4 - y2)²]代入已知点的坐标得到:BC = √[(4-5)² + (4-5)²] = √2BD = √[(1-5)² + (2-5)²] = √18同理,可以求出AH和EK的长度:AH = |y3 - y1| = |3-5| = 2EK = |y4 - y2| = |2-5| = 3根据面积公式S = 1/2 ×底边 ×高,可以计算△ABC和△ABD的面积:S△ABC = 1/2 × BC × A H = 1/2 × √2 × 2 = √2S△ABD = 1/2 × BD × EK = 1/2 × √18 × 3 = 3√2所以,△ABC和△ABD的面积之比为:√2 : 3√2 = 1 : 3。
二、2020年中考数学真题及答案题目:在平面直角坐标系中,已知一点P的坐标为(3,4),则与点P关于x轴对称的点的坐标是()。
(答案:(3,-4))解析:与点P关于x轴对称的点,其y坐标取相反数。
所以,与点P关于x轴对称的点的坐标为(3,-4)。
三、2021年中考数学真题及答案题目:已知点A(2,1),B(-3,1),C(-4,-2),求△ABC 的周长。
中考数学 真题精选 专题试卷 平面直角坐标系与函数(含答案解析) (含答案解析)

平面直角坐标系与函数一.选择题(共5小题)1.(•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()2.(•柳州)如图,点A(﹣2,1)到y轴的距离为()3.(•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()4.(•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P的坐标是()=1==335 (5)5.(•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是().景仁宫(4,2)二.填空题(共11小题)6.(•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).7.(•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.8.(•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).=5=59.(•黑龙江)如图,在平面直角坐标系中,点A(0,)、B(﹣1,0),过点A作AB的垂线交x轴于点A1,过点A1作AA1的垂线交y轴于点A2,过点A2作A1A2的垂线交x轴于点A3…按此规律继续作下去,直至得到点A为止,则点A坐标为(﹣31008,0),.))10.(•绵阳)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).11.(•六盘水)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:(2,7).12.(•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B处的坐标是(10,8)..13.(•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).,横坐标保持不变,纵坐标分别变为原来的,则点14.(•梅州)函数中,自变量x的取值范围是x≥0.15.(•酒泉)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.16.(•大庆)函数y=的自变量x的取值范围是x>0.。
2024年中考数学一轮专题特训:平面直角坐标系含参考答案.docx

2024年中考数学一轮专题特训:平面直角坐标系一、单选题A .()5,2B .(-3.如图,在平面直角坐标系中,菱形标为(10)-,,120BCD ∠=︒,则点A .()2,2-B .(4.如图,在平面直角坐标系A .4B .55.如图,在平面直角坐标系xOy 中,A.22B.336.如图,在平面直角坐标系中,点边作矩形OABC.动点,E F分别从点,OA BC向终点,A C移动.当移动时间为A.10B.910C 7.如图,平面直角坐标系中,A为第一象限一点,绕O点逆时针旋转30︒,此时点A的对应点1AA.()33,B.(8.如图,在四边形ABCD中,90ADC∠=︒,CD x∥轴,旋转90︒,则第2023次旋转结束时,点A .()8,2B .()8,2-C .()2,8D .()2,8--二、填空题10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为ABCD 的边AB 在x 11.如图所示,动点反弹时反射角等于入射角,当点13.如图,在平面直角坐标系中,点子跳蚤从坐标原点O出发,第一次跳跃到点对称;第二次跳跃到点14.如图,菱形ABCD的顶点B在x轴上,的坐标为(0,1),则点D的坐标为P x y 15.在平面直角坐标系中,点(),P'叫做点P的和谐点.已知点P这样由1P依次得到2P、3P、4P…三、解答题17.在平面直角坐标系中,ABC 是等腰直角三角形,且90ACB ∠=︒,AC BC =,顶点A 、C 分别在y 轴、x 轴上.(1)如图,已知点()0,2A -,()1,0C ,点B 在第四象限时,则点B 的坐标为_________________;(2)如图,点C 、A 分别在x 轴、y 轴负半轴上,BC 边交y 轴于点D ,AB 边交x 轴于点E ,若AD 平分BAC ∠,点B 坐标为(),m n .探究线段AD 、OC 、OD 之间的数量关系.请回答下列问题:①写出点C 的坐标为_____________,点A 的坐标为_____________,点D 的坐标为_____________;②直接写出线段AD 、OC 、OD 之间的数量关系:_______________.18.如图,ABC 三个顶点的坐标分别为()4,1A -,()3,3B -,()1,2C -.(1)作出ABC 关于y 轴对称的A B C ''' ,并写出A '的坐标;(2)求出ABC 的面积;(3)在x 轴上画出点P ,使PA PC +最小,并写出点P 的坐标.(不写作法,保留作图痕迹)19.如图,在平面直角坐标系xOy 中,点A ,B 的坐标分别为()0,2A ,()8,8B ,点(),0C m 为x 轴正半轴上一个动点.(1)当4m =时,写出线段,AC BC 的长;(2)求ABC 的面积(用含m 的代数式表示);(3)当点C 运动时,是否存在ABC 为直角三角形(不以点C 为直角顶点)?如果存在,请求出这个三角形的面积;如果不存在,请说明理由.20.如图,ABC 在正方形网格中,若点(4,7)A -,点(6,1)B -,解答下列问题:(1)直接在图中画出直角坐标系,并写出点C 的坐标;(2)在图中作出ABC 关于x 轴对称的111A B C △;(3)在y 轴上找一点P ,使得PA PC +的值最小,并求出此时PA PC +的值.21.在平面直角坐标系中,()5,0A -,()0,5B ,点C 为x 正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若()3,0C ,求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上一动点,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠.22.如图①,在ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,易证明BEC CDA ≌,我们将这个模型称为“一线三直角”.接下来我们就利用这个模型来解决一些问题:(1)如图②,将一块三角板ACB 放置在平面直角坐标系中,90ACB ∠=︒,AC BC =,点A 的坐标为()0,2,点C 的坐标为()1,0-,点B 在第二象限,求点B 的坐标;(2)如图③,在平面直角坐标系中,90ACB ∠=︒,AC BC =,点C 的坐标为()0,1-,点A 的坐标为()2,0,求点B 的坐标.参考答案:∵点A 的坐标为()9,0,点C 的坐标为()0,3∴()9,3B ,2239310AC =+=则9OA =,9BC OA ==∵菱形的边长为2,ABC ∠∴2CO DC ==,DCE ∠在Rt CDE △中,CE DE=∴2222CE DE CD +==【点睛】本题主要考查了平面直角坐标系中求点的坐标,性质是解题的关键.15.()4,1-【分析】利用点(),P x y 的和谐点的定义分别写出点次函数解析式,利用待定系数法求得该直线方程是1y x =+;最后,利用等腰直角三角形的性质推知点1n B -的坐标,然后将其横坐标代入直线方程1y x =+求得相应的y 值,从而得到点n A 的坐标,再将8n =代入即可得出答案.【详解】解:如图, 点1B 的坐标为(1,0),点2B 的坐标为(3,0),11OB ∴=,23OB =,则122B B =.11A B O 是等腰直角三角形,1190A OB ∠=︒,111OA OB ∴==.∴点1A 的坐标是(0,1).同理,在等腰直角221A B B △中,21290A B B ∠=︒,21122A B B B ==,则2(1,2)A .点1A 、2A 均在一次函数y kx b =+的图象上,∴12b k b=⎧⎨=+⎩,解得11k b =⎧⎨=⎩,∴该直线方程是1y x =+.点3A ,2B 的横坐标相同,都是3,∴当3x =时,4y =,即3(3,4)A ,则324A B =,3(7,0)B ∴.同理,4(15,0)B ,⋯(21,0)n n B -,∴当121n x -=-时,112112n n y --=-+=,即点n A 的坐标为11(21,2)n n ---.8A ∴的坐标为:()818121,2---即()127,128故答案为:()127,128.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点n B 的坐标的规律.17.(1)()3,1-;(2)①()0n -,,()0,m n --,()0,m n -;②22AD OC OD=+【分析】(1)过B 点作x 轴垂线,垂足为D ,由题意可证得()AAS OCA DBC ≌,故2CD OA ==,1BD OC ==,3OD OC CD =+=,即可知B 点坐标为()3,1-;(2)过B 点作x 轴垂线,垂足为F ,连接DE ,①由题意可证得()AAS OCA FBC ≌,故可求ACE △为等腰三角形,则可证得()AAS ODE FEB ≌,便可知OC n =,OA OF OC m n =+=+,DO OF OE m n =-=-,即点C 的坐标为()0n -,,点A 的坐标为()0,m n --,点D 的坐标为()0,m n -;②由①问知2AD OD AO m n m n m =+=-++=,OC n =,OD m n =-,故有22AD OC OD =+.【详解】(1)解:过B 点作x 轴垂线,垂足为D ,由题意知2AO =,1OC =,AC BC =,90COA BDC ∠=∠=︒∵90OCA OAC ∠+∠=︒,90OCA DCB ∠+∠=︒,∴OAC BCD ∠=∠,在OCA 和DBC △中有90OAC BCD COA BDC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS OCA DBC ≌∴2CD OA ==,1BD OC ==,3OD OC CD =+=,故B 点坐标为()3,1-;故答案为:()3,1-;(2)过B 点作x 轴垂线,垂足为F ,连接DE ,∵点B 坐标为(),m n ,且点B 在第一象限∴0m >,0n >,BF n =,OF m =,①由题意知BC AC =,90COA BFC ∠=∠=︒,∵90BCF OAC ∠+∠=︒,90OCA OAC ∠+∠=︒,∴OAC BCF∠=∠在OCA 和FBC 中有90OAC BCF COA BFC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS OCA FBC ≌∴BF CO =,OA CF=∵BF n =,OF m =,故OC n =,OA OF OC m n =+=+,∵AD 平分BAC∠∴OAC OAE∠=∠∴OCA OAC OEA OAE∠+∠=∠+∠∴AC AE=【点睛】本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是周围轴对称变换的性质,学会利用轴对称解决最短问题.19.(1)25AC =,45BC =(2)38ABC S m =+ (3)存在m 的值为32或14,使ABC 为直角三角形,其面积分别为【分析】(1)过点BE x ⊥作轴于E ,由A ,4OC =,再由勾股定理可求解;(2)分两种情况讨论,由面积关系可求解;(3)分三种情况讨论,由勾股定理可求解.【详解】(1)解:如图,过点B 作BE x ⊥∵()0,2A ,()8,8B ,()4,0C ,∴8BE =,8OE =,2AO =,4OC =,(2)解:当点C 在线段∵()0,2A ,()8,8B ,(C ∴8BE =,8OE =,AO ∴()1S AO BE =⨯+⨯点(2,4)C -.(2)如图,111A B C △即为所求.(3)如图,作点C 关于y 轴的对称点C ',连接此时PA PC +最小,此时2236PA PC PA PC AC ''+=+==+=【点睛】本题考查了勾股定理,坐标与图形,画轴对称图形,熟练掌握轴对称的性质是解题的关键.21.(1)(0,3)(2)见详解【分析】(1)证明AOE BOC △△≌,由全等三角形的性质可得(2)过点O 作OM DA ⊥于点M ,过点O 作∵AOE BOC △△≌,∴AE BC =,AOE BOC S S =△△,∴1122AE OM BC ON ⨯=⨯,∴OM ON =,证明AOE BOC △△≌是解题关键.22.(1)(3,1)B -(2)(1,1)B -【分析】(1)过点B 作BD ⊥x 轴于点D ,由“一线三直角”得CBD ACO ≌△△,则1BD OC ==,2CD OA ==,即可求解.(2)过点B 作BE y ⊥轴于点E ,证CEB AOC ≌△△,得1BE OC ==,2CE OA ==,则1OE CE OC =-=,即可求解.【详解】(1)过点B 作BD x ⊥轴于点D ,则90BDC COA ∠=∠=︒,如图2所示:∵点A 的坐标为(0,2),点C 的坐标为(1,0)-,∴=2OA ,1OC =,∵ABC 是等腰直角三角形,∴90ACB ∠=︒,=AB BC ,由“一线三直角”,得CBD ACO ≌△△(AAS)∴1BD OC ==,2CD OA ==,∴3OD OC CD =+=,∴点B 的坐标为(3,1)-.(2)如图3,过点B 作BE y ⊥轴于点E ,∵点C 坐标为(0,1)-,点A 的坐标为(2,0),∴1OC =,=2OA ,∵90BEC AOC ACB ∠=∠=∠=︒,∴ACO CBE ∠=∠,∵CB CA =,∴CEB AOC ≌△△(AAS),∴1BE OC ==,2CE OA ==,∴1OE CE OC =-=,∴点B 坐标为(1,1)-.【点睛】此题考查了全等三角形的判定与性质、坐标与图形的性质等知识,解题的关键是正确作出辅助线构造全等三角形.。
2025年广州市中考数学一轮复习:平面直角坐标系(附答案解析)

第1页(共18页)2025年广州市中考数学一轮复习:平面直角坐标系一.选择题(共10小题)1.已知点M (3,2)与点N (a ,b )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为4,那么点N 的坐标是()A .(4,﹣2)或(﹣5,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,2)或(﹣4,2)D .(4,2)或(﹣1,2)2.已知点A 的坐标为(2,3),直线AB ∥y 轴,且AB =5,则点B 的坐标为()A .(2,8)B .(2,8)或(2,﹣2)C .(7,3)D .(7,3)或(﹣3,3)3.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A .3排5号B .5排3号C .4排3号D .3排4号4.在平面直角坐标系中,点P (﹣2,1)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限5.点(3,﹣5)到y 轴的距离是()A .3B .5C .﹣5D .﹣36.在平面直角坐标系中,点A (6,﹣5)所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,矩形ABCD 的对角线交于坐标原点O ,已知点D 的坐标为(﹣4,3),则点B 的坐标为()A .(4,﹣3)B .(﹣4,3)C .(3,﹣4)D .(4,3)8.在平面直角坐标系中,第一象限内的点P (a +3,a )到y 轴的距离是5,则a 的值为()A .﹣8B .2或﹣8C .2D .89.如图.已知小华的坐标为(﹣2.﹣1).小亮的坐标为(﹣1,0),那么小东的坐标应该是()。
中考数学专题复习卷:平面直角坐标系(含解析)

平面直角坐标系一、选择题1.在平面直角坐标系中,点P( -1, 2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点 P( x﹣ 1, x+1)不行能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在平面直角坐标系中,点P( -2, x2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为 4,则点的坐标是()A. B. C. D.5.在平面直角坐标系中,以原点为对称中心,把点 A (3, 4)逆时针旋转90°,获得点 B ,则点 B 的坐标为()A.( 4, -3)B.( -4, 3)C.( -3, 4)D. ( -3, -4)6. 抛物线(m是常数)的极点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在平面直角坐标系中,点对于原点的对称点的坐标是()A. B. C. D.8. 已知 a、b、 c 为常数,点P(a, c)在第二象限,则对于x 的方程 ax2 +bx+c=0 根的状况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 没法判断9.假如直线AB 平行于 y 轴,则点 A ,B 的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图, CB=1 ,且 OA=OB , BC⊥ OC,则点 A 在数轴上表示的实数是()A. B.﹣ C. D.﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方剂.如图,棋盘中心方剂的地点用(﹣1, 0)表示,右下角方剂的地点用( 0,﹣ 1)表示.小莹将第 4 枚圆子放入棋盘后,全部棋子组成一个轴对称图形.他放的地点是()A. (﹣ 2,1)B. (﹣ 1, 1)C. ( 1,﹣ 2)D. (﹣ 1,﹣ 2)12.如图,小手遮住的点的坐标可能为()A. ( -4, -5)B. ( -4, 5)C. (4,5)D. ( 4, -5)二、填空题13.假如在 y 轴上,那么点P 的坐标是________.14.平面直角坐标系内,点P( 3, -4)到y 轴的距离是________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为极点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上成立平面直角坐标系,假如“相”和“兵”的坐标分别是(3,-1)和( -3,1),那么“卒”的坐标为________。
中考数学平面直角坐标系训练题库(含答案)(102页)

中考数学平面直角坐标系训练题库(含答案)(102页)一、选择题1. 在平面直角坐标系中,点P(2, 3)位于()。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 已知点A(3, 4)和点B(2, 1),则线段AB的中点坐标为()。
A. (1/2, 3/2)B. (1/2, 7/2)C. (1/2, 3/2)D. (1/2, 3/2)答案:B3. 在平面直角坐标系中,点(3, 3)关于原点对称的点的坐标是()。
A. (3, 3)B. (3, 3)C. (3, 3)D. (3, 3)答案:C4. 已知点A(2, 3)和点B(2, 3),则线段AB的长度为()。
A. 4B. 6C. 8D. 10答案:A5. 在平面直角坐标系中,点(4, 5)关于x轴对称的点的坐标是()。
A. (4, 5)B. (4, 5)C. (4, 5)D. (4, 5)答案:A二、填空题6. 在平面直角坐标系中,点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是______。
答案:(3, 4)7. 已知点A(0, 2)和点B(4, 0),则线段AB的斜率为______。
答案:1/28. 在平面直角坐标系中,点(5, 0)关于原点对称的点的坐标是______。
答案:(5, 0)9. 已知点A(2, 1)和点B(4, 3),则线段AB的中点坐标为______。
答案:(1, 2)10. 在平面直角坐标系中,点(0, 3)关于y轴对称的点的坐标是______。
答案:(0, 3)(后续题目及答案请见完整题库)三、解答题11. 在平面直角坐标系中,有一矩形ABCD,顶点A的坐标为(1, 2),顶点C的坐标为(3, 1)。
求矩形对角线AC的长度。
解:我们可以通过坐标计算出对角线AC的长度。
设点B的坐标为(x, y),则点D的坐标为(3, y)。
由于ABCD是矩形,所以AB和CD平行且等长,AD和BC平行且等长。
中考数学《平面直角坐标系》专项复习综合练习题-附带答案

中考数学《平面直角坐标系》专项复习综合练习题-附带答案一、单选题1.已知点P的坐标为(4 7),则点P到x轴的距离是()A.4 B.5 C.7 D.112.平面直角坐标系,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P坐标是()A.(2 ﹣5)B.(﹣5 2)C.(﹣2 5)D.(5 ﹣2)3.如图所示,若在象棋盘上建立平面直角坐标系使“将”位于点(1 -2),“象”位于点(3 -2) 则“炮”位于点()A.(1 3) B.(-2 0) C.(-1 2) D.(-2 2)4.如图,在四边形ABCD中,AD//BC//x轴,下列说法正确的...是().A.A与D的横坐标相同B.C与D的横坐标相同C.B与D的纵坐标相同D.B与C的纵坐标相同5.如图△ABC向下平移n个单位得到△A'B'C’,若点B的坐标为(﹣2 1),则点B的对应点B'的坐标为()A.(﹣2 1+n)B.(﹣2 1﹣n)C.(﹣2+n 1)D.(﹣2﹣n 1)6.在平面直角坐标系xOy中点P的坐标为(1 1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是()A.(1 -1) B.(-1 1) C.(3 1) D.(1 2)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b)则点P在A′B′上的对应点P′的坐标为()A.(a−2,b+3)B.(a−2,b−3)C.(a+2,b+3)D.(a+2,b−3)8.如图是利用平面直角坐标系画出的天安门附近的部分建筑分布图若这个坐标系分别以正东、正北方向为x轴、y轴的正方向表示弘义阁的点的坐标为(﹣1 ﹣1)表示本仁殿的点的坐标为(2 ﹣2)则表示中福海商店的点的坐标是()A.(﹣4 ﹣3)B.(﹣2 ﹣1)C.(﹣3 ﹣4)D.(﹣1 ﹣2)二、填空题9.点M(x-1 -3)在第四象限则x的取值范围是10.若点A(-2 n)在x轴上则点B(n-2 n+1)在第象限 .11.将点A(﹣2 5)先向下平移3个单位再向右平移2个单位后则得到点B 则点B的坐标为.12.如图,平面直角坐标系xOy中将四边形ABCD先向下平移再向右平移得到四边形A1B1C1D1已知A(-3 5) B(-4 3) A1(3 3)则点B1标为.13.如图,在平面直角坐标系中x轴上有一点A(2,0)点A第1次向上平移2个单位至点A1(2,2)接着又向左平移2个单位至点A2(0,2)然后再向上平移2个单位至点A3(0,4)向左平移2个单位至点A4(−2,4)照此规律平移下去点A平移至点A2023时点A2023的坐标是.三、解答题14.已知在平面直角坐标系中点P(3m−6,m+1)试分别根据下列条件求出点P的坐标.(1)若点P在y轴上求出点P的坐标.(2)点A的坐标(1,−2)若AP∥x轴求点P的坐标.15.如图所示△ABO中 A B两点的坐标分别为(2 4)(7 2) C G F E分别为过A B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB的面积.16.下图是北京市三所大学位置的平面示意图图中小方格都是边长为1个单位长度的正方形若清华大学的坐标为(0 3)北京大学的坐标为(﹣3 2).(1)请在图中画出平面直角坐标系并写出北京语言大学的坐标;(2)若中国人民大学的坐标为(﹣3 ﹣4)请在坐标系中标出中国人民大学的位置.17.如图,△ABC的三个顶点坐标分别为A(0,2)B(−3,1)C(−2,−2).(1)将△ABC向右平移2个单位作出△A′B′C′;(2)直接写出A′B′C′三点的坐标.18.如图所示在平面内有四个点它们的坐标分别是A(﹣1 0) B(2+ √3 0) C(2 1) D(0 1).(1)依次连结A、B、C、D 围成的四边形是一个形;(2)求这个四边形的面积;(3)将这个四边形向左平移√3个单位长度四个顶点的坐标分别为多少?参考答案 1.C 2.D 3.B 4.D 5.B 6.A 7.A 8.A 9.x>1 10.二 11.(0 2) 12.(2 1) 13.(−2020,2024)14.(1)解:点P(3m −6,m +1) 点P 在y 轴上 ∴3m −6=0 解得m =2∴m +1=3∴点P 的坐标为(0,3).(2)解:点P(3m −6,m +1) 点A 的坐标(1,−2) AP ∥x 轴 ∴m +1=−2 解得m =−3∴3m −6=−15∴点P 的坐标为(−15,−2). 15.解:∵A (2 4) B (7 2)∴AC=2、CO=4、OE=7、BE=2、AF=4、EF=OE ﹣OF=7﹣2=5 由图可知 S △AOB =S 矩形ACOF +S 梯形AFEB ﹣S △ACO ﹣S △BOE =2×4+12(2+4)×5﹣12×2×4﹣12×7×2=8+15﹣4﹣7 =23﹣11 =12.16.(1)解:如图,北京语言大学的坐标:(3 1);(2)解:中国人民大学的位置如图所示:17.(1)解:如图,△A′B′C′即为所求.(2)解:据图可知:A′(2,2)B′(−1,1)C′(0,−2).18.(1)梯(2)解:∵A(﹣1 0) B(2+ √3 0) C(2 1) D(0 1)∴AB=3+ √3 CD=2∴四边形ABCD的面积= 12(AB+CD)•OD= 12(3+ √3)×1= 3+√32(3)解:A′(﹣1﹣√3 0) B′(2 0) C′(2﹣√3 1) D′(﹣√3 1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系整套中考真题一一、选择题1. (2011山东日照,7,3分) 以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )(A )(3,3) (B )(5,3) (C )(3,5) (D )(5,5) 【答案】D2. (2011山东泰安,12 ,3分)若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转900得到OA ',则点A '的坐标为( ) A.(3,-6) B.(-3,6) C.(-3,-6) D.(3,6) 【答案】A3. (2011宁波市,5,3分)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是A . (-3,2)B . (3,-2)C . (-2,3)D . (2,3)【答案】C4. (2011浙江绍兴,10,4分)李老师从“淋浴龙头”受到启发,编了一个题目: 在数轴上截取从0到3的队员线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A B 、重合于点P ,如图2;建立平面直角坐标系,平移此三角新,使它关于y 轴对称,且点P 的坐标为(0,2),PM 与x 轴交于点(,0)N n ,如图3.当3m =时,求n 的值. 你解答这个题目得到的n 值为( )A.423-B.234-C.233-D.2333ABM3ABPMxyPM N【答案】A5. (2011台湾台北,17)如图(七),坐标平面上有两直线L 、M ,其方程式分别为y =9、y=-6。
若L 上有一点P ,M 上有一点Q ,PQ 与y 轴平行,且PQ 上有一点R ,PR :RQ =1:2,则R 点与x轴的距离为何?A .1B .4C .5D .10【答案】B6. (2011台湾全区,15)图(三)的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) .若在没有滑动的情况下,将此正五边形沿着x 轴向右滚动,则滚动过程中,下列何者会经过点(75 , 0)?A . AB . BC . CD . D【答案】B第10题图1第10题图2第10题图37. (2011台湾全区,16)已知数在线A、B两点坐标分别为-3、-6,若在数在线找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列何者不可能为C与D的距离?A. 0 B. 2 C. 4 D 6【答案】C8.(2011甘肃兰州,8,4分)点M(-sin60°,cos60°)关于x轴对称的点的坐标是A.(32,12)B.(32-,12-)C.(32-,12)D.(12-,32-)【答案】B9.(2011湖南常德,12,3分)在平面直角坐标系中,□ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2)则顶点D的坐标为()A.(7,2) B. (5,4) C.(1,2) D. (2,1)【答案】C10. (2011江苏宿迁,2,3分)在平面直角坐标中,点M(-2,3)在(▲)A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B11.(2011山东滨州,8,3分)如图,在平面直角坐标系中,正方形ABCD的顶点A、C 分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为( )A.(-4,5)B.(-5,4)C.(5,-4)D.(4,-5)【答案】A12. (2011山东济宁,10,3分)在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了500m 到达目的地C ,此时小霞在营地A 的( ) A. 北偏东20︒方向上 B.北偏东30︒方向上 C. 北偏东40︒方向上 D. 北偏西30︒方向上【答案】C13. (2011四川广安,8,3分)在直角坐标平面内的机器人接受指令“[],A α”(α≥0,0︒<A <180︒)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[]2,60︒后位置的坐标为( )A .(1,3-)B .(1,3--)C .(3,1--)D .(3,1-) 【答案】Cyx M OCBA(第8题图)14. (2011四川内江,12,3分)如图,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E ,那么点D 的坐标为A .(45-,125)B .(25-,135)C .(12-,135)D .(35-,125)【答案】A15. (2011湖南怀化,8,3分)如图4,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)【答案】C16. (2011湖北武汉市,9,3分)在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A .64.B .49.C .36.D .25.A BC DE Oxy【答案】B17. (2011湖南衡阳,8,3分)如图所示,在平面直角坐标系中,菱形MNPO 的顶点P坐标是(3,4),则顶点M 、N 的坐标分别是( ) A .M (5,0),N (8,4) B .M (4,0),N (8,4) C .M (5,0),N (7,4) D .M (4,0),N (7,4)【答案】A18. (2011广东肇庆,6,3分)点M (2-,1)关于x 轴对称的点的坐标是A . (2-,1-)B . (2,1)C .(2,1-)D . (1,2-)【答案】A19. (2011湖南永州,16,3分)对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(y x +,y x -);且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).如P 1(1,2 )=(3,1-),P 2(1,2 )= P 1(P 1(1,2 ))= P 1(3,1-)=(2,4),P 3(1,2 )= P 1(P 2(1,2 ))= P 1(2,4)=(6,2-).则P 2011(1,1-)=( ) A .(0,21005) B .(0,-21005) C .(0,-21006) D .(0,21006)【答案】D .20.(20011江苏镇江,7,2分)在平面直角坐标系中,正方形ABCD 的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y 轴上有一点P(0,2).作点P 关于点A 的对称点1P ,作点1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作点3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作点5P 关于点B 的对称点6P …,按此操作下去,则点2011P 的坐标为( )A.(0,2)B. (2,0)C. (0,-2)D.(-2,0) 答案【D 】21. (2011内蒙古乌兰察布,8,3分)在平面直角坐标系中,已知线段AB 的两个端点分别是A( 4 ,-1).B(1,1) 将线段AB 平移后得到线段A 'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为( )A . ( -5 , 4 )B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1) 【答案】A22. (2011湖北鄂州,14,3分)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4B .8C .16D .82【答案】C第14题A B CO yx23. (2011贵州安顺,10,3分)一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O)B.(5,0)C .(0,5)D .(5,5)【答案】B24. (2011山东枣庄,4,3分)在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B25. (2011山东枣庄,12,3分)如图,点A 的坐标是(22),,若点P 在x 轴上,且APO△是等腰三角形,则点P 的坐标不可能...是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 【答案】D26. (2010湖北孝感,11,3分)如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA ’B ’C ’的位置.若OB=23,∠C=120°,则点B ’的坐标为( )1 2 3 4-1 1 2 xy A第10题图A. ()3,3 B. ()3,3- C. ()6,6 D.()6,6-【答案】D27. (2011湖南湘潭市,6,3分)在平面直角坐标系中,点A (2,3)与点B 关于x 轴对称,则点B 的坐标为A.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)【答案】D28. (2011湖北宜昌,13,3分)如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形OABC 绕点0 旋转180°,旋转后的图形为矩形OA 1B 1C 1,那么点B 1 的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1)(第13题图)【答案】C 二、填空题1. (2011山东德州9,4分)点P (1,2)关于原点的对称点P ′的坐标为___________. 【答案】(-1,-2)2. (2011山东威海,14,3分)正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点的坐标(0,4),B 点的坐标(-3,0),则C 点的坐标是 .【答案】(-1,3)3. (2011浙江台州,15,5分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”。