2013重庆中考数学填空题专项练习(第17、18题)-名校题集
2013重庆中考数学试题及答案(09修订版).

数学中考 第1页(共16页) 数学中考 第2页(共16页)重庆市2013年初中毕业暨高中招生考试(模拟)数 学 试 卷(本卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴公式为2b x a=-.一、选择题:(本大题10个小题,每小题4分,共40分)1.5-的相反数是( ) A .5B .5-C .15D .15-2.计算322x x ÷的结果是( ) A .xB .2xC .52xD .62x3.函数13y x =+的自变量x 的取值范围是( )A .3x >-B .3x <-C .3x ≠-D .3x -≥4.如图,直线A B C D 、相交于点E ,D F AB ∥.若100A E C ∠=°,则D ∠等于( ) A .70° B .80° C .90° D .100° 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,O ⊙是A B C △的外接圆,AB 是直径.若80B O C ∠=°, 则A ∠等于( )A .60°B .50°C .40°D .30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )A .B .C .D .8.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n9.如图,在矩形A B C D 中,2A B =,1B C =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么A B P △的面积S 与点P 运动 的路程x 之间的函数图象大致是( )10.如图是二次函数y=ax 2+bx+c 的图象,下列结论中:①abc >0;②b=2a ;③a+b+c <0;④a-b+c >0; ⑤4a+2b+c <0.正确的个数是( ) A .4个 B .3个 C .2个 D .5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 万元. 12.分式方程1211x x =+-的解为 .13.已知A B C △与D EF △相似且面积比为4∶25,则A B C △与D EF △的相似比为 .14.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .15.在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AO B △.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AO B △内的概率为 .16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.A .B .C .D .CAE BFD 4题图……第1个第2个第3个6题图D C PBA题图三、解答题:(本大题4个小题,每小题6分,共24分)17.计算:1021|2|(π(1)3-⎛⎫-+⨯---⎪⎝⎭.18.解不等式组:303(1)21xx x+>⎧⎨--⎩,①≤.②19.如图所示,为求出河对岸两棵树A、B间的距离,小坤在河岸上选取一点C,然后沿垂直于A C 的直线前进了12米到达点D,测得90CDB=∠.取C D的中点E,测得56AEC=∠,67BED=∠,求河对岸两树间的距离(提示:过点A作AF BD⊥于点F).(参考数据:4sin565≈,tan56 ≈23,sin67 ≈1514,tan67 ≈37.)20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:四、解答题:(本大题4个小题,每小题10分,共40分)21.先化简,再求值:22121124x xx x++⎛⎫-÷⎪+-⎝⎭,其中3x=-.(株)20题图植树2株的人数占32%数学中考第3页(共16页)数学中考第4页(共16页)数学中考 第5页(共16页) 数学中考 第6页(共16页)22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,C E x ⊥轴于点E ,1tan 422A B O O B O E ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.23.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且A E A C =. (1)求证:B G F G =;(2)若2AD D C ==,求AB 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.9166.083 6.164)DC EB GA24题图 F x23题图26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE ⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG理由.26题图x数学中考第7页(共16页)数学中考第8页(共16页)数学中考 第9页(共16页) 数学中考 第10页(共16页)(第23题)FAC数学试题参考答案及评分意见一、选择题1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.A 二、填空题11.67.8410⨯ 12.3x =- 13.2:5 14.外切 15.3516.30三、解答题17.解:原式23131=+⨯-+ ···············································································(5分) 3=. ································································································(6分) 18.解:由①,得3x >-.····················································································(2分)由②,得2x ≤.·····················································································(4分) 所以,原不等式组的解集为32x -<≤.·················································(6分)19.解:∵E 为CD 中点,CD =12,∴CE =DE =6. 在Rt △ACE 中∵tan56°=CEAC ,∴AC =CE ·tan56°≈6×23=9.在Rt △BDE 中, ∵tan67°= BDDE, ∴BD =DE ·tan67°≈6×37=14 .∵AF ⊥BD ,∴AC =DF =9,AF =CD =12, ∴BF =BD -DF =14-9=5.在Rt △AFB 中,AF =12,BF =5, ∴135122222=+=+=BFAFAB .∴两树间距离为13米.20················(4分)(2)补图如下:····························(6分)四、解答题: 21.解:原式221(1)2(2)(2)x x x x x +-+=÷++- ·······························································(4分)21(2)(2)2(1)x x x x x ++-=++ ···························································································(6分) 21x x -=+. ··············································································································(8分)当3x =-时,原式325312--==-+. ······································································· (10分)22.解:(1)42O B O E == ,,246B E ∴=+=.C E x ⊥轴于点E .1tan 2C E A B O B E∴∠==,3C E ∴=. ···································································(1分)∴点C 的坐标为()23C -,. ···················································································(2分) 设反比例函数的解析式为(0)m y m x=≠.将点C 的坐标代入,得32m=-,············································································(3分)6m ∴=-. ···········································································································(4分)∴该反比例函数的解析式为6y x=-.····································································(5分) (2)4O B = ,(40)B ∴,. ················································································(6分) 1tan 2O A A B O O B∠== ,2O A ∴=,(02)A ∴,.·························································································(7分) (株)数学中考 第11页(共16页) 数学中考 第12页(共16页)设直线AB 的解析式为(0)y kx b k =+≠.将点A B 、的坐标分别代入,得240.b k b =⎧⎨+=⎩, ··························································(8分)解得122.k b ⎧=-⎪⎨⎪=⎩, ·······································································································(9分) ∴直线AB 的解析式为122y x =-+. ································································· (10分) 23.解:(1)画树状图如下: ·······················(4分)或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为41123P ==.······································································(6分)(2)不公平.········································································································(7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种. 所以,积为奇数的概率为141123P ==, ·································································(8分)积为偶数的概率为282123P ==. ···········································································(9分)因为1233≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.······································ (10分) (只要正确即可)24.(1)证明:90ABC D E AC ∠= °,⊥于点F , ABC AFE ∴∠=∠. ······································(1分)A C A E E A F C AB =∠=∠ ,,A B C A F E ∴△≌△········································(2分)AB AF ∴=.·················································(3分) 连接A G , ······················································(4分) A G A G A B A F == ,,R t R t ABG AFG ∴△≌△. ··························(5分) B G F G ∴=. ················································(6分)(2)解:AD D C D F AC = ,⊥,1122A F A C A E ∴==.························································································(7分) 30E ∴∠=°. 30FAD E ∴∠=∠=°,·························································································(8分)AF ∴= ········································································································(9分)AB AF ∴==····························································································· (10分)五、解答题:25.解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,········································································································(1分) 解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. ···································································(2分)设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. ·······················(3分) 化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ····(4分) (2)去年12月份每台的售价为501226002000-⨯+=(元),去年12月份的销售量为0.112 3.85⨯+=(万台), ···············································(5分) 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. ····················(8分)令%m t =,原方程可化为27.514 5.30t t -+=.D CEB GA F 0 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积数学中考 第13页(共16页) 数学中考 第14页(共16页)27.515t ∴==⨯.10.528t ∴≈,2 1.339t ≈(舍去)答:m 的值约为52.8.························································································· (10分) 26.解:(1)由已知,得(30)C ,,(22)D ,,90AD E C D B BC D ∠=-∠=∠ °, 1tan 2tan 212A E A D A D E B C D ∴=∠=⨯∠=⨯= .∴(01)E ,. ············································································································(1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,····································································································(2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ···························································(3分) (2)2E F G O =成立. ·························································································(4分)点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125.························································································(5分)设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴D M 的解析式为132y x =-+.·········································································(6分) ∴(03)F ,,2E F =. ···························································································(7分) 过点D 作D K O C ⊥于点K ,则D A D K =.90A D K F D G ∠=∠= °, F D A G D K ∴∠=∠.又90F A D G K D ∠=∠= °,D AF D K G ∴△≌△. 1K G A F ∴==.1G O ∴=.············································································································(8分) 2E F G O ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2G C =.①若P G P C =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ···········································································································(9分) ②若PG G C =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时G P x ⊥轴.G P 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ······································································································· (10分)x。
2013年重庆中考数学18题及解答(中考真题)五

重庆中考18题1.2010年云南遭遇百年不遇的大旱灾,重灾区曲靖市某水库每天不断流入定量的水,按原来的放水量,水库中的水可使用80天,但因干旱,现在流入量减少20%,如果在放水量不变的情况下,只能用60天,若仍需要使用80天,则每天的放水量的要减少 12.5% 。
解: 设每天放水量减小的百分数为x,该水库存水量为m, 原来每天流入量为a, 放水量为b, 则808060(120%)6080(120%)80(1)m a b m a b m a x b +=⎧⎪+⨯-=⎨⎪+⨯-=-⎩∴481.66480(1)m a b a m a x b =⎧⎪=⎨⎪+=-⎩∴48a+64a=128a(1-x) ∴1-x=0.875∴x=12.5%2. 已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续前行。
如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的1/5,大卡车在AB 段倒车的速度是它正常行驶速度的1/8,小汽车需要倒车的路程是大卡车需倒车的路程的4倍。
问两车都通过AB 这段狭窄路面的最短时间是 50 分钟.解: 设AB 总路程为单位‘‘1’’大卡车先倒车两车通过AB 的总时间:12016105÷+ =32+20=52(分钟)小汽车先倒车两车通过AB 的总时间:1105405÷+ =40+10=50(分钟)[大卡车倒车时小汽车跟着通过AB 剩余路段, 小汽车倒车时大卡车跟着小车(大卡车正常行驶速度大于小汽车倒车速度) 通过AB 剩余路段.]3.市场调查表明:某种商品的销售率y (进货数量售出数量销售率=)与价格倍数x(进货价格售出价格价格倍数=)的关系满足关系式117615y x =-+ (0.8≤x ≤6.8 ).根据有关规定该商品售价不得超过进货价的2倍 某商场希望通过该商品获取50%的利润,那么该商品的价格倍数应是 9/5 .解: 设进价为a, 进货件数为m, 则 axm(-16x+1715)=(1+50%)am ∴5x ²-34x+45=0∴195x = 25x = (舍去) 4..把浓度为20%、30%和45%的三种酒精溶液混合在一起,得到浓度为35%的酒精溶液45千克.已知浓度为20%的酒精用量是浓度为30%的酒精用量的3解: 设浓度为30%酒精用了x 千克, 则20%·3x+30%·x+45%(45-4x)=45×35%∴6x+3x+45-18x=0∴9x=45∴X=5∴3x=45 45-4x=255.甲、乙两人分别从A 、B 两地同时出发,相向而行,甲的速度是乙的速度的2倍.两个相遇后继续往前走,各自到达B 、A 后立即返回.已知两人第二次相遇的地点距第一次相遇地点是12千米,那么A 、B解: 设A,B 两地路程为m 千米, 则∵甲的速度是乙的速度的2倍∴相同时间內甲所走路程是乙所走路程的两倍 ∴211212333m m m ⨯--= (行程图略) ∴m=186、三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每根都不能有剩余,那么最少可截成 10 段 .解:∵120 , 180 , 300 的最大公约数为60 .∴要段数最少,每小段截成60厘米长,共10段.7、如果4个矿泉水空瓶可以换一瓶矿泉水,现有15个矿泉水空瓶,不交钱最多可喝矿泉水 5 瓶.解: 先用12个空瓶换3瓶矿泉水并喝完, 再拿6个空瓶中的4个又换1瓶矿泉水并喝完, 这时还有3个空瓶, 再拿1瓶矿泉水喝完后的空瓶和剩余3个空瓶换刚才所拿的矿泉水. 所以15个空矿泉水瓶一共可换5瓶矿泉水喝.8.为把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林,某单位计划通往两个比赛场馆的两条路(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米。
全等三角形经典题目测试含答案

一.选择题(共13小题,共39分)1.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm"D.9cm2.(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()(第1题)(第2题)(第3题)(第4题)A.B.4?C.D.3.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.{C.7D.4.(2010•岳阳)如图,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()A.B C=BD,∠BAC=∠BAD B.∠C=∠D,∠BAC=∠BAD,C.∠BAC=∠BAD,∠ABC=∠ABD D.B C=BD,AC=AD5.(2010•鄂州)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4(B.3C.6D.56.(2009•西宁)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.…(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.(2009•芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()(第7题)(第8题).A.330°B.315°C.310°D.320°8.(2009•临沂)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()!A.P A=PB B.P O平分∠APB C.O A=OB D.A B垂直平分OP<9.(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()。
2013年中考数学填空题专项训练及答案(共三十套)

2013年中考数学填空题专项训练(共三十套)一、试题说明本试题均按照中考要求设计,覆盖中考数学填空题所有题型及考点,难度较中考略难。
每套试题最上方均配备标准答题卡,试题最后配备参考答案。
本试题是众享填空题专项训练的训练载体,是课程《2013中考数学真题演练(一)分题型训练》第3讲、第4讲、第5讲的讲义及作业。
二、使用方法1.建议与众享在线课程《2013中考数学真题演练(一)分题型训练》配套使用。
重在对填空题进行中考适应性训练,熟悉中考填空题题型结构,掌握填空题答题的一整套标准动作,确保中考考试中,填空题答案准确、完整、规范,会做的拿满分。
2.三十套题不一定要全部做完,关键是每做一套都按训练要求做,并能认真总结考点,分析自己的问题,积极解决。
针对自己不会的题,务必查找资源查漏补缺,尤其是超过3分钟无思路的题型;对自己会做、却屡次出错的题型务必借助资源找到根本原因,对症解决。
(课本、老师、同学、众享在线课程都是您可以利用的资源)3.当考试一样,限时做题,模拟考试场景,提升实战能力。
建议限时8分钟完成所有题目及答题卡的填写,最多10分钟。
为更好的模拟中考考场情境,建议您打印使用。
专题复习------填空题中考数学填空题专项训练(一)一、填空题(每小题3分,共21分)1.写出一个大于21-的负整数___________.2如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是___________.E D CBA第10题图 第11题图如图,一次函数y 1=ax +b (a ≠0)与反比例函数2ky x=的图象交于A (1,4),B (4,1)两点,若使y 1>y 2,则x 的取值范围是___________.9. 在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50元,那么他一次就能猜中的概率是___________.6553NMO A BC D第12题图 第13题图10. 如图所示,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影部分面积占圆面积的____________. 11. 如图,在五边形ABCDE 中,∠BAE =125°,∠B =∠E =90°,AB =BC ,AE =DE ,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小时,∠AMN +∠ANM 的度数为__________.E D CB A MN12. 已知□ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE -CF =____________.yxO AB二、填空题(每小题3分,共21分)9.分解因式:x3-4x2-12x=___________.10.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=__________.EDCBA第10题图第11题图11.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是__________.12.有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽取的卡片上数字之差的绝对值大于1的概率是__________.13.两个全等的梯形纸片如图1摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图2.已知AD=4,BC=8,若阴影部分的面积是四边形A′B′CD的面积的13,则图2中平移的距离A′A=___________.图2图1DAB CC'B'D'A'D(D')C(C')B(B')A(A')14.在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=10.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M,N也随之移动.若限定端点M,N分别在AB,BC边上移动,则线段AT长度的最大值与最小值之和为__________.15.如图,□ABCD的顶点A,B的坐标分别是A(-1,0),B(0,-2),顶点C,D在双曲线kyx=(x>0)上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=__________.yx OEDCBA9.把命题“如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题改写成“如果……,那么……”的形式:_____________________________________________________________________________________. 10.根据如图所示的计算程序,若输入x 的值为64,则输出结果为__________.11.如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线交于点A 2,得∠A 2;……;∠A 2012BC 与∠A 2012CD 的平分线交于点A 2013,得∠A 2013 .则∠A 2013= .A 2A 1DC BAP 2yxP 1OA 2A 1第11题图 第13题图12.已知圆锥的高为12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为 .13.如图,△P 1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1,P 2在函数4y x(x >0)的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是 .14.在Rt △ACB 中,∠ACB =90°,AC =6,BC =8,P ,Q 两点分别是边BC ,AC 上的动点,将△PCQ 沿PQ 翻折,C 点的对应点为C′,连接AC′,则AC′的最小值是_________.15.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,则剪下的等腰三角形的面积为__________平方厘米.取算术平方根除以2减去3C'AQ CPB否则输出结果若结果小于0输入非负数x9.3127482-+=___________. 10.如图,在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于点E ,则∠BCE =_____________.第10题图第11题图11.如图,菱形ABCD 的边长为2cm ,∠A =60°.弧BD 是以点A 为圆心、AB 长为半径的弧,弧CD 是以点B 为圆心、BC 长为半径的弧.则阴影部分的面积为___________.12.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜,如果和为偶数,则哥哥胜.该游戏对双方__________(填“公平”或“不公平” ).13.如图,在等边三角形ABC 中,点O 在AC 上,且AO =3,CO =6,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°,得到线段OD .要使点D 恰好落在BC 上,则AP 的长是_______.14.如图,直线33y x b =-+与y 轴交于点A ,与双曲线k y x =在第一象限交于B ,C 两点,且AB ·AC =4,则k =__________.y xBCOA15.小明尝试着将矩形纸片ABCD (如图1,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图2);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG (如图3).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为___________.图3图2图1EABDC ABDCFEGMN DCBAPO C ABDDBACCABED二、填空题(每小题3分,共21分)9. 请写出一个二元一次方程组______________,使它的解是21x y ⎧⎪⎨⎪⎩==-.10.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________.FEDC BAOABCDE F第10题图 第13题图11.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,那么圆锥的母线长是__________.12.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字12,2,4,13-,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P 的横坐标,且点P 在反比例函数1y x=图象上,则点P 落在正比例函数y =x 图象上方的概率是__________.13.如图,在等边三角形ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC的高BF 于点O ,则tan ∠AEO =_________.14.如图,将矩形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则矩形ABCD 的面积为_______.GHFE DCBAy=x 2H O yxAC第14题图 第15题图15.如图,在第一象限内作射线OC ,与x 轴的夹角为30°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是____________________________________.二、填空题(每小题3分,共21分) 9. 计算:225(1)--=________.10. 如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A′处,若∠A′BC =15°,则∠A′BD 的度数为__________.A'DC BAC'B'CBAyxOQRMP第10题图 第11题图 第13题图11. 如图,△ABC 是等腰直角三角形,∠ACB =90°,BC =AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB′C′,若AB =2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 _________(结果保留π). 12. 有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A 布袋中随机取出一个小球,记其标有的数字为x ,再从B 布袋中随机取出一个小球,记其标有的数字为y ,则满足x +y =-2的概率是 .13. 如图,直线y =kx -2(k >0)与双曲线ky x在第一象限内的交点为R ,与x 轴、y 轴的交点分别为P ,Q .过R作RM ⊥x 轴,垂足为M ,若△OPQ 与△PRM 的面积相等,则k 的值为________.14. 已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE ,与对角线AC 相交于点M ,则MCAM的值是_________.15. 在矩形ABCD 中,AB =3,AD =4,将其沿对角线BD 折叠,顶点C 的对应位置为G (如图1),BG 交AD 于E ;再折叠,使点D 落在点A 处,折痕MN 交AD 于F ,交DG 于M ,交BD 于N ,展开后得图2,则折痕MN 的长为___________.图2图1F MG EANDBG EADCB中考数学填空题专项训练(七)二、填空题(每小题3分,共21分)9. 方程22x x =的解为___________.10.如图,在菱形ABCD 中,点E ,F 分别是BD ,CD 的中点,若EF =6cm ,则AB =____________cm .F ECBDA乙甲465231第10题图 第11题图11.王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是___________.12.如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数ky x=(k >0)的图象与正方形的一个交点.若图中阴影部分的面积等于9,则该反比例函数的解析式为_________.13.如图所示,正方形ABCD 中,E 是AD 边上一点,以E 为圆心、ED 为半径的半圆与以B 为圆心、BA 为半径的圆弧外切,则sin ∠EBA 的值为_________.14.如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE =DF 时,∠BAE 的大小可以是_______________.ADEFCBy x OE DC BA第14题图 第15题图15.如图,在平面直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,2),将矩形沿对角线AC 翻折,点B 落在点D 的位置,且AD 交y 轴于点E .那么点D 的坐标为__________________.ED CBAP Oyx中考数学填空题专项训练(八)二、填空题(每小题3分,共21分) 9.9-2tan45°=_____________.10.如图所示,四边形ABCD 中,AE ,AF 分别是BC ,CD 的垂直平分线,∠EAF =80°,∠CBD =30°,则∠ABC 的度数为______________. 11.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是________题.答对题数 7 8 9 10 人数41816712.二次函数y =-(x -2)2+94的图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有___________个.(提示:必要时可利用下面的备用图画出图象来分析)yxO图2图1第12题图 第13题图13.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为______________.14.如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为_______________.41BAB 3B 2A 4A 3A 2B 1A 1O B'PEA D BC第14题图 第15题图15.如图,在矩形纸片ABCD 中,AB =3,BC =5,将纸片折叠,使点B 落在边AD 上的点B'处,折痕为CE .在折痕CE 上存在一点P 到边AD 的距离与到点B 的距离相等,则此相等距离为______________.中考数学填空题专项训练(九)EFDCBA二、填空题(每小题3分,共21分)9. 在数轴上与表示3的点的距离最近的整数点所表示的数是________.10. 如图所示,已知O 是四边形ABCD 内一点,OB =OC =OD ,∠BCD =∠BAD =75°,则∠ADO +∠ABO =________.ODCBACOBAyx第10题图 第13题图11. 已知在△ABC 中,AB =6,AC =8,∠A =90°,把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为S 1,把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,则S 1:S 2等于________.12. 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为_______.13. 如图,直线43y x =与双曲线k y x =(x >0)交于点A .将直线43y x =向右平移92个单位后,与双曲线ky x=(x >0)交于点B ,与x 轴交于点C ,若2AOBC=,则k =_____.14. 如图,在等腰Rt △ABC 中,∠A =90°,AC =9,点O 在AC 上,且AO =2,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转90°,得到线段OD ,要使点D 恰好落在BC 上,AP 的长度为__________.D P O CB APMDCB A第14题图 第15题图15. 如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =AB =6,BC =14,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C →D →A →B 的路线运动,运动到点B 停止.在点P 的运动过程中,使△PMC 为等腰三角形的点P 有__________个.中考数学填空题专项训练(十)二、填空题(每小题3分,共21分)9. 计算:312732-+=___________.10.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于_________.DCBA30°30°A'C'CB A 第10题图 第11题图11.如图,将△ABC 绕点B 逆时针旋转到△A′BC′,使A ,B ,C′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4cm ,则线段AC 扫过的面积是_________.12.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a ,b 分别取0,1,2,3,若a ,b 满足|a -b |≤1,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,得出“心有灵犀”的概率为___________.13.如图,已知AB =12,AB ⊥BC 于点B ,AB ⊥AD 于点A ,AD =5,BC =10.若点E 是CD 的中点,则AE 的长是___________.14.如图,正方形OABC 的面积是4,点B 在反比例函数ky x=(k >0,x <0)的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足分别为M ,N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S =m (m 为常数,且0<m <4)时,点R 的坐标是___________________________.y x RO NMB C ACO B xy第14题图 第15题图15.已知:如图,△OBC 是直角三角形,OB 与x 轴正半轴重合,∠OBC =90°,且OB =1,BC =3,将△OBC 绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 1=OC ,得到△OB 1C 1,将△OB 1C 1绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2,……,如此继续下去,得到△OB 2013C 2013,点C 2013的坐标是_________.EDCBA二、填空题(每小题3分,共21分) 9. 计算:2sin30°-16=___________.10. 如图,AD 是△ABC 的中线,∠ADC =60°,BC =6,把△ABC 沿直线AD 折叠,点C 落在点C ′处,连接BC ′,那么BC ′的长为________.60°C′D CBAOCBAE CDO B Axy第10题图 第12题图 第14题图11. 甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,则根据题意列出的方程是_____________________.12. 如图,有一直径为4的圆形铁皮,要从中剪出一个圆心角为60°的最大扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为___________.13. 在4张卡片上分别写有1~4的整数,随机抽取一张后不放回,再随机抽取一张,那么抽取的两张卡片上的数字之和等于4的概率是________.14. 如图,点A 在双曲线ky x的第二象限的分支上,AB ⊥y 轴于点B ,点C 在x 轴负半轴上,且OC =2AB ,点E在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________. 15. 如图,矩形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图2,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,在线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图3,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片. (注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值与最小值之和为____________.AB C DEEGH MNN MHGEC BB C9. 数轴上A ,B 两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为__________.10. 如图,是我们生活中经常接触的小刀,刀柄的外形是一个直角梯形(下底挖去一个小半圆),刀片上、下是平行的,转动刀片时会形成∠1和∠2,则 ∠1+∠2=__________.21 yx1O CB A第10题图 第13题图11. 将半径为10,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥母线与圆锥高的夹角的余弦值是__________.12. 已知M (a ,b )是平面直角坐标系中的点,其中a 是从1,2,3三个数中任取的一个数,b 是从1,2,3,4四个数中任取的一个数.定义“点M (a ,b )在直线x +y =n 上”为事件Q n (2≤n ≤7,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为__________.13. 如图所示,Rt △ABC 在第一象限,∠BAC =90°,AB =AC =2,点A 在直线y =x 上,且点A 的横坐标为1,AB ∥x 轴,AC ∥y 轴.若双曲线ky x(k ≠0)与△ABC 有交点,则k 的取值范围是__________.14. 如图,将边长为12cm 的正方形ABCD 折叠,使得A 点落在边CD 上的E 点,然后压平得折痕FG ,若GF的长为13cm ,则线段CE 的长为_____________.G FED CB AFED O yxA B C第14题图 第15题图15. 如图,点A 的坐标为(1,1),点C 是线段OA 上的一个动点(不与O ,A 两点重合),过点C 作CD ⊥x 轴,垂足为D ,以CD 为边在右侧作正方形CDEF .连接AF 并延长交x 轴的正半轴于点B ,连接OF ,若以B ,E ,F 为顶点的三角形与△OFE 相似,则点B 的坐标是__________.9. 分解因式:3m 2-6mn +3n 2=____________.10. 如图,计划把河AB 中的水引到水池C 中,可以先作CD ⊥AB ,垂足为D ,然后沿CD 开渠,则能使所开的水渠最短,这种方案的设计依据是________.BCD ABedc baA第10题图 第11题图11. 已知电路AB 是由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则使电路形成通路的概率是_______.12. 已知圆锥的底面积和它的侧面积之比为14,则侧面展开后所得扇形的圆心角的度数是____________.13. 如图,A ,B 是一次函数1y x =+图象上的两点,直线AB 与x 轴交于点P ,且12PA PB =,已知过A 点的反比例函数为2y x=,则过B 点的反比例函数为____________. 14. 如图,将矩形纸片ABCD 放置在平面直角坐标系中,已知A (-9,1),B (-1,1),C (-1,7),将矩形纸片沿AC 折叠,点B 落在点E 处,AE 交CD 于点F ,则点F 的坐标为__________.yxOFB E CDAGAC DEBF第14题图 第15题图15. 如图,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF的值是______________.y xOBAP9. 方程组321026x y x y +=⎧⎨+=⎩的解是___________.10. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,交AB 于点D ,AE ∥DC ,交BC 的延长线于点E .若∠E =36°,则∠B =_______度.ECBAD P B A O CDxy第10题图 第13题图11. 有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张,则抽取的这两张扑克牌正面数字之和是3的倍数的概率为______.12. 为参加毕业晚会,小敏用圆心角为120°,半径为20cm 的扇形纸片围成一顶圆锥形的帽子,若小敏的头围约60cm ,则她戴这顶帽子大小合适吗?_______.(填“合适”或“不合适”)13. 如图,双曲线11=y x (x >0),24=y x (x >0),点P 为双曲线24=y x上的一点,且P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,P A ,PB 分别交双曲线11=y x于D ,C 两点,则△PCD 的面积为______.14. 如图,正方形ABCD 的边长为4,M ,N 分别是BC ,CD 上的两个动点,且始终保持AM ⊥MN .当BM =______时,四边形ABCN 的面积最大.NMDCBA19171513431197335323第14题图 第15题图15. 一个自然数的立方可以分裂成若干个连续奇数的和,例如:23,33和43分别可以按如图所示的方式“分裂”出2个、3个和4个连续奇数的和,即23=3+5,33=7+9+11,43=13+15+17+19,…,若63也按照此规律进行“分裂”,则“分裂”出的奇数中,最大的那个奇数是______.9. 写出一个在实数范围内能用平方差公式分解因式的多项式:_____________.10. 如图,在△ABC 中,AB =AC ,将△ABC 绕点C 顺时针旋转180°得到△FEC ,连接AE ,BF .当∠ACB 为_________度时,四边形ABFE 为矩形.180°FECBABA O DFEA CB第10题图 第11题图 第12题图11. 如图所示,A ,B 是边长为1的小正方形组成的5×5网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是_________.12. 如图,Rt △ABC 中,∠ACB =90°,∠B =30°,AB =12cm ,以AC 为直径的半圆O 交AB 于点D ,点E 是AB 的中点,CE 交半圆O 于点F ,则图中阴影部分的面积为________.13. 如图,以等腰Rt △ABC 的斜边AB 为边作等边△ABD ,C ,D 在AB 的同侧,连接DC ,以DC 为边作等边△DCE ,B ,E 在CD 的同侧.若AB =2,则BE =_______. 14. 如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =_________.ACBDPOPyxy=x第14题图 第15题图15. 如图,P 是抛物线2288y x x =-+对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x ,抛物线交于A ,B 两点.若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,则满足条件的t 值为______________________.中考数学填空题专项训练(十六)ACBDE二、填空题(每小题3分,共21分)9. 当x =_______时,分式33x x --||无意义.10.两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意一点向x 轴,y 轴作垂线,与两坐标轴所围成的矩形的面积为6”,乙同学说:“这个反比例函数图象与直线y =-x 有两个交点”.则这两位同学所描述的反比例函数的表达式为_____________.11.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =114°,则∠MAB 的度数为__________.DMPC FEB AADPF CBE第11题图 第13题图12.小刚、小强、小红利用假期到某个社区参加义务劳动,为决定到哪个社区,他们约定用“剪刀、石头、布”的方式确定,则在同一回合中,三人都出剪刀的概率是_______. 13.如图,在△ABC 中,∠ACB =90°,以AC 为一边在△ABC 外侧作等边△ACD ,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E ,连接CE ,AB =15cm ,BC =9cm ,P 是射线DE 上的一点.连接PC ,PB ,则△PBC 周长的最小值为_______.14.如图,在矩形ABCD 中,AB =6,BC =8,E 是BC 边上的一定点,P 是CD 边上的一动点(不与点C ,D 重合),M ,N 分别是AE ,PE 的中点.在点P 运动的过程中,MN 的长度不断变化,设MN =d ,则d 的变化范围是_______.ENMPD CBAxO NM y=2x+3y第14题图 第15题图15.如图,点M 是直线y =2x +3上的动点,过点M 作MN ⊥x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形?小明发现:当动点M 运动到(-1,1)时,y 轴上存在点P (0,1),此时有MN =MP ,△MNP 为等腰直角三角形.请你写出y 轴上其他符合条件的点P 的坐标__________________.中考数学填空题专项训练(十七)二、填空题(每小题3分,共21分)9. 函数122y x x =++-的自变量x 的取值范围是__________. 10.如图,AB ∥CD ,EF 与AB ,CD 分别相交于点E ,点F ,∠BEF 的平分线EG 交CD 于点G ,若∠1=50°,则∠2=__________度.G21FEDCBAOEDCB Ay xD O AB C第10 题图 第11题图 第13题图11.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为___________. 12.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是___________.13.已知:如图,直线364y x =+与双曲线ky x =(x <0)相交于A ,B 两点,与x 轴、y 轴分别相交于D ,C 两点,若AB =5,则k =__________. 14.如图,△ABC 中,AB =8厘米,AC =16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点运动到端点时,另一个动点也随之停止运动,那么,当以A ,P ,Q 为顶点的三角形与△ABC 相似时,运动时间为_________秒.QPA BC15.已知:如图,AB =10,点C ,D 在线段AB 上,且AC =DB =2,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边三角形AEP 和等边三角形PFB ,连接EF ,设EF 的中点为点G .当点P 从点C 运动到点D 时,点G 移动的路径长是___________.中考数学填空题专项训练(十八)二、填空题(每小题3分,共21分) 9. 计算:3276cos60-︒=____________.10. 如图,直线a ∥b ,直线l 分别与a ,b 交于E ,F 两点,FP 平分∠EFD ,交a 于P 点,若∠1=70°,则∠2=___________.FG EDA BP C21PDFE lba110100806050丙乙甲第10题图 第12题图11. 已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为_________.12. “五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图所示(单位:km ).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是________.线10y x的第一象限分支上,13. 如图,正方形ABCD 的顶点C ,D 均在双曲顶点A ,B 分别在x 轴、y 轴上,则此正方形的边长为_______.14. 动手操作:在一张长12cm 、宽5cm 的矩形纸片内折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH (图1),小明同学沿矩形的对角线AC 折出∠CAE =∠CAD ,∠ACF =∠ACB ,从而折出菱形AECF (图2).则小颖和小明同学的折法中,________折出的菱形面积较大(填“小颖”或“小明”).图1 图2E FAB CDHGFE D C BA15. 已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,P 点的坐标为_______.ODCB AxyPxy O A BCD中考数学填空题专项训练(十九)二、填空题(每小题3分,共21分)9. 已知方程x y =16,写出两对满足此方程的x 与y 的值______________. 10. 如图,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =50°,则∠EDC =____度.CBED AD yx AOMBE C第10题图 第13题图11. 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:对于多项式x 4-y 4,因式分解的结果是(x -y )(x +y )(x 2+y 2),若取x =9,y =9,则各个因式的值是:(x -y )=0,(x +y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x 3-xy 2,取x =10,y =10时,用上述方法产生的密码可能是_______.(写出一个即可)12. 某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是________.13. 如图,反比例函数ky x(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 相交于点D ,E .若四边形ODBE 的面积为6,则k 的值为________.14. 如图,把矩形ABCD 对折,折痕为MN (图1),展开后再折叠,使点B 落在折痕MN 上的B′处,得到Rt △A B′E(图2),延长E B′交AD 于F ,则 ∠EF A =________.图2图1NC NDF AB'M ED C AB M OFCBE A第14题图 第15题图15. 如图所示,AB 是⊙O 的直径,弦BC =2cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以2cm/s 的速度从A点出发,沿着A →B →A 的方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为________s 时,△BEF 是直角三角形.。
2013重庆巴蜀中学中考数学一模试卷答案详解

2013年重庆市巴蜀中学中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)+2.(4分)计算的结果是()3.(4分)不等式组的解集是()周长为()B C D度为15km/h ,水流速度为5km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ), B .E 点,H 为BC 中点,连接AH 交BD 于G 点,交EC 的延长线于F 点,下列5个结论:①EH=AB ;②∠ABG=∠HEC ;③△ABG ≌△HEC ;④S △GAD =S 四边形GHCE ;⑤CF=BD .正确的有( )个.二、填空题(共6小题,每小题5分,满分30分) 11.(5分)(2010•广州)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358 000平方米,将358 000用科学记数法表示为 ________ 12.(5分)重庆市4月28日出现了61年来的同期最高温,之后连续五天的日最高气温分别为34、35、29、27、30(单位:℃),则这组数据的中位数是 ___________ 13.(5分)如图,在△ABC 中,DE ∥BC ,△ADE 与△ABC 的面积之比为9:16,则DE :BC= _____ .14.(5分)(2010•成都)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是______.15.(5分)(2010•重庆)在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.16.(5分)某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为_______.三、解答题(共10小题,满分80分)17.(6分)计算:.18.(6分)解方程:3x(x﹣1)=2x﹣2.19.(6分)(2008•衡阳)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF.求证:AB=DE.20.(6分)某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D 的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).21.(10分)先化简,再求值:,其中x满足x2+7x=0.22.如图,一次函数y=﹣x﹣1与反比例函数交于第二象限点A.一次函数y=﹣x﹣1与坐标轴分别交于B、C两点,连接AO,若.(1)求反比例函数的解析式;(2)求△AOC的面积.23.(10分)我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进(2)扇形统计图中“A”部分所对应的圆心角的度数是_____;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为______人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.24.(12分)已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.25.(12分)我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格y1(单位:万元/m2)与月份x(6≤x≤11,x为整数)之间满足一次函数关系:每月的销售面积为y2(单位:m2),其中y2=﹣2000x+26000(6≤x≤11,x为整数).(1)求y1与月份x的函数关系式;(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?26.(12分)如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB=,斜边OB在x轴的正半轴上,点A在第一象限,∠AOB的平分线OC交AB于C.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点C出发沿折线CO﹣Oy以相同的速度运动,当点P到达点O时P、Q 同时停止运动.(1)OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.2013年重庆市巴蜀中学中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)2.(4分)计算的结果是()=﹣3.(4分)不等式组的解集是()4.(4分)如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,则平行四边形ABCD的周长为()6.(4分)在Rt△ABC中,∠C=90°,AC=6cm,则以A为圆心6cm为半径的圆与直线BC的7.(4分)(2007•温州)如图所示几何体的主视图是()B8.(4分)按如下规律摆放三角形,则图(5)的三角形个数为()9.(4分)(2010•河北)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),...10.(4分)如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有()个.∴二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2010•广州)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358 000平方米,将358 000用科学记数法表示为3.58×105.12.(5分)重庆市4月28日出现了61年来的同期最高温,之后连续五天的日最高气温分别为34、35、29、27、30(单位:℃),则这组数据的中位数是30.13.(5分)如图,在△ABC中,DE∥BC,△ADE与△ABC的面积之比为9:16,则DE:BC= 3:4.∴,14.(5分)(2010•成都)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是3.15.(5分)(2010•重庆)在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.轴所围成的区域内(不含边界)的概率是16.(5分)某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为2:3.三、解答题(共10小题,满分80分)17.(6分)计算:.﹣﹣故答案为:18.(6分)解方程:3x(x﹣1)=2x﹣2.=19.(6分)(2008•衡阳)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF.求证:AB=DE.中20.(6分)某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D 的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).为圆心,以大于为圆心,以大于21.(10分)先化简,再求值:,其中x满足x2+7x=0.=÷=×==22.如图,一次函数y=﹣x﹣1与反比例函数交于第二象限点A.一次函数y=﹣x﹣1与坐标轴分别交于B、C两点,连接AO,若.(1)求反比例函数的解析式;(2)求△AOC的面积.,a=b=,代入反比例函数解析式中,有=;,﹣)轴的距离为OB+OB;23.(10分)我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进(2)扇形统计图中“A”部分所对应的圆心角的度数是72°;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为44000人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.24.(12分)已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.25.(12分)我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格y1(单位:万元/m2)与月份x(6≤x≤11,x为整数)之间满足一次函数关系:每月的销售面积为y2(单位:m2),其中y2=﹣2000x+26000(6≤x≤11,x为整数).(1)求y1与月份x的函数关系式;(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?.﹣﹣,解得:26.(12分)如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB=,斜边OB在x轴的正半轴上,点A在第一象限,∠AOB的平分线OC交AB于C.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点C出发沿折线CO﹣Oy以相同的速度运动,当点P到达点O时P、Q 同时停止运动.(1)OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.∴时,,时,;∴∴,解得综上,当。
2013重庆市中考数学试题及答案

FED CBA2013年重庆市中考数学复习试卷(最新)一、选择题 (本大题12个小题,每小题4分,共48分) 1.在0,-2,1,3这四数中,最小的数是( )A .-2 B.0 C.1 D.3 2.下列计算中,结果正确的是( )A.236a a a =·B.()()26a a a =·3C.()326a a = D.623a a a ÷= 3.将一副三角板如图放置,使点A 在DE 上,∠B=45°, ∠E=30°,BC DE ∥,则AFC ∠的度数为( ) A.45° B. 50° C. 60° D. 75° 4.函数2-=x xy 的自变量x 取值范围是( ) 第3题图 A .x ≠2 B .x ≠0 C.x ≠0 且x ≠2 D .x>25.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )A .15° B. 30° C. 45° D .60° 6.下列调查最适合普查的是( ) A.为了了解2011年重庆市初三学生体育考试成绩情况 B.为了了解一批节能灯泡的使用寿命C.为了了解我校初三某班每个学生某天睡眠时间D.为了了解我市中学老师的健康状况7.下列四个图形中,不是..轴对称图形的是A .B .C .D .8.已知 k 1<0<k 2,则函数 y =k 1x 和 y =k2x的图象大致是( )ABC D9.下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由10个基础图形组成……,第5个图案中基础图形的个数有( ).A.13B.14C.15D.1610.已知一直角三角形的两直角边的比为3:7,则最小角的正弦值是( )A.73B.58358 C .58758 D.7411.一列货运火车从重庆站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )12. 已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a-b+c >1;③abc >0;④4a-2b+c <0;⑤c-a >1.其中结论正确的个数是( ) A .1个 B .2个 C .3个 D .4个 二、填空题 (本大题6个小题,每小题4分,共24分)13.重庆每年煤炭生产量约4800万吨,将4800万用科学记数法表示为 ________________万.14则这个队队员年龄的中位数是_______________岁.15.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计, 则扇形纸片的面积是 cm 2.(结果用π表示)16.在平行四边形ABCD 中,E 在DC 上,若:1:2DE EC =,则A B F C E F S S ∆∆:= . 17.已知一个口袋中装有四个完全相同的小球,小球上分别标有-1,0,1,2四个数,搅匀后一次从中摸出两个小球,将小球上的数分别用a 、b 表示,将a 、b 代入方程组{1=-=+y ax b by x ,则方程组有解的概率是__________.18.已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续通行.如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的51,大卡车在AB 段倒车的速度是它正常行驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍.问两车都通过AB 这段狭窄路面的最短时间是_____________分钟. 三、解答题 (本大题2个小题,每小题7分,共14分) 19. 计算:30264)2011(3)31(+---+--π +︒45tan 5421+D CAB FE(1) (2)(3) ……GHFEDCB A A B已入住公租房(套)型号图2A BC D 40%20%35%各型号竣工公租房套数占已竣工的公租房套数的百分数图120如图所示, 方格纸中的每个小方格都是边长为1个单位长度的正方形, ABC ∆的顶点均在格点上, 在建立平面直角坐标系后, 点C 的坐标为(4,1)-.(1) 画出ABC ∆以y 轴为对称轴的对称图形111A B C ∆, 并写出点1C 的坐标;(2) 以原点O 为对称中心, 画出111ABC ∆关于原点O 对称的222A B C ∆, 并写出点2C 的坐标; (3) 以2A 为旋转中心, 把222A B C ∆顺时针旋转90, 得到233A B C ∆, 并写出点3C 的坐标.四、解答题 (本大题3个小题,每小题10分,共40分)21.先化简,再求值:1)1212(2-÷+--+a a a a a ,其中a 是方程121=--x x x 的解.22.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=男(女)生优分人数男(女)生测试人数 ×100%,全校优分率=全校优分人数全校测试人数 ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.23.重庆市公租房倍受社会关注,2010年竣工的公租房有A 、B 、C 、D 四种型号共500套,B 型号公租房的入住率为40%,A 、B 、C 、D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图. (1)2010年竣工的A 型号公租房套数是多少套; (2)请你将图1、图2的统计图补充完整;(3)在安置中,由于D 型号公租房很受欢迎,入住率很高,2010年竣工的D 型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层。
2013级重庆名校中考数学模拟试卷三拉分题部分(含答案)

7题图2013级重庆中考数学模拟试卷三拉分题部分一、单项选择题:(本大题10个小题,每小题4分,共40分)7、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,下列结论正确的是( ) A. 0>ac ; B. 0<bc C. 120<<ab -D. 0<c b a +-8. 下图是由一些火柴棒搭成的图案:按照这种方式摆下去, 摆第6个图案用多少根火柴棒:( )A .24 B. 25 C.26 D.279.小明和同学们到南山公园上去玩,从安康水库出发先爬山前进了2000米,玩了一段时间,发现已经错过了一个好景点,于是又下山返回1000米到这个景点,又玩了一会儿之后就回到安康水库公园玩,则他们离起点安康水库的距离s 与时间t 的关系示意图是( )10.现规定一种运算:a ※b=ab+a-b ,其中a 、b 为常数,则2※3+m ※1=6,则不等式223+x <m 的解集是 ( ) A. x <2- B. x <1- C. x <0 D. x >2二、填空题:(本大题6个小题,每小题4分,共24分)15、已知关于x 的方程(a+2)x 2-3x+ 1=0,如果从-2,-1,0,1,2五个数中任取一个数作为此方程的a ,那么所得方程有实数根的概率是16.晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是 元。
四、解答题:(本大题4个小题,每小题10分,共40分) 21. 先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a 是方程09222=--x x 的解.8题图tAB CD22、如图,在平面直角坐标系中,二次函数bxx y +-=223经过点O 、A 、B 三点,且A 点坐标为(4,0),B 的坐标为(m ,32),点C 是抛物线在第三象限的一点,且横坐标为-2. (1)求抛物线的解析式和直线BC 的解析式。
重庆市2013年中考数学试卷(解析版)

∴反比例函数解析式为 y= ,
将 A(2,m)代入 y= 中,得 m=5,∴A(2,5),
∴三角形的相似比是 3:1,
∴△ABC 与△DEF 的面积之比为 9:1.
故答案为:9:1.
-5-
13.(2013 重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报
销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是
.
考点:中位数。
解答:解:把这一组数据从小到大依次排列为 20,24,27,28,31,34,38,
科学记数法表示为
.
考点:科学记数法—表示较大的数。
解答:解:380 000=3.8×105.
故答案为:3.8×105.
12.(2013 重庆)已知△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,则 ABC
与△DEF 的面积之比为
.
考点:相似三角形的性质。
解答:解:∵△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,
-7-
即:∠EAD=∠BAC,
在△EAD 和△BAC 中 ∴BC=ED.
19.(2013 重庆)解方程: 2 1 . x 1 x 2
考点:解分式方程。 解答:解:方程两边都乘以(x-1)(x-2)得, 2(x-2)=x-1, 2x-4=x-1, x=3, 经检验,x=3 是原方程的解, 所以,原分式方程的解是 x=3. 20.(2013 重庆)如图,在 Rt△ABC 中,∠BAC=90°,点 D 在 BC 边上,且△ABD 是等 边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
10.(2013 重庆)已知二次函数 y ax 2 bx c(a 0) 的图象如图所示对称轴为 x 1 .下列结论中,正确的是( ) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013重庆中考数学填空题专项练习(第17、18题)-名校题集1.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的
分式方程11
2
22
ax
x x
-
+=
--
有正整数解的概率为.
2.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了______________朵.
3.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=-x2+2x+5与x轴所围成的区域内(不含边界)的概率是_____________.
4.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克
5.在平面直角坐标系xOy中,直线3
y x
=-+与两坐标轴围成一个A O B
△.现将背面完
全相同,正面分别标有数1、2、3、1
2
、
1
3
的5张卡片洗匀后,背面朝上,从中任取一张,
将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在A O B
△
内的概率为.
6.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加%.
7.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a的值,将该
数字加3作为b的值,则(a,b)使得关于x的不等式组
3(2)0,
x a x
x b
--≥
⎧
⎨
-+>
⎩
恰好有3个整
数解的概率是.
8.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.
9.在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球上分别标有数字3,2,1,0,1---。
现从口袋中随机取出一个小球,将该小球上的数字记为b ,将该数加2记为c ,则抛物线2
1
4y x bx c =++的顶点落在第四象限的概率是 。
10.某校初三有甲、乙、丙三个班,甲班比乙班多两个女同学,乙班比丙班多两个女同学。
如果把甲班的第一组调到乙班,乙班的第一组调到丙班,丙班的第一组调到甲班,那么三个班的女同学人数恰好相等,已知丙班第一组中共有3个女同学,则乙班第一组有 个女同学。
11.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共240吨.
12.某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是50%
13.节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 48.3% 。
14.烧杯甲中盛有浓度为a% 的盐水m 升,烧杯乙中盛有浓度为 b%的盐水m 升(a>b ),现将甲中盐水的1/4 倒入乙中,混合均匀后再由乙倒回甲,估甲中的盐水恢复为m 升,则互掺后甲、乙两烧杯中含有纯盐量的差与互掺前甲、乙两烧杯中含有纯盐量的差之比为__3/5____.
15.市场上一种茶饮料由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买20吨纯净水。
由于今年以来茶产地云南地区连续大旱,茶原液收购价上涨50%,纯净水价也上涨了8%,导致配制的这种茶饮料成本上涨20%,问这种茶饮料中茶原液与纯净水的配制比例为。
16.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔8 分钟开出一辆公共汽车.
17.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是6千克。
18.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开40 分钟.
19.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率是45% 。
20.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为2:3。