第一章 热力学第一定律资料
第一章.热力学第一定律

1.4-2 可逆过程
一次(两次)压缩过程 环境对系统作的功 大于
一次(两次)膨胀过程 系统对环境作的功 原因:多作的功变成热传给了环境 对于准静态膨胀过程的逆过程:压缩可使系统 复原时,环境也同时恢复到原状。这种: 能通过原来过程的反方向而使系统和环境都同 时复原,不留下任何痕迹的过程称为可逆过程
z 可逆过程是一种理想过程,是对真实世 界的科学抽象 一些重要的热力学函数只有通过可逆过 程才能求得
热力学第二定律
开尔文(Lord Kelvin, 1824-1907,英) 1848 克劳修斯(Clausius,1822-1888 ,德)1850
z 构成了热力学的基础
z 人类经验总结,物理化学中最基本定律
z 有着极其牢固的实验基础,其结论具有 高度普遍性和可靠性
z 20世纪初建立了热力学第三定律
一些过程的设计与求算: 1. 理想气体等温过程
∆U =0 ∆H =0 Q=W (可由功求热)
z 等温可逆过程
∫ ∫ W = V2 PdV = V2 nRT dV =nRT ln V2 = Q
V1
V V1
V1
z 对抗恒外压 W= P外 ( V2- V1) = Q
2. 理想气体绝热过程 Q=0 ∆U= nCv.m∆T ∆H = nCp.m∆T W=-∆U(可由内能求功)
浴的温度发生变化即∆T=0, 由此可知
系统 无热传递 环境
Q=0
(2) 气体 向真空膨胀,P外=0, W膨=0
由第一定律则: ∆U=Q-W膨=0 此时:dU=(∂U/∂T)vdT + (∂U/∂V)TdV =0
因dT =0 (∂U/∂v)Tdv=0 但dv≠0 故 (∂U/∂v)T = 0 同理可证 (∂U/∂P)T = 0 即U=f(T)
第1章 热力学第一定律

系统在环境温度不变的条件下发生的变化历程。T1=T2=Te
2). 恒压过程(isobaric process): 系统在环境压力不变的条件下发生的变化历程。P1=P2=Pe
3) .恒容过程(isochoric process):
容积不变的系统发生的变化历程。V1=V2
4) 绝热过程(adiabatic process): 系统在与环境间无热量交换的条件下发生的变化历程。 5) 循环过程(cyclic process):
化学热力学是怎样产生的?
19世纪,发明蒸汽机,导致工业革命的出现。
蒸汽机:燃煤锅炉——产生高温高压水蒸气——推动机械运转 “热能——机械能” 如何提高“热 — 机”效率?
总结并发现热力学一、二定律——热力学的主要基础。
第一定律:研究化学变化过程中的热效应等能量转换问题。 第二定律:研究化学变化过程的方向和限度。
定义 H=U+PV (焓) QP =H2-H1=△H
对微小的恒压过程, δQP= dH
由于H=U+PV,所以焓是状态函数。△H=△U+△(PV) 热力学定义焓的目的,主要在于研究问题的方便。 物理意义:对于只作膨胀功的恒压过程,系统焓的变化在数值 上等于过程的热。
因恒压热等于系统的焓变,故恒压热也只决定于系统的初末态,与过程无关。
宏观性质统称为状态函数(state function)。
2. 状态函数: 状态函数是系统所处状态的单值函数。对于确定的状态,所 有的状态函数都有确定的值。相反,当状态函数发生变化时, 状态也随之变化。 ★状态和性质之间是相互影响,相互制约的,系统的状态性质 中只要有一个发生变化,必将引起其它性质的变化。 因此,描述系统的状态时,并不需要罗列系统的全部性质。 例:理想气体状态方程
第一章热力学第一定律

第一章 热力学第一定律核心内容:能量守恒 ΔU=Q+W主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 的计算一、内容提要1.热力学第一定律与状态函数(1)热力学第一定律: ΔU=Q+W (封闭系统) 用途:可由ΔU ,Q 和W 中的任意两个量求第三个量。
(2)关于状态函数(M )状态函数:p 、V 、T 、U 、H 、S 、A 、G ……的共性: ①系统的状态一定,所有状态函数都有定值;②系统的状态函数变化值只与始终态有关,而与变化的途径无关。
用途:在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简单的或利用已知数据较多的过程进行计算。
ΔM (实)=ΔM (设)。
这种方法称为热力学的状态函数法。
③对于循环过程,系统的状态函数变化值等于零,即ΔM =0。
此外,对于状态函数还有如下关系:对于组成不变的单相封闭系统,任一状态函数M 都是其他任意两个独立自变量(状态函数)x 、y 的单值函数,表示为M=M(x 、y),则注意:因为W 和Q 为途径函数,所以Q 和W 的计算必须依照实际过程进行。
⎰-=21V V a m bdV p W ,其中p amb 为环境压力。
Q 由热容计算或由热力学第一定律求得。
dy y M dx x M dM xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=)(1循环关系式-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂x M y M y y x x M )(22尤拉关系式xy M y x M ∂∂∂=∂∂∂1(p 1,V 1,T 1) (p'1,V 1,T 2)2(p 2,V 2,T 2) (p 1,V'1,T 2) VT 将热力学第一定律应用于恒容或恒压过程,在非体积功为零(即w'=0)的情况下有:Q V =ΔU ,Q p =ΔH (H 的定义:H=U+pV )。
此时,计算Q v 、Q p 转化为计算ΔU 、ΔH ,由于U 、H 的状态函数性质,可以利用上面提到的状态函数法进行计算。
第一章 热力学第一定律

1.1.3 热力学的方法和局限性
热力学方法: •研究对象是大数量分子的集合体,研究宏观性质,所得结论具 有统计意义。 •只考虑变化前后的净结果,不考虑物质的微观结构和反应机理。 •能判断变化能否发生以及进行到什么程度,但不考虑变化所需 要的时间。
总结
4
§1.1 热力学概论
热力学概论 热平衡 基本概念 第一定律 准静态过程 焓 热容 理想气体 焦耳-汤姆逊 热化学 温度影响
Physical Chemistry of Metallurgy
冶金物理化学
第一章 热力学第一定律
第一章 热力学第一定律
热力学概论 热平衡 基本概念 第一定律 准静态过程 焓 热容 理想气体 焦耳-汤姆逊 热化学 温度影响
主要内容
1. 热力学概论 7. 热容
2. 热平衡和热力学第零定律 8. 热力学第一定律对理
故
V V ( m ) ( m ) T p R p T 2 T p p p T
总结
17
§1.3 热力学基本概念
热力学概论 热平衡 基本概念 第一定律 准静态过程 焓 热容 理想气体 焦耳-汤姆逊 热化学 温度影响
1.3.2 系统的性质
用宏观可测性质来描述系统的热力学状态,故这些性质又称 为热力学变量。可分为两类: (1)广度性质(extensive properties) 又称为容量性质,它的数值与系统的物质的量成正比,如体 积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。 (2)强度性质(intensive properties) 它的数值取决于系统自身的特点,与系统的数量无关,不 具有加和性,如温度、压力等。它在数学上是零次齐函数。指 定了物质的量的容量性质即成为强度性质,或两个容量性质相 除得强度性质。
第一章热力学第一定律

经验 总结 总结归纳提高 引出或定义出 解决 的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律 §1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。
⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等);热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。
2、热力学方法——状态函数法⇨ 热力学方法的特点: ①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc ) ②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
⇨ 局限性:不知道反应的机理、速率和微观性质。
只讲可能性,不讲现实性。
3、热力学研究内容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。
热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。
1.1.2 热力学的基本概念1、系统与环境⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。
在科学研究时必须先确定研究对象,把一部分物质与其余部分分开,这种分离可以是实际的,也可以是想象的。
第01章-热力学基本定律1-资料

[例题]:
在等压下,一定量理想气体B由10 dm3膨胀到16 dm3,并吸热700J,求W与ΔU ? 解: 初态,p 10 dm3 等 压 过 Q 程 7 0J, 0终态, p 16 dm3
Wp(V2V 1)[10136215 03]J60J8
themegallery
3. 准静态过程
定义:在过程进行中的任何时刻系统都处于平衡态 的过程。
4. 可逆过程
定义:由一系列非常接近于平衡的状态所组成 的,中间每一步都可以向相反的方向进行而不在环 境中任何痕迹的过程称为可逆过程。
themegallery
特点: ①可逆过程是由一系列非常接近于平衡的状态所 组成. ②过程中的任何一个中间态都可以从正、逆两个方 向到达。 ③经历可逆过程后,当系统复原时,环境也完全 复原而没有留下任何影响和痕迹。
1. 热力学第一定律表述: 热力学第一定律即能量守恒与转化定律:自然界 的一切物质都具有能量,能量有各种不同的形式, 能够从一种形式转化为另一种形式,在转化中, 能量的总值保持不变。 经验表述:第一类永动机是造不成的。
themegallery
2. 热力学第一定律的数学表达式
ΔU = Q + W 对一微小表化,
例题:教材第10页
在298.15K 下1mol C2H6 完全燃烧时,过程所 作的功是多少(反应系统中的气体视为理想气 体)?
解: C2H6 (g) + 3.5O2 (g) = 2CO2 (g) + 3H2O (l)
WRT B(g)= [- (2 - 3.5 - 1)×8.314×298.15]J
欢迎
第一章 热力学基本定律
1.1 热力学基本概念 1.2 热力学第一定律 与内能、焓、功、热 1.3 气体系统典型过程分析 与可逆过程、热机效率 1.4 热力学第二定律与熵、熵判据 1.5 熵变的计算与应用:典型可逆过程和可逆途径的设计 1.6 自由能函数与自由能判据:普遍规律与具体条件的结合 1.7 封闭系统热力学函数间的关系:4个基本方程 1.8 自由能函数改变值的计算及应用:可逆途径的设计
热力学第一定律总结(精选3篇)

热力学第一定律总结(精选3篇)以下是网友分享的关于热力学第一定律总结的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
[热力学第一定律总结篇一]第一章热力学第一定律1、热力学三大系统:(1)敞开系统:有物质和能量交换;(2)密闭系统:无物质交换,有能量交换;(3)隔绝系统(孤立系统):无物质和能量交换。
2、状态性质(状态函数):(1)容量性质(广度性质):如体积,质量,热容量。
数值与物质的量成正比;具有加和性。
(2)强度性质:如压力,温度,粘度,密度。
数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。
特征:往往两个容量性质之比成为系统的强度性质。
3、热力学四大平衡:(1)热平衡:没有热隔壁,系统各部分没有温度差。
(2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同(3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。
(4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。
4、热力学第一定律的数学表达式:U = Q + W Q为吸收的热(+),W为得到的功(+)。
12、在通常温度下,对理想气体来说,定容摩尔热容为:单原子分子系统CV,m=32R双原子分子(或线型分子)系统CV,m=52R多原子分子(非线型)系统CV,m62R 3R定压摩尔热容:单原子分子系统Cp,mR双原子分子(或线型分子)系统Cp,m C V,m RCp,m 72R多原子分子(非线型)系统Cp,m 4R可以看出:Cp,m C V,m R13、Cp,m的两种经验公式:Cp,m a b T c T2 (T是热力学温度,a,b,c,c’是经Cp,m a b Tc’T2验常数,与物质和温度范围有关)14、在发生一绝热过程时,由于 Q 0,于是dU W 理想气体的绝热可逆过程,有:nCV,mdT p dV CV,mln T2T1R lnVV1CV,mlnp2p1Cp,mlnV1V2pV常数 =Cp,mCV,m>1.15、焦耳汤姆逊系数: J-T=(T p)HJ-T>0 经节流膨胀后,气体温度降低;J-T<0 经节流膨胀后,气体温度升高; J-T=0 经节流膨胀后,气体温度不变。
物理化学第一章热力学第一定律讲解

U U2 U1 QW 对于微小变化 dU Q W
热力学能的单位: J
热力学能是状态函数,用符号U 表示,它的绝对值尚 无法测定,只能求出它的变化值。
热力学第一定律的文字表述
热力学第一定律是能量守恒与转化定律在热现象领域 内所具有的特殊形式,说明热力学能、热和功之间可以相 互转化,但总的能量不变。
U U (T , p,n)
若是 n 有定值的封闭系统,则对于微小变化
dU
U T
p
dT
U p
T
dp
如果是 U U (T ,V )
dU
U T
V
dT
U V
T
dV
U T
V
U T
V2 )
p2
O V1
p1V2
p2V2
V2 V
一次等外压压缩
p2
始
p1
p1
终
态
V2
V2
态
p
p1
p1V1
V1 p1V2
阴影面积代表We',1 p2
O
V1
p2V2
V2 V
2. 多次恒压压缩
现在,国际单位制中已不用 cal,热功当量这个词将逐渐被 废除。
§1.4 热力学第一定律
能量守恒定律 到1850年,科学界公认能量守恒定律是自然界的普
遍规律之一。能量守恒与转化定律可表述为:
自然界的一切物质都具有能量,能量有各种不同形 式,能够从一种形式转化为另一种形式,但在转化过 程中,能量的总值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 状态函数的分类
(1) 容量性质: 状态函数值与体系中物质的数量成正
比,在体系中有加和性,如体积(V ), 质量(m)、热容(C)等;
(2) 强度性质: 状态函数值与体系中物质的数量无关,
无加和性,整个体系的强度性质值与
三、状态和状态函数
1. 状态:是指某一热力学体系的物理性质 和化学性质的综合表现;
确定(规定)体系状态性质的是体系的 状态函数;
即体系在不同状态下有不同的状态函数, 相同的状态下有相同的状态函数。
2. 状态函数:体系宏观物理量,如: 质量(m),温度(T),压力(P)
体积(V),浓度(c),密度() 粘度(),折光率(n)等等。
§1.2 几个基本概念
一、体系和环境
将某一事物的一部分从其他部分划分 出来,作为研究对象,而这一部分的 物质称为 “体系”;
体系以外的部分叫做 “环境”。
例如:我们可以把反应瓶内(包括反应瓶) 物质称 “体系”,外部环境称 “环 境”。
“体系”与“环境”之间应有一定的 “边界”,这个边界可以是真实的物 理界面(如图 1(2),(3)),亦可 以是虚构的界面(如图 1(1)中反应 瓶口的虚线)。
件。 * 这些问题的解决,将对生产和科研起巨大的作
用。
四、热力学的应用
1. 广泛性:只需知道体系的起始状态、 最终状态,过程进行的外界条件,就可 进行相应计算;而无需知道反应物质的 结构、过程进行的机理,所以能简易方 便地得到广泛应用。
2. 局限性:
a. 由于热力学无需知道过程的机理,所以 它对过程自发性的判断只能是知其然 而不知其所以然,只能停留在对客观 事物表面的了解而不知其内在原因;
2. 一定条件下某种过程能否自发进行,若 能进行,则进行到什么程度为止,即变 化的方向和限度问题。
二、热力学体系的基础(基石)
热力学的一切结论主要建立在两个经 验定律的基础之上,即热力学第一定 律和热力学第二定律(这是19世纪发 现的,后面将详细讲述)。
所谓经验定律,应有如下特征:
1. 是人类的经验总结,其正确性是由无 数次的实验事实所证实的;
第一章 热力学第一定律
§1.1 热力学概论
一、热力学的研究对象 热力学是研究能量相互转换过程中所应
遵循的规律的科学。 研究对象: 1. 各种物理变化、化学变化中所发生的能
量效应。
热力学发展初期,只涉及热和机械功间 的相互转换关系,这是由蒸汽机的发明和 使用引起的。现在,其他形式的能量如电 能、化学能、辐射能等等也纳入热力学研 究范围。
体系的某一状态在状态空间里只是一个点, 它以前的历史,即它是怎么过来的是不能 确定的。
c. 体系状态函数之间有相互联系,并非完 全独立。
如果体系的某一状态函数发生变化,那 么至少将会引起另外一个状态函数、甚 至多个状态函数的变化。
例如:理想气体在恒温条件下体积缩小 至 1/2,必然会引起其压力增大一倍。
说明:
a. 体系与环境的划定(或选择)并没有定规,完 全根据客观情况的需要,以处理问题的方便为 准。如图1.3的反应,若我们需划出一个孤立 体系,严格地讲,应该把隔热层反应瓶也归入 体系,以使体系与环境无热交换;若想划出一 个封闭体系,则可把反应瓶归入环境。
b. 热力学研究的是能量交换的规律,所以(除非 特别说明)一般情况下讨论的是封闭体系。
各部分性质值相同,如密度()、浓
度(c)、压力(P)等。
(3) 状态函数间的相互关系
a. 往往两个容量性质之比就成为体系的 强度性质。
例如:密度 = m / V ,
比热 c = C / m ,等等。
b. 体系的热力学状态性质只说明体系当时 所处的状态,而不能推断体系以前的状态。
例如:1atm 100C的水,只说明水处于 100C,但不能知道这100C的水是由水 蒸汽冷凝而来,还是由液态水加热得到。
b. 其研究对象是有足够大量质点的体系, 得到物质的宏观性质(故无需知物质 的结构),因而对体系的微观性质, 即个别或少数分子、原子的行为,热 力学无法解答。
c. 热力学所研究的变量中,没有时间 的概念,不涉及过程进行的速度问 题。热力学无法预测过程什么时候 发生、什么时候停止。(这对实用 的化学反应来讲显然是不够的,需 用化学动力学来解决)。
(4)推论
由于体系状态函数之间并非完全独立, 所以要确定一个体系的热力学状态,并 不需要确定其所有的状态函数,而只要 确定其中几个。
至于究竟需要几个状态函数,热力学本 身并能预见,对不同的研究体系,只能 依靠经验来确定。
例如: ① 对于纯物质(单质或化合物,但混合物、
溶液不是纯物质)的单相体系而言,它 的状态需三个变量(状态函数)确定。 例如:可采用温度(T)、压力(P)、 摩尔数(n)三个变量来确定。 若为封闭体系,则摩尔数 n 一定时,只 需两个状态函数变量(T,P)就能确定 其状态。
图 1. 体系与环境示意图
二、体系的分类
根据体系与环境的关系,体系可分三类:
1.敞开体系:体系与环境间既有物质交换, 也有能量交换(如:热交换,图 1.1);
2.封闭体系:体系与环境间没有物质交换, 只有能量交换(功、热交换等,图 1.2);
3.孤立(隔离)体系:体系与环境间既无物 质交换,也无能量交换,图 1.3)。
2. 它不能从逻辑上或其他理论方法来加 以证明(不同于定理)。
20 世纪初,又发现了热力学第三定 律。虽然其作用远不如第一、第二 定律广泛,但对化学平衡的计算具 有重大的意义。
三、化学热力学
热力学在化学过程中的应用构成“化学 热力学”,其研究对象和内容:
1. 判断某一化学过程能否进行(自发); 2. 在一定条件下,确定被研究物质的稳定性; 3. 确定从某一化学过程所能取得的最大产量的条
பைடு நூலகம்
② 对于多物种体系,一般要用: (T,P,n1,n2,…,ns) 来确定其单相体系的状态。
四、过程与途径
1. 过程:体系的状态发生了变化,需要一 个“过程”(与“途径”相比,它具有 “时间”的意味)。