(精品)2013年陕西省中考数学试题及答案

合集下载

2013年陕西省西安市中考三模数学试卷及答案(有详细解析)

2013年陕西省西安市中考三模数学试卷及答案(有详细解析)

陕西省西安市2013年中考数学三模试卷一、选择题(共10小题、每题3分,计30分)2.如图所示,下列选项中,正六棱柱的左视图是( )3.若分式的值为0,则x 的值为())5.把直线y=﹣3x 向上平移后得到直线AB ,直线AB 经过点(m 、n ),且3m+n=10,则直线AB 的解析式( )6.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是()7.有两段长度相等的河渠挖掘任务,分别交给甲乙两个工程队同时进行挖掘,如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间的关系的部分图象.如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加7千米/时,结果两队同时完成了任务,则该河渠的长度为()8.关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的10.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()二、填空题(共6小题、每题3分、共计18分)11.|﹣4|﹣=_________.12.如图,点O是△ABC的外心,且∠BOC=110°,则∠A=_________.13.在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为_________.14.如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为_________cm2.15.如图,双曲线y=经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是_________.16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是_________.三、解答题(共9小题,计72分,解答应写出过程)17.先化简,再求值:,其中.18.已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上的一点,求证:EB=ED.19.我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是_________株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?请通过计算说明理由.20.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).21.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_________元购物券,至多可得到_________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.22.泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副,鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?23.如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.24.如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q 与垂直于x轴的直线P2Q交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.2013年陕西省西安市西工大附中中考数学三模试卷参考答案与试题解析一、选择题(共10小题、每题3分,计30分)2.(3分)(2010•铁岭)如图所示,下列选项中,正六棱柱的左视图是()3.(3分)若分式的值为0,则x的值为()分式的值为∴4.(3分)某班50名学生的年龄统计结果如下表所示,这个班学生年龄的众数、中位数是5.(3分)把直线y=﹣3x向上平移后得到直线AB,直线AB经过点(m、n),且3m+n=10,6.(3分)(2012•湖州)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC 的平分线BD交⊙O于点D,则∠BAD的度数是()7.(3分)有两段长度相等的河渠挖掘任务,分别交给甲乙两个工程队同时进行挖掘,如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间的关系的部分图象.如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加7千米/时,结果两队同时完成了任务,则该河渠的长度为()时,时,8.(3分)关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则9.(3分)(2012•潍坊)若直线y=﹣2x﹣4与直线y=4x+b的交点在第三象限,则b的取值解:解得:<<10.(3分)(2012•湖州)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()得出,=,代入求出∴=,===CM=﹣BF+CM=二、填空题(共6小题、每题3分、共计18分)11.(3分)|﹣4|﹣=﹣1.12.(3分)如图,点O是△ABC的外心,且∠BOC=110°,则∠A=55°.13.(3分)(2011•宁夏)在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为40人.14.(3分)(2012•沈阳)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC 于点F,则四边形BEDF的面积为16cm2.AD=×4cm1615.(3分)(2012•扬州)如图,双曲线y=经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是12.,根据三角形面积公式得OM=a=,OM=,即16.(3分)(2012•扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC 为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是1.CE=(三、解答题(共9小题,计72分,解答应写出过程)17.(5分)先化简,再求值:,其中.解:,18.(6分)已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上的一点,求证:EB=ED.∵,∵,19.(7分)(2012•巴中)我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是100株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?请通过计算说明理由.)甲种树苗成活率为:×乙种果树苗成活率为:丁种果树苗成活率为:20.(8分)(2006•哈尔滨)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).CAH=CAH=,×+1.5CED=,CE=))米.21.(8分)(2011•黔南州)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10元购物券,至多可得到50元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.22.(8分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副,鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.应是多少元?23.(8分)(2012•巴中)如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.AOF=24.(10分)(2008•黄石)如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y 轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?的距离为.∴8),25.(12分)(2012•北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q 与垂直于x轴的直线P2Q交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.(﹣,,解得,本文来自中国古诗文网(),转载请注明出处,谢谢合作!。

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。

陕西省2013年中考数学试题(word解析版)

陕西省2013年中考数学试题(word解析版)

2013陕西中考数学试题及解析一、选择题(每小题只有一个正确答案) 1.下列四个数中最小的数是( ) A .2- B .0 C .31-D .5 考点:此题一般考查的内容简单,有相反数、倒数、绝对值、具有相反意义的量的表示及正负数的概念等简单的知识点,本题考查简单的数的比较大小。

解析:引入正负数时了解正数大于0,负数小于0,正数大于一切负数,两个负数比较大小:绝对值大的反而小,此题故选A .2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )考点:一般几何体的三视图的画法解析:此类题主要考查学生们的空间想象能力,一般考查常见的简单的几何体有圆柱,正方体及其组合体。

应注意看的见的轮廓线与看不见的轮廓线的画法与圆锥与圆柱的视图的区别是否有圆心,相对来说考查的较为简单,此题故选D .3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小( ) A . 65° B . 55° C .45° D . 35° 考点:平行线的性质应用与互余的定义。

解析:此类题主要考查学生们的平面几何的性质应用的能力, 一般考查常见较为简单的两直线平行而同位角和内错角相等 的应用,而问题的设置也是求角度或者是找角的关系。

因为AB ∥CD ,所以∠D=∠BED ,因为∠CED=90°,∠AEC=35°所以∠BED=180°-90°-35°=55°,此题故选B4.不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A .21>x B .1-<x C .211<<-x D .21->x 考点:不等式的解法及不等式组的解集的选取。

解析:此题一般考不等式组或者是一元一次方程的应用等简单的计算能力考查。

易错就是不等式的性质3,乘除负数时不等号的方向应改变。

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)一、解答题1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.7.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:8.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

2023年陕西省中考数学真题试卷及答案

2023年陕西省中考数学真题试卷及答案

2023年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的).1.计算:35-=( ) A. 2B. 2-C. 8D. 8-2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.如图,l AB ∥,2A B ∠=∠.若1108∠=︒,则2∠的度数为( )A. 36︒B. 46︒C. 72︒D. 82︒4.计算:233162xy x y ⎛⎫⋅-= ⎪⎝⎭( ) A. 453x y B. 453x y - C. 363x y D. 363x y - 5.在同一平面直角坐标系中,函数y ax =和y x a =+(a 为常数,a<0)的图象可能是( )A. B.C. D.6.如图,DE 是ABC ∆的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A.132B. 7C.152D. 87.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”( 图②)的形状示意图.AB 是O 的一部分,D 是AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB .已知24AB =cm,碗深8cm CD =,则O 的半径OA 为( )A. 13cmB. 16cmC. 17cmD. 26cm8.在平面直角坐标系中,二次函数22y x mx m m =++-(m 为常数)的图像经过点(06),.其对称轴在y 轴左侧,则该二次函数有( ) A. 最大值5 B. 最大值154 C. 最小值5 D. 最小值154二、填空题(共5小题,每小题3分,计15分).9.如图,在数轴上,点A 点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是 .10.如图,正八边形的边长为2,对角线AB ,CD 相交于点E .则线段BE 的长为___.11.点E 是菱形ABCD 的对称中心,56B ∠=︒,连接AE ,则BAE ∠的度数为___.12.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上.点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.13.如图,在矩形ABCD 中,3AB =,4BC =.点E 在边AD 上,且3ED =,M ,N 分别是边AB ,BC 上的动点,且BM BN =,P 是线段CE 上的动点,连接PM ,PN .若4PM PN +=.则线段PC 的长为___.三、解答题(共13小题,计81分.解答应写出过程).14.解不等式:3522x x ->.15.(131()27--+-.16.化简:23121111a a a a a -⎛⎫-÷⎪--+⎝⎭. 17.如图.已知锐角ABC ∆,48B ∠=︒,请用尺规作图法,在ABC ∆内部求作一点P .使PB PC =.且24PBC ∠=︒.(保留作图痕迹,不写作法)18.如图,在ABC ∆中,50B ∠=︒,20C ∠=︒.过点A 作AE BC ⊥,垂足为E ,延长EA 至点D .使AD AC =.在边AC 上截取AF AB =,连接DF .求证:DF CB =.19.一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3,这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为 . (2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.20.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价. 21.一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得2.4m DF =.当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为266︒..已知爸爸的身高 1.8m CD =,小明眼睛到地面的距离 1.6m EF =,点F ,D ,B 在同一条直线上,EF FB ⊥,CD FB ⊥,AB FB ⊥.求该景观灯的高AB .(参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50)︒≈22.经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m 处的直径)越大.树就越高.通过对某种树进行测量研究,发现这种树的树高()m y 是其胸径()m x 的一次函数.已知这种树的胸径为0.2m 时,树高为20m .这种树的胸径为0.28m 时,树高为22m . (1)求y 与x 之间的函数表达式.(2)当这种树的胸径为03m .时,其树高是多少? 23.某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64,通过对以上数据的分析整理,绘制了统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是 . (2)求这20个数据的平均数.(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.24.如图,ABC ∆内接于O ,45BAC ∠=︒,过点B 作BC 的垂线,交O 于点D ,并与CA 的延长线交于点E ,作BF AC ⊥,垂足为M ,交O 于点F .(1)求证:BD BC =. (2)若O 的半径3r =,6BE =,求线段BF 的长.25.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度12m ON =,拱高4m PE =.其中,点N 在x 轴上,PE ON ⊥,OE EN =.方案二,抛物线型拱门的跨度8m ON '=,拱高6m P E ''=.其中,点N '在x 轴上,P E O N ''''⊥,O E E N ''''=.要在拱门中设置高为3m 的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中.矩形框架ABCD 的面积记为1S ,点A,D 在抛物线上,边BC 在ON 上.方案二中,矩形框架A B C D ''''的面积记为2S ,点A ','D 在抛物线上,边B C ''在ON '上.现知,小华已正确求出方案二中,当3m A B ''=时,22S =,请你根据以上提供的相关信息,解答下列问题: (1)求方案一中抛物线的函数表达式.(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较1S ,2S 的大小. 26.(1)如图②,在OAB ∆中,OA OB =,120AOB ∠=︒,24AB =.若O 的半径为4,点P 在O 上,点M 在AB 上,连接PM ,求线段PM 的最小值.(2)如图②所示,五边形ABCDE 是某市工业新区的外环路,新区管委会在点B 处,点E 处是该市的一个交通枢纽.已知:90A ABC AED ∠=∠=∠=︒,10000m AB AE ==.6000m BC DE ==.根据新区的自然环境及实际需求,现要在矩形AFDE 区域内(含边界)修一个半径为30m 的圆型环道O .过圆心O ,作OM AB ⊥,垂足为M ,与O 交于点N .连接BN ,点P 在O 上,连接EP .其中,线段BN ,EP 及MN 是要修的三条道路.要在所修道路BN ,EP 之和最短的情况下,使所修道路MN 最短,试求此时环道O 的圆心O 到AB 的距离OM 的长.2022年陕西省中考数学真题试卷一、选择题共8小题,每小题只有一个选项是符合题意的)1. 37-的相反数是( ) A. 37-B. 37C. 137-D.1372. 如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A. 120︒B. 122︒C. 132︒D. 148︒3. 计算:()2323x x y⋅-=( )A. 336x yB. 236x y -C. 336x y -D. 3318x y 4. 在下列条件中,能够判定ABCD 为矩形的是( )A. AB AC =B. AC BD ⊥C. AB AD =D. AC BD = 5. 如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A.B. C. D. 6. 在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A. 15x y =-⎧⎨=⎩ B.13x y =⎧⎨=⎩ C. 31x y =⎧⎨=⎩ D. 95x y =⎧⎨=-⎩7. 如图,ABC 内接于②,46O C ∠=︒,连接OA ,则OAB ∠=( )A. 44︒B. 45︒C. 54︒D. 67︒8. 已知二次函数y =x 2−2x −3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A. 123y y y << B. 213y y y <<C. 312y y y <<D. 231y y y <<二、填空题(共5小题)9. 计算:3=______.10. 实数a ,b 在数轴上对应点的位置如图所示,则a ______b -.(填“>”“=”或“<”)11. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为______米.12. 已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数12y x =的图象上,则这个反比例函数的表达式为_______. 13. 如图,在菱形ABCD 中,4,7AB BD ==.若M,N 分别是边AD BC 、上的动点,且AM BN =,作,ME BD NF BD ⊥⊥,垂足分别为E,F ,则ME NF +的值为______.三、解答题(共13小题,解答应写出过程)14. 计算:015(3)|7⎛⎫⨯-+- ⎪⎝⎭. 15. 解不等式组:()21531x x x +>-⎧⎨--⎩16. 化简:212111a a a a +⎛⎫+÷⎪--⎝⎭.17. 如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)18. 如图,在②ABC 中,点D 在边BC 上,CD =AB ,DE ②AB ,②DCE =②A .求证:DE =BC .19. 如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B,C 的对应点分别是B C '',.(1)点A,A'之间的距离是__________;'''.(2)请在图中画出A B C20. 有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是______;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21. 小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O,C,D,F,G五点在同一直线上,A,B,O三点在同一直线上,且AO②OD,EF②FG.已知小明的身高EF为1.8米,求旗杆的高AB.22. 如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23. 某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在__________组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数. 24. 如图,AB 是②O 的直径,AM 是②O 的切线,AC ,CD 是②O 的弦,且CD AB ⊥,垂足为E ,连接BD 并延长,交AM 于点P .(1)求证:CAB APB ∠=∠;(2)若②O 的半径5,8r AC ==,求线段PD 的长.25. 现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A,B 处分别安装照明灯.已知点A,B 到OE 的距离均为6m ,求点A,B 的坐标. 26. 问题提出(1)如图1,AD 是等边ABC 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________. 问题探究(2)如图2,在ABC 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O,E ,求四边形OECA 的面积. 问题解决(3)如图3,现有一块ABC 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP △型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下:②以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ; ②作CD 的垂直平分线l ,与CD 于点E ;②以点A 为圆心,以AC 长为半径画弧,交直线l 于点P ,连接AP BP 、,得ABP △. 请问,若按上述作法,裁得的ABP △型部件是否符合要求?请证明你的结论.2021年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分每小题只有一个选项是符合题意的)1. 计算:()32⨯-=( ) A. 1B. -1C. 6D. -62. 下列图形中,是轴对称图形的是( )A. B.C. D.3. 计算:()23a b -=( )A.621a b B. 62a bC.521a b D. 32a b -4. 如图,点D,E 分别在线段BC ,AC 上,连接AD ,BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A. 60°B. 70°C. 75°D. 85°5. 如图,在菱形ABCD 中,60ABC ∠=︒,连接AC ,BD ,则ACBD的值为( )A.12B.2C.D.6. 在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m的值为()A. -5B. 5C. -6D. 6AC=, 7. 如图,AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若6cm⊥,则线段CE的长度为()CD BCA. 6 cmB. 7 cmC.D. 8cm8. 下表中列出的是一个二次函数的自变量x与函数y的几组对应值:下列各选项中,正确的是A. 这个函数的图象开口向下B. 这个函数的图象与x轴无交点C. 这个函数的最小值小于-6x>时,y的值随x值的增大而增大D. 当1二、填空题(共5小题,每小题3分,计15分)9. 分解因式:32++=______.69x x x10. 正九边形一个内角的度数为______.11. 幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为______.12. 若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y ,2y 的大小关系是1y ______2y (填“>”,“=”或“<”) 13. 如图,正方形ABCD 的边长为4,O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切),则点A 到O 上的点的距离的最大值为______.三、解答题(共13小题,计81分解答应写出过程)14.计算:0112⎛⎫-+ ⎪⎝⎭15. 解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩16. 解方程:213111x x x --=+-. 17. 如图,已知直线12l l //,直线3l 分别与1l ,2l 交于点A ,B .请用尺规作图法,在线段AB 上求作点P ,使点P 到1l ,2l 的距离相等.(保留作图痕迹,不写作法)18. 如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.19. 一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.20. 从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.21. 一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测∠为30°,由于B,D两点间的距离不易测得,通过量知识测较长钢索AB的长度,他们测得ABD∠恰好为45°,点B与点C之间的距离约为16m.已知点B,C,D共线,探究和测量,发现ACD⊥.求钢索AB的长度.(结果保留根号)AD BD22. 今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为______,众数为______;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18②~21②的范围内(包含18②和21②)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.23. 在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ; (2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.24. 如图,AB 是O 的直径,点E,F 在O 上,且2BF BE =,连接OE ,AF ,过点B 作O 的切线,分别与OE ,AF 的延长线交于点C,D .(1)求证:COB A ∠=∠;(2)若6AB =,4CB =,求线段FD 的长.25. 已知抛物线228y x x =-++与x 轴交于点A,B (其中A 在点B 的左侧),与y 轴交于点C .(1)求点B,C 的坐标;(2)设点C '与点C 关于该抛物线的对称轴对称在y 轴上是否存在点P ,使PCC '△与POB 相似且PC 与PO 是对应边?若存在,求点P 的坐标;若不存在,请说明理由. 26. 问题提出(1)如图1,在ABCD 中,45A ∠=︒,8AB =,6AD =,E 是AD 的中点,点F 在DC 上且5DF =求四边形ABFE 的面积.(结果保留根号) 问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上建一个五边形河畔公园ABCDE 按设计要求,要在五边形河畔公园ABCDE 内挖一个四边形人工湖OPMN ,使点O,P,M,N 分别在边BC ,CD ,AE ,AB 上,且满足22BO AN CP ==,AM OC =.已知五边形ABCDE 中,90A B C ∠=∠=∠=︒,800m AB =,1200m BC =,600m CD =,900m AE =.满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN ?若存在,求四边形OPMN 面积的最小值及这时点N 到点A 的距离;若不存在,请说明理由.2023年陕西省中考数学真题试卷答案一、选择题.1. B2. C3. A4. B5. D6. C7. A8. D二、填空题.9.10. 2+解:如图,过点F 作FG AB ⊥于G ,由题意可知,四边形CEGF 是矩形,ACE △,BFG ∆是等腰直角三角形,2AC CF FB EG ====在Rt ACE 中,2AC =,AE CE =2AE CE AC ∴===同理BG =2BE EG BG ∴=+=+故答案为:2+11. 62°解:如图,连接BE点E 是菱形ABCD 的对称中心,56ABC ∠=︒∴点E 是菱形ABCD 的两对角线的交点AE BE ∴⊥,1282ABE ABC ∠=∠=︒ 9062BAE ABE ∴∠=︒-∠=︒.故答案为:62︒.12. 18y x=解:②四边形OABC 是矩形②3OC AB ==设正方形CDEF 的边长为m②CD CF EF m ===②2BC CD =②2BC m =②()3,2B m ,()3,E m m + 设反比例函数的表达式为k y x=②()323m m m ⨯=+解得3m =或0m =(不合题意,舍去)②()3,6B②3618=⨯=k②这个反比例函数的表达式是18y x =故答案为:18y x =.13. 解:3DE AB CD ===CDE ∆∴是等腰直角三角形作点N 关于EC 的对称点N ',则N '在直线CD 上,连接PN ',如图:4PM PN +=.4PM PN BC '∴+==,即4MN '=此时M ,P ,N '三点共线且MN AD '∥,点P 在MN '的中点处2PM PN '∴==PC ∴=故答案为:三、解答题.14. 5x <-15. 1-16. 11a - 17. 解:如图,点P 即为所求.18. 证明:在ABC ∆ 中,50B ∠=︒,20C ∠=︒180110CAB B C ∴∠=︒-∠-∠=︒.AE BC ⊥.90AEC ∴∠=︒.110DAF AEC C ∴∠=∠+∠=︒DAF CAB ∠∠∴=.在DAF ∆和CAB △中AD AC DAF CAB AF AB =⎧⎪∠=∠⎨⎪=⎩②()SAS DAF CAB ≅.DF CB ∴=.19. (1)12 (2)716【小问1详解】由题意可得,数字1,1,2,3中,数字1有2个所以,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为2142= 故答案为:12. 【小问2详解】树状图如下:由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种 ∴摸出的这两个小球上标有的数字之积是偶数的概率716. 20. 8元解:设该文具店中这种大笔记本的单价是x 元,则小笔记本的单价是()3x -元 由题意可得()46362x x +-=解得:8x =.答:该文具店中这种大笔记本的单价为8元.21. 4.8m解:过点E 作EH AB ⊥,垂足为H由题意得:EH FB =, 1.6m EF BH ==设m EH FB x ==在Rt AEH △中,26.6AEH ∠=︒tan 26.60.5(m)AH EH x ∴=⋅︒≈(0.5 1.6)m AB AH BH x ∴=+=+CD FB ⊥,AB FB ⊥90CDF ABF ∴∠=∠=︒CFD AFB ∠=∠CDF ABF ∴∽ ∴CD DF AB BF= ∴1.8 2.4AB x= 34AB x ∴= ∴30.5 1.64x x =+ 解得: 6.4x =3 4.8(m)4AB x ∴== ∴该景观灯的高AB 约为4.8m .22. (1)2515y x =+(2)22.5m【小问1详解】解:设()0y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩解之,得2515k b =⎧⎨=⎩②2515y x =+.【小问2详解】当0.3m x =时,()250.31522.5m y =⨯+=.②当这种树的胸径为0.3m 时,其树高为22.5m .23. (1)54,见解析(2)50(3)15000个【小问1详解】由题意得,201964n =---=补全频数分布直方图如下:这20个数据中,54出现的次数最多,故众数为54.故答案为:54.【小问2详解】()1281544523665020x =⨯+++=. ∴这20个数据的平均数是50.【小问3详解】所求总个数:5030015000⨯=个.∴估计这300棵西红柿植株上小西红柿的总个数是15000个. 24. (1)见解析(2)【小问1详解】证明:如图,连接DC则45BDC BAC ∠=∠=︒BD BC ⊥9045BCD BDC ∴∠=︒-∠=︒BCD BDC ∴∠=∠.BD BC ∴=.【小问2详解】如图,90DBC ∠=︒CD ∴为O 的直径26CD r ∴==.sin 62BC CD BDC ∴=⋅∠=⨯=EC ∴===BF AC ⊥90BMC EBC ∴∠=∠=︒BCM BCM ∠=∠ΔΔBCM ECB ∴∽. ∴BC BM CM EC EB CB==BC EB BM EC ⋅∴===22BC CM EC ===连接CF ,则45F BDC ∠=∠=︒,45MCF ∠=︒MF MC ∴==BF BM MF ∴=+=25. (1)21493y x x =-+ (2)218m ,12S S >【小问1详解】解:由题意知,方案一中抛物线的顶点()64P ,设抛物线的函数表达式为()264y a x =-+ 把()00O ,代入得:()20064a =-+ 解得:19a =-②()2211464993y x x x =--+=-+. ②方案一中抛物线的函数表达式为21493y x x =-+. 【小问2详解】解:在21493y x x =-+中,令3y =得:214393x x =-+ 解得3x =或9x =②()936m BC =-=②()213618mS AB BC ⋅=⨯==.②18>②12S S >.26. (1)4(2)4047.91m解:(1)如图②,连接OP ,OM ,过点O 作OM AB '⊥,垂足为M '则OP PM OM +≥. O 半径为444PM OM OM ∴≥'≥--OA OB =.120AOB ∠=︒30A ∴∠=︒tan3012tan30OM AM ∴=︒''⋅=︒=44PM OM ∴≥-='∴线段PM 的最小值为4.(2)如图②,分别在BC ,AE 上作()30BB AA r m '==='连接A B '',B O ',OP ,OE ,B E '.OM AB ⊥,BB AB '⊥,ON BB ='∴四边形BB ON '是平行四边形.'BN B O ∴=.B O OP PE B O OE B E ++≥+'≥''BN PE B E r ∴+≥-'∴当点O 在B E '上时,BN PE +取得最小值.作O ',使圆心O '在B E '上,半径()30m r =作O M AB ''⊥,垂足为M ',并与A B ''交于点H . ②O H A E ''∥∴②B O H ''∽②B EA '' ∴O H B H EA B A '''=''O '在矩形AFDE 区域内(含边界)∴当O '与FD 相切时,B H '最短即()'100006000304030m B H =-+=,此时,O H '也最短. M N O H ''='M N ∴''也最短.()()100003040304017.91m 10000EA B H O H B A -'''''⨯⋅∴=== ()304047.91m O M O H '∴+='='∴此时环道O 的圆心O 到AB 的距离OM 的长为4047.91m .2022年陕西省中考数学数学真题试卷答案一、选择题1. B2. B3. C4. D5. D6. C7. A8. B二、填空题9. 2-10. <11. 1)12. y=2 x -13.2三、解答题14. 16-+15. 1x≥-16. 1a+17. 解:如图,射线CP即为所求作.18. 证明:②DE②AB②②EDC=②B.又②CD =AB ,②DCE =②A②②CDE ②②ABC (ASA).②DE =BC .19. 【小问1详解】解:由(23)A -,,(23)A ',得 A,A '之间的距离是2-(-2)=4.故答案为:4.【小问2详解】解:由题意,得103-1B C ''(,),(,)如图,A B C '''即为所求.20. (1)25(2)见解析,15 【小问1详解】解:所选纸箱里西瓜的重量为6kg 的概率是25 故答案为:25; 【小问2详解】解:列表如下:由列表可知,共有20种等可能的结果,其中两个西瓜的重量之和为15kg的结果有4种.②41205P==.21. 解:②AD②EG②②ADO=②EGF.又②②AOD=②EFG=90°②②AOD②②EFG.②AO OD EF FG=.②1.820152.4EF ODAOFG⋅⨯===.同理,②BOC②②AOD.②BO OC AO OD=.②15161220AO OCBOOD⋅⨯===.②AB=OA−OB=3(米).②旗杆的高AB为3米.22. (1)8 (2)26 kb=⎧⎨=⎩(3)3-【小问1详解】当x=1时,y=8×1=8;故答案为:8;【小问2详解】将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩ 解得26k b =⎧⎨=⎩; 【小问3详解】令0y =由8y x =,得08x =,②01x =<.(舍去)由26y x =+,得026x =+,②31x =-<.②输出的y 值为0时,输入的x 值为3-.23. (1)C (2)112分钟 (3)912人24. (1)见解析 (2)323 【小问1详解】证明:②AM 是O 的切线②90BAM ∠=︒.②CD AB ⊥②90CEA ∠=︒②AM CD .②CDB APB ∠=∠.②CAB CDB ∠=∠②CAB APB ∠=∠.【小问2详解】解:如图,连接AD .②AB 为直径②②ADB =90°②90CDB ADC ∠+∠=︒.②90,CAB C CDB CAB ∠+∠=︒∠=∠②ADC C ∠=∠.②8AD AC ==.②210AB r ==②6BD ==.②②BAP =②BDA =90°,②ABD =②PBA②ADB PAB △∽△. ②AB BD PB AB=. ②21005063AB PB BD ===. ②5032633DP =-=. 25.1)29(5)925y x =--+(2)(5(5A B -【小问1详解】依题意,顶点(5,9)P设抛物线的函数表达式为2(5)9y a x =-+将(0,0)代入,得20(05)9a =-+.解之,得925a =-. ②抛物线的函数表达式为29(5)925y x =--+. 【小问2详解】令6y =,得29(5)9625x --+=.解之,得125,533x x =+=-+.②(5(5A B +. 26. (1)75︒(2 (3)符合要求,理由见解析【小问1详解】解:AC AP =ACP APC ∴∠=∠2()180ACD PCD CAP ∠+∠+∠=︒2(60)30180PCD ∴⨯︒+∠+︒=︒解得:15PCD ∠=︒75ACP ACD PCD ∴∠=∠+∠=︒75APC ∴∠=︒故答案为:75︒;【小问2详解】解:如图1,连接BP .②,AP BC AP BC AC ==∥②四边形ACBP 是菱形.②6BP AC ==.②120ACB ∠=︒②60PBE ∠=︒.②l BC ⊥②cos603,sin 60BE PB PE PB =⋅︒==⋅︒=②12ABC S BC PE =⋅=△ ②30ABC ∠=︒②tan 30OE BE =⋅︒=②122OBE S BE OE =⋅=△.②ABC OBE OECA S S S =-=△△四边形. 【小问3详解】解:符合要求.由作法,知AP AC =.②,45CD CA CAB =∠=︒②90ACD ∠=︒.如图2,以AC CD 、为边,作正方形ACDF ,连接PF .②AF AC AP ==.②l 是CD 的垂直平分线②l 是AF 的垂直平分线.②PF PA =.②AFP 为等边三角形.②60FAP ∠=︒②30PAC ∠=︒②15BAP ∠=︒.②裁得的ABP △型部件符合要求.2021年陕西省中考数学真题试卷答案一、选择题1. D2. B3. A4. B5. D6. A7. D8. C二、填空题9. ()23x x +10. 140°11. -212. <13. 1+ 三、解答题14. 15. 1x <- 16. 12x =- 17. 略18. 略19. 这种服装每件的标价是110元20. (1)12;(2)1621. ()16m22. (1)19.5,19;(2)20;(3)20天.23. (1)1;(2)458y x =-+;(3)13.5min24. (1)略;(2)32525. (1)()4,0B ,()0,8C ;(2)存在,()0,16P 或160,3P ⎛⎫ ⎪⎝⎭.26. (1(2)存在符合设计要求的四边形OPMN 面积的最小值为2470000m ,这时,点N 到点A 的距离为350m .。

精品解析:2024年陕西省咸阳市中考数学一模试题(解析版)

精品解析:2024年陕西省咸阳市中考数学一模试题(解析版)

2024年陕西省初中学业水平考试全真模拟试题数学学科注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共6页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B ).3.请在答题卡上各题的规定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔涂黑.5.考试结束,本试卷和答题纸一并交回.第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 计算:( )A. B. C. D. 【答案】B【解析】【分析】本题考查了有理数的加法,根据有理数的加法法则直接计算即可求解,掌握有理数的加法法则是解题的关键.【详解】解:,故选:.2. 将一个长方体木块沿四条棱切割掉一个三棱柱后,得到如图所示的几何体,则该几何体的左视图是( )A.B. C. D.【答案】C【解析】【分析】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.根据()63+-=9303-()633+-=B左视图是从左面看到的图形判定则可.【详解】解:从左边看,是一个长方形,长方形的中间有一条横向的虚线.故选:C .3.计算:( )A. B. C. D. 【答案】A【解析】【分析】本题考查了单项式乘单项式,利用单项式乘单项式的运算法则“单项式与单项式相乘,把它们的系数 、同底数幂分别相乘,对于只在一个单项式含有的字母,则连同它的指数作为积的一个因式”进行计算是解题的关键.根据单项式乘单项式的法则计算即可.【详解】解:;故选:.4. 如图,已知直线,,,则的度数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了平行线的判定和性质.由,,可以得出,利用邻补角的性质求得的度数,再根据平行线的性质可得出的度数.【详解】解:如图:∵,23193x y xy ⋅=343x y 3427x y 233x y 3427x y 23341933x y xy x y ⋅=A a c ⊥b c ⊥1115∠=︒2∠115︒75︒70︒65︒c a ⊥c b ⊥a b ∥3∠2∠1115∠=︒∴,,,∴,.故选:D .5. 已知点,,均在直线的图象上,则,,的值的大小关系是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查对一次函数图象的性质;根据比例系数可知,y 随x 的增大而减小判定即可【详解】解:由已知,,则y 随x 的增大而减小,∵,∴故选:C6. 如图,点D ,E 分别是,的中点,的平分线交于点F ,,,则的长为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查的是三角形中位线定理,平行线的性质,等角对等边,掌握三角形中位线平行于第三边,且等于第三边是解题关键.首先利用中点定义和中位线定理得到,,利用平行线的性质和角平分线的定义得到,推出,根据可得的长.118011565∠=︒-︒=︒c a ⊥ c b ⊥a b ∥2365∴∠=∠=︒()12,y -()20,y ()33,y 3y x =--1y 2y 3y 321y y y >>213y y y >>123y y y >>312y y y >>10k =-<10k =-<203-<<123y y y >>AB AC ABC ∠BF DE 8AB =12BC =EF 112322BD AB DE BC ====,DE BC ∥DFB DBF ∠=∠4BD DF ==DE DF -EF【详解】点、分别是边、的中点,,,,,,平分,,,,,故选:B .7. 如图,是的直径,是弦,于,,,则的长为()A. 8B. 10C.D. 【答案】C【解析】【分析】连接OA ,设,则,根据勾股定理,列出关于r 的方程,解方程,得出,再在Rt △ACE 中,利用勾股定理求出AC 的长即可.【详解】解:连接OA ,如图所示:∵CD ⊥AB ,∴,设,则, D E AB AC 8AB =12BC =114,622BD AB DE BC ∴====DE BC ∥DFB FBC ∴∠=∠BF ABC ∠DBF FBC ∴∠=∠DFB DBF ∴∠=∠4BD DF ∴==642EF DE DF ∴=-=-=CD O AB CD AB ⊥E 2DE =8AB =ACOA r =2OE r =-=5r 142AE BE AB ===OA r =2OE OD DE r =-=-在Rt △OAE 中,,即,解得:,∴,∴,故C 正确.故选:C .【点睛】本题主要考查了垂径定理、勾股定理,根据题意求出圆的半径,是解题的关键.8. 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x…﹣2﹣1012…y =ax 2+bx +c…t m ﹣2﹣2n …且当x =时,与其对应的函数值y >0,有下列结论:①abc <0;②m =n ;③﹣2和3是关于x 的方程ax 2+bx +c =t 的两个根;④.其中,正确结论的个数是( ).A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据二次函数的性质逐一进行分析即可【详解】解:①函数的对称轴为:x=(0+1)=,则ab <0,c =﹣2<0,故abc >0,故①错误,不符合题意;②根据表格可得:x =﹣1和x =2关于函数对称轴对称,故m =n 正确,符合题意;③函数的对称轴为:x =,根据表格可得:x =﹣2和x =3关于函数对称轴对称,此时的函数值为t ,则﹣2和3是关于x 的方程ax 2+bx+c =t 的两个根,故③正确,符合题意;④函数的对称轴为:x =,则b=-a ,当x =﹣时,y =a b ﹣2>0,所以 3a ﹣8>0,故④错误,不符合题意;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,熟悉函数的基本性质,能熟练求解函数与坐标轴的交222OA OE AE =+()22224r r =-+=5r 21028CE r DE =-=-=AC ===12-83a <12121212121412-点及顶点的坐标等.第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9. 数轴上点A 对应的数是,那么将点A 向右移动4个单位长度,此时点A 表示的数是______.【答案】1【解析】【分析】本题考查了有理数加法、数轴上数的表示以及数轴上点的变化规律:左减右加;列出算式,据此计算即可;【详解】解:,故答案为:110. 如图,正八边形和正五边形按如图方式拼接在一起,则∠ABC 的度数为_____.【答案】31.5°【解析】【分析】根据正八边形的内角和正五边形的内角结合周角的定义和等腰三角形性质可得结论.【详解】解:由题意得:正八边形的每个内角都等于135°,正五边形的每个内角都等于108°,故∠BAC =360°﹣135°﹣108°=117°,∵AB =AC ,∴∠ABC =∠ACB =(180°﹣117°)÷2=31.5°.故答案为:31.5°.【点睛】本题考查了正多边形内角与周角、等腰三角形的性质,熟练掌握正八边形的内角和正五边形的内角求法是解题的关键.11. 一农户家承包了一块矩形荒地,修建了三个草莓种植大棚,其布局如图所示.已知矩形荒地米,米,阴影部分为大棚,其余部分是等宽的通道,大棚的总面积为870平方米,则通道宽为______米.【答案】1的3-341-+=60AD =17AB =【解析】【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程,设通道的宽为米,根据矩形的面积公式列出方程并解答.【详解】解:设通道的宽为米,根据题意得:,解得:(不合题意舍去)或,通道的宽为1米,故答案为:1.12. 如图,矩形的边在y 轴正半轴上,,,函数的图象经过点C 和边的中点E ,则k 的值为______.【答案】12【解析】【分析】本题主要考查了反比例函数的图象与性质,解题时要熟练掌握并灵活运用是关键.依据题意,由是的中点,从而,进而设,再表示出,进而代入反比例函数解析式可以得解.【详解】解:由题意,∵是的中点,,∴.∴可设.又,∴.又在函数,x x (602)(172)870--=x x 37.5x =1x =∴ABCD AB 3AB =4BC =k y x=()0x >AD E AD 4,AD BC ==2AE =2,2k E ⎛⎫ ⎪⎝⎭C 4,32k ⎛⎫- ⎪⎝⎭E AD AD BC =4=2AE =2,2k E ⎛⎫ ⎪⎝⎭3AB =4,32k C ⎛⎫- ⎪⎝⎭C k y x=∴.∴.故答案为:12.13. 如图,在正方形中,,点分别在边上,与相交于点,若,则的长为______.【答案】##【解析】【分析】本题考查了正方形的性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,先证明,得到,进而证明,得到,代入已知即可求解,掌握相似三角形的判定和性质是解题的关键.【详解】解:∵正方形,∴,,在中,,,∴,在和中,,∴(),∴,∵,∴,∴,432k k ⎛⎫-= ⎪⎝⎭12k =ABCD 15AB =E F ,BC CD ,AE BF G 8BE CF ==BG 120171717BCF ABE ≌△△CBF BAE ∠=∠BGE ABE ∽△△BG BE AB AE =ABCD 90ABC BCD ∠=∠=︒AB BC =Rt ABE △15AB =8BE =17AE ===ABE BCF △AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩BCF ABE ≌△△SAS CBF BAE ∠=∠BEG AEB ∠=∠BGE ABE ∽△△BG BE AB AE=即,∴,故答案为:.三、解答题(共13小题,计81分,解答应写出过程)14..【答案】【解析】【分析】本题考查了实数的运算,二次根式的除法,零指数幂,绝对值,根据运算法则求解即可,掌握运算法则是解题的关键.【详解】解:原式.15.解不等式:.【答案】【解析】【分析】本题考查了解一元一次不等式,先去分母,再移项,合并同类项,然后系数化为1即可,解题关键是掌握解不等式的步骤.【详解】解:去分母,得,移项、合并同类项,得,不等式的两边都除以2,得.16. 化简:.【答案】【解析】【分析】本题考查了分式的混合运算,解答时先进行分式的加减法运算,再进行乘除法运算即可.81517BG =12017BG =12017(0125⎛⎫+-- ⎪⎝⎭3-12=+-212=-+-3=-5423x x +≤-5x ≤-5436x x +≤-210x ≤-5x ≤-()22221111x x x x x x --⎡⎤÷--⎢⎥-+⎣⎦11x-【详解】解:原式.17. 如图,,连接,请用尺规作图法,分别在,上求作E ,F ,连接,,使得四边形是菱形.(保留作图痕迹,不写作法)【答案】见解析【解析】【分析】作垂直平分线交于点,交于点,交于点,通过证明得到,则与互相垂直平分,则可判断是菱形.【详解】解:如图,点E 、F 为所作.证明:是的垂直平分线,在和中的()()222111211x x x x x x x ---+-=÷-+222221111x x x x x x ---+=÷-+2222211x x x x x x --=÷-+()()2221112x x x x x x x -+=⨯+--()()()()21112x x x x x x x -+=⨯+--11x=-AB CD BC AB CD CE BF CEBF BC AB E BC O CD F BOE COF ≌OE OF =EF BC CEBF EF BC OB OC ∴=BC EF⊥∥ AB CDEBO FCO∴∠=∠EBO FCO与互相垂直平分四边形是菱形.【点睛】本题考查了作图-复杂作图,熟练掌握基本几何图形的性质是解题的关键.18. 如图,在四边形中,C 是上一点,连接,,.求证:.【答案】证明见解析【解析】【分析】本题考查了全等三角形的性质和判定,利用同角的余角相等证明,再利用证明则问题可证.【详解】证明:∵,∴.∵,∴.在和中,,∴∴.19. 如图,点P 在第一象限,与x 轴正半轴的夹角是,且,,求点P的坐标.EBO FCO OB OCBOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩BOE COF∴≌△△OE OF∴=∴EF BC ∴CEBF ADEB DE ,AC BC 90D ACB E ∠=∠=∠=︒AC BC =CD BE =CBE ACD ∠=∠AAS ADC CEB △△≌90ACB ∠=︒90BCE ACD ∠+∠=︒90CBE BCE ∠+∠=︒CBE ACD ∠=∠ADC △CEB D E ACD CBE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ADC CEB △△≌()AAS CD BE =OP α5OP =4cos 5α=【答案】点P 的坐标为【解析】【分析】本题考查了解直角三角形以及点的坐标,解题的关键是构建直角三角形通过解直角三角形来找出点的坐标.过点P 作轴于点A ,解直角三角形即可得出点P 的坐标.【详解】解:如图,过点P 作轴于点A ,∵,,∴,∴,∴点P 的坐标为.20. 甲骨文是迄今为止中国发现的年代最早的成熟文字系统,是汉字的源头和中华优秀传统文化的根脉,赵星在了解甲骨文后,制作了如图所示的四张卡片(这四张卡片分别用字母A ,B ,C ,D 表示,正面文字依次是文、明、自、由,这四张卡片除正面内容不同外,其余均相同),现将四张卡片背面朝上,洗匀放好.(1)赵星从中随机抽取一张卡片,所抽取的卡片上的文字是“文”的概率为______.(2)赵星从中随机抽取一张卡片不放回,张涵再从中随机抽取一张卡片,请用列表或画树状图的方法计算两人抽取的卡片恰好组成“自由”一词的概率.【答案】(1) (2)图见解析,()4,3PA x ⊥PA x ⊥5OP =4cos 5α=cos 4OA OP α=⋅=3PA ===()4,31416【解析】【分析】此题考查了概率公式及列表法或画树状图的方法求概率;(1)直接利用概率公式计算即可;(2)通过画树状图,可得共有12种等可能结果,其中,两名同学抽取的卡片恰好组成“文明”一词的结果有2种,再根据概率公式求解即可.【小问1详解】通过卡片上的文字,可以看到是轴对称图形的为“文”,所以卡片上的文字是轴对称图形的概率为;【小问2详解】画树状图如下:由树状图可知,共有12种等可能的结果,其中两人抽取的卡片恰好组成“自由”一词的可能性有2种,∴两人抽取的卡片恰好组成“自由”一词的概率为.21. 一架无人机沿水平方向飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物的顶端A 的俯角为.无人机保持飞行方向不变,继续飞行36米到达点Q 处,此时测得该建筑物底端B 的俯角为.已知建筑物的高度为27米,求无人机飞行时距离地面的高度.(参考数据:,,,,,)【答案】54米【解析】【分析】本题考查了解直角三角形的实际应用,一元一次方程的应用,解题关键是合理添加辅助线构造直角三角形,并掌握求直角三角形锐角三角函数的方法.如图,过点作,交的延长线于点,设,利用,求出关于的表达式,利用,求出1421126=AB 24︒66︒AB sin 240.41︒≈cos 240.91︒≈tan 240.45︒≈sin 660.91︒≈cos660.41︒≈tan 66 2.25︒≈A AC PQ ⊥PQ C AC x =tan AC APC PC∠=PC x tan BC BQC QC ∠=QC关于的表达式,已知,根据,即可列出关于的一元一次方程,求解,再根据即可求得无人机飞行时距离地面的高度.【详解】解:如图,过点作,交延长线于点,设米,∵,,∴在中,,∴(米)在中,,∴(米),∵米,∴米∴,解得:,∴(米),答:无人机飞行时距离地面的高度约为54米.22. 天然气不仅经济实惠,而且非常环保.很多单位和家庭都选择使用天然气作为燃料.甲、乙两个工程组同时铺设一段天然气管道,两组每天铺设的长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组铺设的长度之和(m )与甲组铺设时间(天)之间的关系如图所示.的x 36PQ =PC QC PQ -=x BC AB AC =+A AC PQ ⊥PQ C AC x =24APC ∠=︒66BQC ∠=︒Rt APC △tan tan 240.45AC APC PC∠==︒≈0.45x PC =Rt BCQ △tan tan 66 2.25BC BQC QC ∠==︒≈272.25 2.25BC x QC +==36PQ =36PC QC PQ -==27360.45 2.25x x +-=27x =272754BC AC AB =+=+=y x(1)当时,求铺设的长度(m )与甲组铺设时间(天)之间的函数表达式;(2)当时,甲组铺设了多少天?【答案】(1)(2)天【解析】【分析】本题考查了一次函数的实际应用,读懂题意是解决本题的关键.(1)利用待定系数法求函数解析式即可;(2)把代入解析式求出的值即可.【小问1详解】解:当时,设与之间的函数表达式为,把,代入上式,得,解得,∴当时,铺设的长度(m )与甲组铺设时间(天)之间的函数表达式为;【小问2详解】解:当时,,解得,∴甲组铺设了天.23. 为宣传6月8日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级700名学生此次竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).1520x ≤≤y x 4860y =1801800y x =+174860y =x 1520x ≤≤y x y kx b =+()15,4500()20,5400154500205400k b k b +=⎧⎨+=⎩1801800k b =⎧⎨=⎩1520x ≤≤y x 1801800y x =+4860y =180********x +=17x =17组别分数/分频数组内学生的平均成绩/分Aa 65B1075C1485D 1895请根据图表信息,解答以下问题:(1)一共抽取了______人,表中______,所抽取参赛学生的成绩的中位数落在“组别”______;(2)求所抽取的这些学生的平均成绩;(3)请你估计该校九年级竞赛成绩达到90分及以上的学生约有多少人?【答案】(1)50,8,C ;(2)83.4分;(3)252人;【解析】【分析】本题考查了统计表和扇形统计图的综合运用.读懂统计图表,从中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.也考查了中位数,利用样本估计总体.(1)由题意,“D 组”的有18人,占调查人数的,可求出调查人数;用总数乘以百分比可求出“A 组”人数,根据中位数的意义,找出处在第25、26位两个数的平均数即可;(2)利用加权平均数求这些同学平均成绩即可;(3)利用样本估计总体,求出样本中竞赛成绩达到90分以上(含90分)所占的百分比,再乘以700即可.【小问1详解】本次调查一共随机抽取学生:人,则A 组的人数人,本次调查一共随机抽取50名学生,第25、26位两个数都在C 组,中位数落在C 组,故答案为:50,8,C ;【小问2详解】6070x ≤<7080x ≤<8090x ≤<90100x ≤≤=a 36%1836%50÷=5016%8a =⨯=抽取的这些学生的平均成绩为:分;【小问3详解】该校九年级竞赛成绩达到90分及以上的学生人数约为:人.24. 如图,四边形是的内接四边形,为直径,点D 为弧的中点,连接.延长交于点E ,为的切线.(1)求证:平分;(2)若,求长.【答案】(1)证明见解析(2)【解析】【分析】(1)根据圆周角定理得到,根据切线的性质得到∠,于是得到。

2013年陕西省中考数学试题和答案

2013年陕西省中考数学试题和答案

2013年陕西中考数学试卷一、选择题(共10小题,每小题3分,计30分) 1 下列四个数中最小的数是( )A.2-B.0C.31-D.5 2 如图,下面几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )AB C D3 如图,AB//CD ,∠CED=90°,∠AEC=35°,则∠D 的大小是( ) A.65° B.55° C.45° D.35°4 不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A.21>x B.1-<x C.211<<-x D.21->x 5 我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( )A.71.8B.77 C .82 D.95.76 如果一个正比例函数的图象经过不同象限的两点,3)B()A(2,n m 、,那么一定用( )A.0,0>>n mB.0,0<>n mC.0,0><n mD.0,0<<n m 7 如图,在四边形ABCD 中,AB=AD,CB=CD,若连接AC ,BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对8 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )x -2 0 1 y 3 p 0 A.1 B.-1 C.3 D.-39.如图,在矩形ABCD 中,AD=2AB,点M 、N 分别在AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( ) A.83 B.32 C.53 D.54 10 已知两点),5(1y A -、),3(1y B 均在抛物线)0(2≠++=a c bx ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( )E DB CAA 50->xB 10->xC 150-<<-xD 320<<-x 第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:=-+-03)13()2( .12.一元二次方程032=-x x 的根是 .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A 在平面直角坐标系中,线段AB 的两个端点的坐标分别为)3,1()1,2(B A 、-,将线段AB 经过平移后得到线段B A ''.若点A 的对应点(3,2)A ',则点B 的对应点B '的坐标为是 . B 比较大小:︒31cos 835(填“>”、“=”或“<”).14.如图,四边形ABCD 的对角线AC 、BD 相交于点O,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留号)第14题图 第16题图15.如果一个正比例函数的图象与反比例函数xy 6=的图象交于),(),(2211y x B y x A 、两点,那么))((1212y y x x --的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,则CE+FH 的最大值为 . 三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分)解分式方程:12422=-+-x xx 18.(本题满分6分)如图,∠AOB=90°,OA=OB,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D 。

初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年陕西中考数学试卷
一、选择题(共
10小题,每小题
3分,计30分)1 下列四个数中最小的数是(
)A.
2
B.0
C.
3
1 D.5
2 如图,下面几何体是由一个圆柱和一个长方体组成的,则它的俯视图是(

A B C D
3 如图,AB//CD ,∠CED=90°,∠AEC=35°,则∠D 的大小是(

A.65°
B.55°
C.45°
D.35°
4 不等式组
3
2102
1
x
x
的解集为()
A.2
1x
B.1
x
C.
2
11x
D.2
1x
5 我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气
质量指数的平均数是(

A.71.8
B.77
C .82
D.95.7
6 如果一个正比例函数的图象经过不同象限的两点,3)B()A(2,n m 、,那么一
定用()
A.0,0n m
B.0,0n
m C.0,0n m D.0
,0n m 7 如图,在四边形ABCD 中,AB=AD,CB=CD,若连接AC ,BD 相交于点O ,则图中全等三角形共有(

A.1对
B.2对
C.3对
D.4对
8 根据下表中一次函数的自变量
x 与函数y 的对应值,可得
p 的值为(

x -2 0
1 y
3 p
A.1
B.-1
C.3
D.-3
9.如图,在矩形
ABCD 中,AD=2AB,点M 、N 分别在AD 、BC 上,连接BM 、
DN.若四边形MBND 是菱形,则
MD
AM 等于()
A.
8
3 B.
3
2 C.
5
3 D.
5
410 已知两点),5(1y A 、),3(1y B 均在抛物线)0(2
a
c bx ax y
上,点),(00y x C 是该抛物线的顶点,

021y y y ,则0x 的取值范围是(

E
D
B
C
A
A
5
x B
1
x C
1
5
x D
3
2
x 第Ⅱ卷(非选择题
共90分)
二、填空题(共6小题,每小题
3分,计18分)
11.计算:
3
)
13()2(.
12.一元二次方程
032
x x
的根是
.
13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分.
A 在平面直角坐标系中,线段A
B 的两个端点的坐标分别为
)3,1()1,2(B A 、,将线段AB 经过平移后
得到线段
B A .若点A 的对应点(3,2)A ,则点B 的对应点B 的坐标为是
.
B 比较大小:31cos 835(填“>”、“=”或“<”).
14.如图,四边形
ABCD 的对角线AC 、BD 相交于点O,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,
则四边形ABCD 的面积为
.(结果保留号)
第14题图第16题图
15.如果一个正比例函数的图象与反比例函数x
y
6的图象交于),(),(2211y x B y x A 、两点,那么
))((1212y y x x 的值为
.
16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,
直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,则CE+FH 的最大值为
.
三、解答题(共
9小题,计72分.解答应写过程)
17.(本题满分5分)
解分式方程:
1
2
4
22
x
x x
18.(本题满分6分)
如图,∠AOB=90°,OA=OB,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于
点D 。

求证:AC=OD
19.(本题满分7分)
我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》,通知中要求各学校全面持
续开展“光盘行动”.
某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,“B —
了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查。

我们将这次调查的
结果绘制了以下两幅统计图。

根据以上信息,解答下列问题:
(1)本次抽样调查了多少名学生?(2)补全两幅统计图; (3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对
“节约教育”内容“了解较多”有多
少名?
20.(本题满分8分)
一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D 高度,如图,当李明走到点
A 处时,张龙测得李明直立时身高AM 与其影子长AE 正好相等;接着李明沿
AC 方向继续向前走,走到点
B 处时,李明
直立时身高BN 的影子是线段
AB ,并测得AB=1.25m,已知李明直立时的身高为 1.75m.求路灯的高
CD 的
长.(结果精确到
0.1m )
21.(本题满分8分)
了解程度
人数6
24
60504030201036
D B
C
A
N
M E
D
B C
A
“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离
y (千米)与汽车行
驶时间
x (小时)之间的函数图象
.
(1)求他们出发半小时时,离家多少千米?(2)求出AB 段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
22.(本题满分8分)
甲、乙两人用手指玩游戏。

规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指;ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小指、小指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,
(1)求甲伸出小拇指取胜的概率(2)求乙取胜的概率
23.(本题满分8分)
如图,直线l 与⊙O 相切于点D ,过圆心O 作EF//l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、
AF ,并分别延长交直线
l 于B 、C 两点,
(1)求证:∠ABC+∠ABC=90°(2)当⊙O 的半径5R
,BD=12时,求tan ∠ACB 的值。

24.(本题满分10分)
在平面直角坐标系中,一个二次函数的图象经过
)0,3()3,1(B A 、两点。

(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D ,与
y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AC 、DE
和DB ,当
AOC 与DEB 相似时,求这个二次函数的表达式。

25.(本题满分12分)问题探究
(1)请在图①中,作出两条直线,使它们将圆面四等分;
(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由。

问题解决
(3)如图③,在四边形ABCD 中,AB//CD,AB +CD=BC ,点P 是AD 的中点,如果
AB=
a ,CD=
b ,
且a b ,那么在边BC 上是否存在一点
Q,使PQ 所在的直线将四边形
ABCD 的面积分成相等的两部分?
若存在,求出
BQ 的长;若不存在,说明理由。

图①图②图③
x
y –1–2–3–41
2
3
4–1
–2–3–4
1
234O。

相关文档
最新文档