(完整版)圆的性质定理
第8讲 圆的概念和性质(word版)

8圆的概念和性质知识目标模块一圆的有关概念易错总结判断下列说法的正误,并说明理由.(1)直径是弦,弦是直径.(2)过圆心的线段是直径.(3)直径只有一条.(4)过圆内一点只能作一条直径.(5)半圆是弧,弧是半圆.(6)圆中的弧分为优弧和劣弧.(7)长度相等的弧是等弧.例1(1)如图,AB 为⊙O 的直径,点C 、D 在圆上,︒=∠110BOC ,AD ∥OC ,则A O D ∠的度数为 .B(2)如图,在ABC ∆中,AB 为⊙O 的直径,︒=∠60B ,︒=∠70C ,则BOD ∠的度数为 .(3)如图,正方形ABCD 与BEFG 彼此相邻且内接于半圆O ,若正方形BEFG 的面积为16,则半圆O 的半径为 .【练习】(1)如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E ,若DE AB 2=,︒=∠18E ,则AOC ∠的度数为.AE(2)如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设a BC =,b EF =,c NH =,则c b a 、、的大小关系为 .HFCGO【拓展】(1)如图,ABC ∆和ABD ∆中,︒=∠=∠90ADB ACB .求证:A 、B 、D 、C 四点在同一个圆上,并指出该圆的圆心.(2)如图,ABC ∆和ABD ∆中,︒=∠=∠90ADB ACB .求证:A 、B 、D 、C 四点在同一个圆上,并指出该圆的圆心.模块二 圆的有关性质垂径定理“知二求三”:BO 、BC 、BA 、CO 、CA 五条线段,知道其中任意两条的长,可以求出其余三条线段的长.A【例2】(1)如图,P 是⊙O 的弦上的点,6=PA ,2=PB ,⊙O 的半径为5,则=OP .(2)如图,在Rt △ABO 中,∠O=90°,AO=2,BO=1,以O 为圆心,OB 为半径的圆交AB 于点P ,则PB= .A【练习】 如图,在⊙O 中,AB 为直线,P 为AB 上一点,过点P 作弦MN ,∠NPB=45°,若AP=2,BP=6,则MN= .A【例3】(1)如图,同心圆中,大圆的弦AB 交小圆于C 、D 两点,求证:BD AC .(2)如图,AB 是⊙O 的直径,P 是AB 上一点,且PB 平分∠CPD ,求证:PC=PD.【练习】如图,圆O 的弦AB 、CD 交于点P ,AB=CD ,求证:OP 平分∠BPO.P【例4】(1)如图,已知AB 是半圆O 的直径,C 为半圆周上一点,M 是⌒AC 的中点,AB MN ⊥于N ,试判断MN 与AC 的数量关系并证明.NAO(2)如图,P 是⊙O 外一点,过点P 作两条割线PAB 和PCD ,点M 、N 分别是⌒AB 、⌒CD 的中点,MN 分别交AB 、CD 于E 、F 两点,求证:PEF ∆为等腰三角形.MP题型二 圆周角定理二、圆周角定理四、圆周角导角思路: 1.利用同弧或等弧转化角2.利用直径构造直角三角形转化角3.利用圆的内接四边形转化角4.利用特殊数量关系构造特殊角转化角. 【例5】(1)如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠OAC 的度数为 .(2)如图,已知C 、D 是以AB 为直径的⊙O 上的两个点,⌒BC =⌒BD ,∠CAB =24°,则∠ABD 的度数为 .(3)如图,⊙O 中,OA ⊥BC ,∠CDA =25°,则∠AOB 的度数为 .(4)如图,⊙O 的直径CB 的延长线与弦ED 的延长线交于点A ,且⌒CE =⌒BE ,∠A =20°,则∠C = .【例6】(1)如图,AB 是半圆O 的直径,D 为弧AC 的中点,∠B =40°,则∠C 的度数为 .(2)如图,△ABC 内接于⊙O ,CH AB 于H ,连OC ,若∠HCB =15°,则∠ACO = .(3)如图,A ,B ,C ,D 是⊙O 上的点,直径AB 交CD 于点E ,已知∠C =57°,∠D =45°,则∠CEB = .A(4)如图,⊙O是△ABC的外接圆,BO的延长线交AC于E,若∠BAC=50°,∠ABC=60°,则∠AEB =.【例7】(1)如图,在⊙O中,∠AOC=100°,则∠ABC的度数为.(2)如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD的度数为.(3)如图,⊙O的半径为1,弦AB ACB=.(4)如图,⊙O的半径为1,弦ABAC,则∠BOC=.第8讲圆的概念和性质A基础巩固1.如图,CD是⊙O的直径,∠EOD=87°,AE交⊙O于点B,且AB=OC,则∠A的度数为2.如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD的度数为3.如图,AB是⊙O的直径,弦CD⊥AB,垂足是E,连接OC,若OC=5,CD=8,则AE的值为.4.如图,CD为⊙O的直径,CDCE,则==AB⊥于E,8=DE,2ABC Array D5.如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为径,弦CD⊥AB,垂足是E,连接OC,若OC=5,CD=8,则AE,则⊙O1的半径为6.如图,AB是⊙O的直径,CD为弦,CD⊥AB,∠BOC=70°,则∠A的大小为7.如图,点O是优弧ACB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的大小为8.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径为CB 综合训练9.如图,AB 、CD 分别是⊙O 上的两条弦,圆心O 到它们的距离分别是OM 、ON .如果AB=CD ,求证:OM =ON .A B10.如图,AB 是圆O 的弦,半径OC 、OD 分别交AB 于E 、F ,且AE=BF ,求证:OE=OF11.已知:如图,在△ANBC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于点D 、E ,连接EB 交OD 于点F.(1)求证:OD ⊥BE ;(2)若DE=5,AB=5,求AE 的长.BAC数学故事蝴蝶定理蝴蝶定理这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。
圆的基本性质

圆的基本性质1.圆的有关性质:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;900的圆周角所对的弦是直径.2.三角形的内心和外心:(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心: (3)三角形的内心:3. 圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半. 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.【例题精讲】例1. AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cm C. D .9cm 例2、BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、..(1)仔细观察图形并写出四个不同的正确结论:①___ ___,②___ _____ ,③_____ _,④________(不添加其它字母和辅助线) (2)A ∠=30°,CDO ⊙的半径r .例3、如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 长.P B CEA 例3题图直线与圆、圆与圆的位置关系【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°练习、1.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O •的位置关系是____2.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.3、如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 。
圆的概念-公式及推导(完整版)

〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.149323846…,通常用π表示,计算中常取3.1416为它的近似值。
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
〖圆和圆的相关量字母表示方法〗圆—⊙半径—r 弧—⌒直径—d扇形弧长/圆锥母线—l 周长—C 面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
圆中的概念和性质

如图, BAC是圆周角.
圆周角定义的两个特征:①顶点在圆上②两边都与圆相交
练习:如图, APB是圆周角的是()
圆周角定理:
圆周角定理:同弧所对的圆周角的度数等于圆心角的度数的一半.
等圆:半径相等(能够重合)的两个圆,叫做等圆.
注意:同圆或者等圆的半径相等.
同心圆的圆心相同,半径不同的圆.
弦:连接圆上任意两点的线段如图中的EF,CD,AB.
直径:经过圆心的弦,如图中的AB
弧:圆上任意两点间的部分,简称弧.如图,以AB为端点的弧记
为 读作“弧AB”.
优弧:大于半圆的弧,用三个字母表示,如图中
劣弧:小于半圆的弧,如图中 与
半圆:任意一条直径把固分成的两条弧,如圆中
等弧:在同圆或等圆中,能够互相重合的弧,如图中 =
例1.(1)下列说法正确的有_________________(填序号).
①直径是弦; ②半圆是弧; ③长度相等的两条弧是等弧; ④所对圆心角相等的两条弧是等弧;
⑤半径相等的两个圆是等圆(圆心不同); ⑥两个半圆是等弧.
A:1个 B:2个 C:3个 D:4个
例2.(1)如图所示,MN为⊙O的弦,∠MON = 70 ,则∠N的度数为( )
A:40
B:50
C:55
D:60
(2)如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于点E,若AB = 2DE,∠E = 18 ,则 ∠C = ________,∠AOC = ________.
例3.如图,已知⊙O的直径AB⊥CD于点E,则下列结论不正确的是( )
A:CE = DE
B:AE = OE
C:弧BC = 弧BD
圆的所有定理公式大全

圆的所有定理公式大全圆是几何学中一个重要的基本图形,它具有许多特殊的性质和定理。
在这篇文章中,我们将介绍一些圆的定理和公式,帮助读者更好地理解圆的性质和应用。
1. 圆的基本性质:- 圆是一个平面上所有到圆心距离相等的点的集合。
- 圆心到圆上任意一点的距离称为半径(r)。
- 圆的直径(d)是通过圆心的一条线段,它等于半径的两倍。
2. 圆的周长和面积:- 圆的周长(C)等于圆的直径(d)乘以π(圆周率)。
C = πd 或C = 2πr- 圆的面积(A)等于半径(r)的平方乘以π(圆周率)。
A = πr²3. 弧长和扇形面积:- 弧长(L)是圆的一部分的弧长。
它等于弧度(θ)乘以半径(r)。
L = θr (其中θ 的单位为弧度)- 扇形面积(A)等于角度(θ)比上360度再乘以圆的面积。
A = (θ/360)πr² (其中θ 的单位为角度)4. 圆的相交性质:- 弦:圆上连接两个点的线段称为弦。
如果一个弦通过圆心,它称为直径。
- 弦切角:如果两个弦的端点相连成一个角,则这个角叫做弦切角。
- 切线:与圆相切且与半径垂直的线段称为切线。
切线与半径的交点称为切点。
- 切线切割定理:一个切点与切点外的任意一点相连,此线段与切线的交点与切点相连的线段平方等于此直线与切线相交的两条弦构成的弧的两个弧度之积。
5. 圆的角度定理:- 圆心角:以圆心为顶点的角叫做圆心角。
圆心角的度数等于所对弧所对应的圆周角度数。
- 直径角:直径所对的角称为直径角,它的度数为 180 度。
- 弧角定理:圆上的两条弦所对的圆心角等于它们所对弧所对应的圆周角的一半。
6. 圆的判定定理:- 定理 1:如果一个点到圆心的距离等于圆的半径,那么这个点在圆上。
- 定理 2:如果一个点在圆上,那么它到圆心的距离等于圆的半径。
7. 圆的位置关系:- 外切圆:与一个三角形的三边都相切的圆,叫做该三角形的外切圆。
- 内切圆:与一个三角形的三条边都相切于一个点的圆,叫做该三角形的内切圆。
(完整版)圆的性质及判定归纳

(完整版)圆的性质及判定归纳(完整版) 圆的性质及判定归纳1. 圆的定义圆是平面上一组距离给定点的距离都相等的所有点的集合。
给定的点称为圆心,相等的距离称为半径。
2. 圆的基本性质- 圆上任意两点与圆心的距离相等。
- 圆上任意一点到圆心的距离等于半径。
- 圆的直径是通过圆心,并且两端点都在圆上的线段。
直径等于两倍的半径。
- 圆上的弦是圆上任意两点之间的线段。
弦的长度小于等于直径长度。
- 圆的弧是圆上两点之间的一段弧线。
- 圆的弧长是圆上圆弧的长度。
- 圆的面积是指圆与圆心所包围的平面区域的大小。
3. 圆的判定方法- 判定一:两点判断法:如果一个点在圆上,那么它与圆心的距离等于半径。
- 判定二:三点判断法:如果一个点在圆上,且这个点到圆心的距离等于半径,那么这个点在圆上。
4. 圆与其他几何图形的关系- 圆与直线的关系:1. 切线:圆上的切线与半径垂直。
切线与半径所在直线的夹角等于该切线在圆上所切割的弧所对的圆心角的一半。
2. 弦:圆上任意两点所连成的线段叫做弦。
半径垂直于其所在弦。
- 圆与多边形的关系:1. 正多边形内接圆:正多边形的外接圆和内切圆都是与正多边形相关的圆。
2. 圆内接正三角形:圆内接正三角形的内心是圆心。
- 圆与圆的关系:1. 外切圆:两个圆外切时,切线垂直于连接两圆心的直线。
2. 内切圆:两个圆内切时,连接两圆心的直线垂直于切点。
5. 圆的应用圆在几何学中有广泛的应用。
从数学到物理,从工程到艺术,圆的特性在各领域都发挥着重要的作用。
在建筑、制图、机械、电路设计等领域,人们经常使用圆来刻画和解决问题。
在艺术中,圆被用来传达平衡、完整和和谐的感觉。
总结圆是一种特殊的几何图形,具有独特的性质和判定方法。
掌握圆的性质和应用不仅有助于几何学的研究,也有助于我们更好地理解和应用几何学在实际生活和工作中的价值。
以上是关于圆的性质及判定归纳的完整版本,希望对您有所帮助。
圆的基本性质与定理

[圆的基本性质与定理]1定理: 不在同一直线上的三点确定一个圆。
(圆的确定)2圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2 圆的两条平行弦所夹的弧相等、圆是以圆心为对称中心的中心对称图形[有关圆周角和圆心角的性质和定理]1定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等2圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半圆心角定理圆心角的度数等于他所对的弧的度数推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形圆内接四边形的性质与定理]1定理圆的内接四边形的对角互补2定理并且任何一个外角都等于它的内对角3圆内接四边形判定定理如果一个四边形对角互补,那么这个四边形的四个顶点共圆推论如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆[有关切线的性质和定理]1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线2切线的性质定理:圆的切线垂直于经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2 :经过切点且垂直于切线的直线必经过圆心[圆的其他性质定理]1弦切角定理弦切角等于它所夹的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等2①直线L和⊙O相交d<r ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r3圆的外切四边形的两组对边的和相等[圆与圆]1如果两个圆相切,那么切点一定在连心线上2①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)3定理相交两圆的连心线垂直平分两圆的公共弦4定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形(有关外接圆和内切圆的性质和定理)5定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆6一个三角形有唯一确定的外接圆和内切圆。
初三数学 圆的性质定理

初三数学圆的性质定理1、圆的对称性:圆是轴对称图形,任一条直径所在的直线都是它的对称轴.2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4、垂径定理的应用:①用直尺和圆规平分一条弧.作法是过圆心作弧所对弦的垂线,理由是垂径定理;②在利用垂径定理计算或证明时,我们通常将其化为一个直角三角形的边和角,这个特殊直角三角形的三边分别是半径、弦的一半和圆心到弦的垂线段.例1、如图,已知以点O为公共圆心的两个同心圆,大圆的弦AD交小圆于B、C.(1)求证:AB=CD(2)如果AD=6cm,BC=4cm,求圆环的面积.1.圆周角定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角.2.圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.推论:①同圆或等圆中,相等的圆周角所对的弧一定相等.②半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径.③如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.4.圆的内接四边形:①定义:如果一个多边形的所有顶点都在同一圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②圆内接四边形的性质:圆内接四边形的对角互补.例2、如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交BC于D.若BC=8,ED=2,求⊙O的半径.1、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O的半径是()2、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm3、如下图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变B.位置不变C.平分D.随点C的移动而移动4、如上中图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B.C.∠BAE=∠BDC D.∠ABD=∠BDC5、如上右图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°6、如下图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.7、如上左二图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.8、如上左三图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A 、B不重合),则∠OAB=__________,∠OPB=__________.9、如右上图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.10、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.11、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.12、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.13、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.一、确定圆的条件(1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径,圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.过不在同一条直线上的三点确定一个圆2、经过三角形三个顶点的圆,叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.3、利用尺规过不在同一条直线上的三个点作圆的方法作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆例1、已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?(1)(2)(3)例3、如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.1、下列关于外心的说法正确的是()A.外心是三个角的平分线的交点 B.外心是三条高的交点C.外心是三条中线的交点 D.外心是三边的垂直平分线的交点2、下列条件中不能确定一个圆的是()A.圆心和半径B.直径 C.三角形的三个顶点D.平面上的三个已知点3、三角形的外心具有的性质是()A.到三边的距离相等B.到三个顶点的距离相等 C.外心在三角形外D.外心在三角形内4、等腰三角形底边上的中线所在的直线与一腰的垂直平分线的交点是()A.重心B.垂心 C.外心D.无法确定5、如图所示,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M6、如图,是△ABC的外接圆,∠BAC=30°,BC=2 cm ,则△OBC的面积是_______.7、直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_______.8、如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观,为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎么样找到圆心和半径?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的性质定理
一.定理:
1.垂径定理:垂直于弦的直径平分这条弦,并平分弦所对的两条弧。
2.垂径定理的推论:(1)平分弦(不是直径)的直径垂直于弦;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
(5个条件:①直径②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧,满足其中两个,其他三个也成立。
注:当具备①③时,需对另一条弦增加它不是直径的限制。
)3.圆周角定理:同一条弧所对的圆周角等于
它所对的圆心角的一半。
4.圆周角定理的推论:(1)同圆或等圆中,
同弧或等弧所对的圆周角相等,相等的圆周
角所对的弧也相等;(2)半圆或直径所对的圆
周角是直角,90°的圆周角所对的弦是直径.
5.切线长定理:从圆外一点引两条切线,它
们的切线长相等圆心与这一点的连线平分两
条切线的夹角。
5.弦切角定理:弦切角等于它所夹的弧所对
的圆周角。
6.弦切角定理的推论:如果两个弦切角所夹
的弧相等,那么这两个弦切角也相等。
7.相交弦定理:圆内的两条相交弦,被交点
分成的两条线段长的积相等。
8.割线定理:从圆外一点引圆的两条割线这
一点到每条割线与园的交点的两条线段长的
积相等。
8.切割线定理:从圆外一点引圆的切线和割
二.性质:
1.在同圆或等圆中,如果两个圆心角、两条弧,两条弦,两个弦心距中有一组量相等,那么他们所对应的其余各组量分别相等。
2.确定圆的条件:定理:不在同一条直线上的三个点确定(有且只有)一个圆。
(作法:连接任意两点并作其中垂线,以这两条中垂线的交点为圆心,以这一点到已知三点中任意一点的距离为半径作圆)
3.切线性质概述:(1)垂直于切线(2)过切点(3)过圆心,如果一条直线满足这三个条件中任意2个,那么就满足第3个。
(遇到切点连半径)
补充3:切线五大性质:(1)切线与圆只有一个公共点(2)圆心到切线的距离等于半径(3)切线垂直于过切点的半径(4)经过圆心垂直于切线的直线必经过切点(5)经过切点垂直于切线的直线必经过圆心。
4.切线的判定方法:(1)与圆有唯一公共点的直线是圆的切线(2)到圆心的距离等于半径的直线是圆的切线(3)经过半径的外端,并且垂直于这条半径的直线是圆的切线(切线判定定理)。
续4:证明切线的辅助线作法:(1)连半径,证半径与该直线垂直(2)作垂直,证垂线长度等于半径。
5.在直角三角形中的内切圆,半径r=a+b+c/2或1/2周长-斜边;一般三角形中,r=2s/c。