圆的基本性质知识点总结
《圆的基本性质》的知识点及典型例题

第三章 《圆的基本性质》的知识点及典型例题知识框图1、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
过三点可作 个圆。
过四点可作 个圆。
2、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径3、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。
注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。
在题目中,若让你求⌒AB ,那么所求的是弧长 4、圆周角定理:一条弧所对的圆周角等于它所对的圆圆的相关计算 圆的相关证明圆周角定理推论1:半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是圆周角定理推论2:在同圆或等圆中,所对的圆周角相等;相等的圆周角所对的也相等5、拓展一下:圆内接四边形的对角之和为6、弧长公式:在半径为R的圆中,n°的圆心角所对的弧长l的计算公式为l=7、扇形面积公式1:半径为R,圆心角为n°的扇形面积为。
这里面涉及3个变量:,已知其中任意两个,都可以求出第3个变量。
我们中需要记住一个公式即可。
扇形面积公式2:半径为R,弧长为l的扇形面积为8、沿圆锥的母线把圆锥剪开并展平,可得圆锥的侧面展开图是一个,圆锥的侧面积等于这个扇形的面积,其半径等于圆锥的,弧长等于圆锥的9、圆锥的侧面积:;圆锥的全面积:10、圆锥的母线长l,高h,底面圆半径r满足关系式11、已知圆锥的底面圆半径r和母线长l,那么圆锥的侧面展开图的圆心角为12、圆锥的侧面展开图的圆心角x的取值范围为考点一、与圆相关的命题的说法正确的个数,绝大多数是选择题,也有少部分是填空题(填序号)考点二、求旋转图形中某一点移动的距离,这就要利用弧长公式考点三、求半径、弦长、弦心距,这就要利用勾股定理和垂径定理及逆定理考点四、求圆心角、圆周角考点五、求阴影部分的面积考点六、证明线段、角度、弧度之间的数量关系;证明多边形的具体形状考点七、利用不在同一直线上的三点确定一个圆的作图题考点八、方案设计题,求最大扇形面积考点九、将圆锥展开,求最近距离练习一、选择题1、下列命题中:①任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③任意一个三角形有且仅有一个外接圆;④平分弦的直径垂直于弦;⑤直径是圆中最长的弦,半径不是弦。
圆的基本知识点总结和公式

圆的基本知识点总结和公式圆是平面几何中最基本的几何图形之一。
它是由一个平面上距离固定点相等的点构成的集合。
本文将概述圆的基本定义、性质和公式,以及它在现实生活中的应用。
一、基本定义圆被定义为距离中心点固定距离的所有点的集合。
距离被称为半径(r),中心点被称为圆心(O)。
用符号表示圆。
二、圆的性质1.直径直径(d)是连接圆上两个相对点的线段,通过圆心。
它是半径的两倍,即d=2r。
2.周长周长(C)是圆上所有点到圆心的距离之和。
圆的周长公式是C=2πr,其中π(pi)表示一个圆的周长和直径之比,大约为3.14。
3.面积圆的面积(A)是圆内部的所有点的面积的总和,公式是A=πr²。
4.弧弧是圆上两个点之间的一段曲线。
圆的周长可以看作是一个完整的弧的长度。
5.扇形扇形是由圆心和两个相邻半径之间的弧形区域组成的图形。
圆的面积可以分解为若干个扇形的面积之和。
6.切线切线是从圆外一点画出的一条直线,它与圆相切于圆上一个点处。
切线与半径的长度相等。
7.圆弦圆弦是连接圆上两个点的线段。
如果一条弦穿过圆心,则被称为直径。
三、现实应用在现实生活中,圆形图案经常出现。
圆形的形状使得它非常适合用于实现运动和旋转。
以下是一些示例。
1. 轮胎轮胎是由圆形轮辋和圆形轮胎组成的。
轮胎的圆形轮廓使它可以在任何方向上旋转。
2. 模拟器游戏、飞行和汽车模拟器通常都有一个圆形的控制器。
圆形的形状使其易于操纵,可以随意改变方向。
3. 平盘秤平盘秤是一种由两个圆形盘组成的手持秤,遵循平衡原则。
当需要测量重量时,将物品放在一个盘子上,然后向另一个盘子上添加重量,直到两个盘子保持平衡。
4. 平面旋转圆形的形状也使得它非常适合在一个平面上做旋转运动。
这个概念被广泛应用于机械和电子工程,如发动机和电机。
四、结论在我们的日常生活中,圆形图案似乎无处不在。
可以想象一下,如果没有圆形,我们的许多设备和工具将无法如此有效地运作。
与其他几何形状相比,圆形的形状会导致许多有趣的性质和应用。
圆的基本性质汇总

圆的基本性质汇总圆是平面上的一种特殊几何图形,具有许多基本性质。
以下是圆的一些基本性质的汇总。
1.定义性质:圆是由平面上每个点到一个固定点的距离相等的点的集合。
这个固定点被称为圆心,而相等的距离被称为半径。
2.弧:圆上的两个点之间的连线称为圆弧。
圆弧的长度等于圆心角的度数与圆的半径之积,也可以通过欧几里得的原理求解。
3.圆心角:圆心角是圆上的两条射线所夹的角,其中包括圆心的角。
圆心角的度数可以通过弧度公式求解,也可以用度数来表示。
一个圆的完整圆心角为360度或2π弧度。
4.圆上的点:圆上的任何点与圆心的距离等于圆的半径。
5.弦:两点在圆上的连线称为弦,可以是圆的直径(通过圆心的直径是对称的),也可以是其他长度小于直径的弦。
6.切线:切线是从圆上的一个点到圆的切点的直线。
7.弦弧定理:如果两条弦在圆的内部相交,那么它们所对应的弧是相等的。
8.切线定理:从一个点到圆的切点的切线是与半径垂直的。
如果两条切线相交,那么相交的角是外角,并且等于它们所对应的弧的一半。
9.弧长:弧长是圆上的一段弧的长度,可以通过圆心角的度数和圆的半径计算得到。
10.反弧:如果圆上的一段弧的两个端点相交,那么这段弧与它们所对应的圆心角称为反弧。
11.弓形:弓形是由一段弧和连接弧两个端点的线段组成的图形。
12.圆与直线的关系:一个圆与一条直线可以有三种关系。
如果圆和直线没有交点,那么它们是相离的;如果圆和直线有一个交点,那么它们是相切的;如果直线穿过圆,那么它们是相交的。
13.圆的面积:圆的面积公式为πr²,其中r是圆的半径。
这个公式可以通过将圆划分为无数个小扇形来计算。
14.圆周长:圆的周长等于直径乘以π,或者等于2πr,其中r是圆的半径。
15.圆的切线长度:如果从外部一点到圆的切点的切线与半径相交,那么切线长度是切点到圆心的距离的平方根乘以2以上是圆的一些基本性质的汇总。
理解这些性质对于解决与圆相关的数学问题非常重要,也有助于我们更好地理解三角学、几何学和数学中的其他概念和原理。
解读圆的基本性质与计算问题(知识点总结)

解读圆的基本性质与计算问题(知识点总结)圆的基本性质与计算问题圆是数学中一种重要的几何形状,它具有独特的性质与计算问题。
本文将对圆的基本性质及与之相关的计算问题进行解读与总结。
一、圆的基本性质1. 圆的定义圆是由平面上与一个固定点距离相等于定长的所有点组成的集合。
这个固定点称为圆心,定长称为半径。
2. 圆的要素一个圆有三个要素,即圆心、半径和圆周。
圆心是圆上任意一点到圆周的距离都相等的点;半径是圆心到圆周上任意一点的距离;圆周是圆心到圆上各点的连线。
3. 圆的直径直径是通过圆心的一条线段,其两个端点同时位于圆周上。
直径的长度恰好是圆的半径长度的两倍。
4. 圆的周长圆的周长又称为圆周长,用符号C表示。
根据圆的定义可知,圆周上的任意一点到圆心的距离都等于半径长度,因此圆的周长可以计算为C = 2πr,其中r为圆的半径。
5. 圆的面积圆的面积用符号S表示,计算公式为S = πr²,其中r为圆的半径。
二、圆的计算问题1. 已知圆的周长求半径根据圆的周长计算公式C = 2πr,给定圆的周长C,可通过求解方程来计算半径r的值。
2. 已知圆的面积求半径根据圆的面积计算公式S = πr²,给定圆的面积S,可通过求解方程来计算半径r的值。
3. 已知圆的半径求周长已知圆的半径r,可以直接使用圆的周长计算公式C = 2πr,计算得到圆的周长。
4. 已知圆的半径求面积已知圆的半径r,可以直接使用圆的面积计算公式S = πr²,计算得到圆的面积。
5. 圆的扇形与弧长扇形是由圆心和两个半径所夹的区域组成,而弧是扇形上的一段弯曲部分。
扇形的面积可以通过扇形夹角的大小来计算,而弧长可以通过弧所对的圆心角的大小来计算。
6. 圆与其他几何图形的关系圆与其他几何图形有着丰富的关系,如圆与直线的交点、圆与三角形的内切与外切等。
这些关系可以通过几何定理与推导来解决相应的计算问题。
综上所述,圆作为数学中的一种重要几何形状,具有独特的性质与计算问题。
高中圆公式知识点总结

高中圆公式知识点总结在高中数学中,圆是一个非常重要的几何形状,而圆的公式则是掌握圆的性质和计算圆的周长、面积等问题的关键。
本文将从圆的基本性质开始,逐步介绍圆的相关公式和知识点,方便同学们系统地掌握圆的知识。
1. 圆的基本性质(1) 圆的定义:圆是平面上所有距离等于定长的点的集合。
(2) 圆的要素:圆由圆心O和半径r决定,记为⊙O(r)。
其中,圆心是圆上所有点到圆心的距离都相等,记为r。
(3) 圆的直径:通过圆心,并且与圆相交,并且在圆上的直线叫做圆的直径,通常记为d。
(4) 圆的半径:从圆心到圆上的任一点的线段称为圆的半径,通常记为r。
(5) 圆的周长:圆的周长指的是圆的边长,通常记为L。
根据圆的性质得知,圆的周长等于直径的长度乘以π。
(6) 圆的面积:圆的面积指的是圆内的面积,通常记为S。
根据圆的性质得知,圆的面积等于半径的平方乘以π。
2. 圆的相关公式(1) 圆的周长公式:L = πd,其中d为直径的长度。
(2) 圆的面积公式:S = πr²,其中r为半径的长度。
(3) 圆的直径和半径的关系:d = 2r,即直径等于半径的两倍。
3. 圆的相关知识点(1) 弧长和弧度的关系:弧长指的是圆的一部分弧的长度,通常记为l。
弧的弧度指的是弧所对的圆心角的角度大小。
根据圆的性质得知,弧长等于弧度乘以半径的长度。
(2) 弧长公式:l = rθ,其中θ为弧所对的圆心角的角度大小。
4. 例题解析(1) 例题一:已知圆的周长为20π,求圆的直径和面积。
解:根据周长的公式L = πd,可得圆的直径d = 20。
将直径带入圆的面积公式S = πr²中,可得圆的面积S = π*10² = 100π。
(2) 例题二:已知圆的半径为3,求圆的周长和面积。
解:根据半径的长度r = 3,可得圆的周长L = 2πr = 6π,圆的面积S = πr² = π*3² = 9π。
5. 综合应用圆作为一个重要的几何形状,在日常生活中有很多实际应用,比如建筑设计中的圆形窗户、钟表表盘等。
圆的性质知识点总结

圆的性质知识点总结圆是我们日常生活中常见的一种几何形状。
它具有一些独特的性质,我们通过下面的总结来了解圆的性质。
一、圆的定义和要素圆可以定义为平面上任意点到固定点的距离保持不变的集合。
这个固定点称为圆心,到圆心的距离称为半径。
圆中的任意一条线段,它的两个端点都在圆上,称为弦。
经过圆心的弦称为直径,直径是弦中最大的一段。
二、圆的基本性质1. 圆的半径相等性质:圆上任意两点到圆心的距离相等。
2. 弧的定义:在圆上,由两个点所确定的部分称为弧。
圆上一段既非弦也非整个圆的弧称为弧段。
3. 圆心角:圆上以圆心为顶点的角。
圆心角所对的弧长是该角度的两倍。
4. 弦的性质:等长的弦所对的圆心角相等,且直径是圆上最长的弦。
5. 弧长的比例:相等弧所对的圆心角相等,弧长和圆周长之间存在比例关系。
三、圆的周长和面积公式1. 周长:圆的周长等于圆周上一整条弧的长度。
周长的计算公式为C=2πr,其中C表示周长,r表示半径,π是一个常数,约等于3.14159。
2. 面积:圆的面积是指圆内部的所有点组成的部分所占据的平面面积。
面积的计算公式为S=πr^2,其中S表示面积,r表示半径。
四、圆的判定定理1. 弦切定理:如果一个弦和它所对的圆心角相等,那么这个弦被平分。
2. 弦心定理:如果两个弦的两个端点分别在另一个弦上,那么这两个弦的长度乘积等于它们所决定的弧的长度乘积。
3. 切线性质:从一个点外切圆上的切线和这条切线上这个点到圆心的线段垂直。
五、圆的相关定理1. 相交弦定理:如果两个弦相交,那么它们所对的圆心角相等。
2. 弦切角定理:相交的两条弦所对的弧所决定的角相等。
3. 弦切切定理:切线和弦的交角等于它所对的弧所决定的角。
六、圆的应用1. 圆的运动:物体在圆周上做匀速圆周运动时,物体的速度大小恒定,但方向不断改变。
2. 圆锥曲线:圆可以通过用直线旋转一条线段得到,例如圆锥曲线中的椭圆、抛物线和双曲线。
3. 圆的几何画法:使用圆规、尺子等几何工具可以进行圆的画法,如确定一个圆的圆心、半径等。
圆的基本概念与性质知识点总结

圆的基本概念与性质知识点总结圆是几何学中的一个基本概念,广泛应用于数学、物理、工程等领域。
它具有许多独特的性质和特点,本文将为你总结圆的基本概念以及其相关的性质知识点。
1. 圆的定义圆是平面上一组距离相等的点的集合。
其中,距离相等的点叫做圆心;与圆心距离相等的线段叫做半径;连接圆上任意两点的线段叫做弦;通过圆心并且连接圆上某一点的线段叫做半径。
2. 圆的性质2.1 圆的半径性质- 圆上任意两点间的弦相等,并且等于半径的长度。
- 半径垂直于弦,并且平分弦。
- 圆上相等弧所对的弦相等。
- 以圆心为端点的弧叫做半圆,圆心角为180°。
2.2 圆的直径性质- 直径是圆上任意两点间的最长弦,等于半径的两倍。
- 直径的中点即为圆心。
- 圆上的半径与直径垂直,并且被直径平分。
2.3 圆的面积性质- 圆的面积公式为:A = πr²(其中,A表示面积,r表示半径)。
- 圆的面积只与半径有关,与圆心角和弦长无关。
2.4 圆的弧长性质- 弧长公式为:L = 2πr(其中,L表示弧长,r表示半径)。
- 弧长与圆心角成正比,即弧长等于圆心角度数与周长的比值。
3. 圆的相关定理3.1 切线定理- 切线是与圆相切的直线,切点在圆上。
- 切线与半径垂直。
3.2 弧度制与度制的转换- 弧度制是以半径等于1的圆的圆心角作为单位,记作rad。
- 度制是以圆心角为单位,记作°。
- 弧度制与度制的转换关系为:1° = π/180 rad。
4. 圆的应用领域- 在几何学中,圆被广泛运用于计算圆的面积、周长和弧长等。
- 在物理学中,圆被用于描述物体的运动轨迹和行星的绕轨道运动等。
- 在工程学中,圆被应用于建筑设计、机械制造和电路设计等。
综上所述,圆作为几何学中的基本概念,具有独特的性质和特点。
了解圆的基本概念和性质对于深入理解几何学、物理学和工程学等领域的知识有着重要的意义。
同时,圆的应用广泛,为我们解决问题和进行实践提供了重要的工具。
圆的基本性质与计算公式(知识点总结)

圆的基本性质与计算公式(知识点总结)圆是几何学中的重要概念,具有许多特殊的性质和计算公式。
本文将从不同的角度来总结和介绍圆的基本性质和计算公式,以帮助读者更好地理解和应用这些知识。
一、圆的基本概念和性质1. 定义:圆是由平面上任意一点到一个固定点的距离等于常数的所有点的集合。
2. 圆心:固定点称为圆心,通常用字母O表示。
3. 半径:圆心到圆上任意一点的距离称为半径,通常用字母r表示。
4. 直径:通过圆心的一条线段,两个端点在圆上的线段称为直径,直径等于半径的两倍。
5. 弦:在圆上任意两点之间的线段称为弦,圆的直径也是一种特殊的弦。
6. 弧:在圆上两点之间的一段弧,圆心夹的角称为圆心角,它等于所对圆弧的一半。
7. 切线:与圆相切于圆上一点的直线称为切线,切线与半径的夹角为90度。
二、圆的计算公式1. 圆的周长:周长即圆的周长,用C表示,由于圆是一个闭合曲线,所以其周长是所有弧长的总和。
周长计算公式为C = 2πr,其中π取近似值3.14。
2. 圆的面积:面积是圆所包围的平面区域,用A表示,计算公式为A = πr²。
3. 弧长:弧长是指圆上一段弧的长度,用字母L表示。
弧长的计算公式为L = 2πr(θ/360),其中θ表示圆心角的度数。
4. 扇形面积:扇形是由圆心和两个弧上的点组成的区域,扇形面积即扇形所包围的平面区域,用字母S表示。
扇形面积的计算公式为S = 0.5πr²(θ/360),其中θ表示圆心角的度数。
5. 弓形面积:弓形是由圆上的弧和圆心到弧的两条切线组成的区域,弓形面积即弓形所包围的平面区域,用字母A表示。
弓形面积的计算公式为A = 0.5r²(θ/360 - sinθ),其中θ表示圆心角的度数。
三、应用举例1. 例题一:已知一个圆的半径为6cm,求其周长和面积。
解:周长C = 2πr = 2π × 6 ≈ 37.68 cm,面积A = πr² = π × 6² ≈ 113.04 cm²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆的基本性质》知识点总结
1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的封闭曲线叫做圆。
固定的端点O 叫做圆心,线段OA 叫做半径,以点O 为圆心的圆,记作☉O ,读作“圆O ”
2、与圆有关的概念
(1)弦和直径(连结圆上任意两点的线段BC 叫做弦,经过圆心的弦AB 叫做直径)
(2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条 弧,每一条弧都叫做半圆)
(3)等圆(半径相等的两个圆叫做等圆)
3、点和圆的位置关系:
如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则:
(1)d<r → 圆内
(2)d=r → 圆上
(3)d>r → 圆外
4、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。
三角形的外心到各顶点距离相等。
一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。
5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)平分弧的直径,垂直平分弧所对的弦。
6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。
推论:半圆(或直径)所对的圆周角是 直角,90°圆周角所对的弦是 直径 。
同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。
8、弧长及扇形的面积圆锥的侧面积和全面积
(1)弧长公式: 180
r n l π=
(2)扇形的面积公式:lr r n 2
13602=π (3)圆锥的侧面积公式:rl π
(4)圆锥的表面积公式:2r rl ππ+。