2020年高二暑假数学练习题 (22)-0707(解析版)
2020年高二暑假数学补习训练题 (14)-0708(解析版)

2020年高二暑假数学补习训练题 (14)一、选择题(本大题共10小题,共40.0分)1. 集合A ={0,2},B ={x ∈N|x <3},则A ∩B =( )A. {2}B. {0,2}C. (0,2]D. [0,2]2. 复数11+i =( )A. 12−12iB. 12+12iC. 1−iD. 1+i3. sin20π3=( )A. −√32B. √32C. −12D. 124. 我校兼程楼共有5层,每层均有两个楼梯,由一楼到五楼的走法( )A. 10种B. 16种C. 25种D. 32种 5. 函数f(x)=3x −√x+16的零点所在区间是( )A. (O,1)B. (1,2)C. (2,3)D. (3,4) 6. 设a =sin2,b =log 0.3π,c =40.5,则( ) A. b <a <c B. a <b <c C. c <a <bD. b <c <a7. 用min{a,b}表示a ,b 两个数中的较小值,设f(x)=min{2x −1,1x }(x >0),则f(x)的最大值为( )A. −1B. 1C. 0D. 不存在8. 在用数学归纳法证明不等式“当n ≥2时1n+1+1n+2+⋯+13n >910”时,第2步由n =k(k ≥2)不等式成立,推证n =k +1时左边的表达式为( )A. 1k+1+1k+2+⋯+13k B. 1k+1+1k+2+⋯+13k+1C. 1k+2+1k+3+⋯+13k +13k+1+13k+2+13(k+1) D. 1k+1+1k+2+⋯+13k +13k+1+13k+2+13(k+1)9. 已知函数f(x)满足:对任意的x 1,x 2∈(−∞,3],(x 1−x 2)[f(x 1)−f(x 2)]>0,且f(x +3)是R 上的偶函数,若f(2a −1)≤f(4),则实数a 的取值范围是( )A. (−∞,32] B. (−∞,52]C. [32,52]D. (−∞,32]∪[52,+∞)10. 已知函数f(x)(x ∈R)满足f(2)=3,且f′(x )<1,则不等式f(x 2)<x 2+1的解集是( ).A. (−∞,−√2)B. (√2,+∞)C. (−√2,√2)D. (−∞,−√2)∪(√2,+∞)二、填空题(本大题共7小题,共36.0分)11. 已知幂函数y =f(x)的图象经过点(2,12),则f(12)的值为__________.12. 若函数f(x)=(k 2−3k +2)x +b 在R 上是减函数,则实数k 的取值范围为____________. 13. 从10名女生和5名男生中选出6名组成课外学习小组,如果按性别比例分层抽样,则组成此课外学习小组的不同方案有______ 种. 14. 函数f(x)=√3sin (x 2−π4) ,x ∈R 的最小正周期为__________. 15. 二项式(√x 3−2x )8的展开式中的常数项为______.16. 如果随机变量X ~B(100,0.2),那么D(4X +3)= ______ .17. 已知函数f(x)={2−|x|,x ≤2(x −2)2,x >2,若方程f(x)=t 恰有3个不同的实数根,则实数t 的取值范围是______ .三、解答题(本大题共5小题,共74.0分)18. 已知集合A ={x|x 2−6x +8<0},B ={x|(x −a)⋅(x −3a)<0}.(1)若a =1,求A ∩B ;(2)若A ∩B =⌀,求a 的取值范围.19. 从5名女生和2名男生中任选3人参加英语演讲比赛,设随机变量ξ表示所选3人中男生的人数.(1)求ξ的分布列; (2)求ξ的均值与方差;20. 已知函数f(x)=−x 2+2x,x ∈[−2,a],求f(x)的值域.21. 已知函数f(x)=Asin(ωx +φ) ( A >0,ω>0,0<φ<π)的图象如图所示.(1)求A ,ω,φ的值;(2)若x ∈[−π2,π12],求f(x)的值域.22. 已知函数f(x)=xlnx +kx,k ∈R .(1)求y =f(x)在点(1,f(1))处的切线方程; (2)若不等式f(x)≤x 2+x 恒成立,求k 的取值范围;(3)求证:当n ∈N ∗时,不等式∑ln n i=1(4i 2−1)>2n 2−n 2n+1成立.-------- 答案与解析 --------1.答案:B解析:解:集合A={0,2},B={x∈N|x<3}={0,1,2},则A∩B={0,2}.故选:B.根据交集的定义写出A∩B.本题考查了交集的定义与计算问题,是基础题.2.答案:A解析:解:11+i =1−i(1+i)(1−i)=12−i2故选A由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项本题考查复合代数形式的乘除运算,属于复数中的基本题型,计算题3.答案:B解析:解:sin20π3=sin(6π+2π3)=sin2π3=sinπ3=√32.故选:B.运用诱导公式及特殊角的三角函数值即可化简求值.本题主要考查了诱导公式及特殊角的三角函数值的应用,属于基础题.4.答案:B解析:【分析】本题主要考查分步计数原理的应用,理解好题意,从一层到五层共分四步.通过层与层之间的走法,利用分步计数原理求解一层到五层的走法.【解答】解:共分4步:一层到二层2种,二层到三层2种,三层到四层2种,四层到五层2种,一共24=16种.故选B.5.答案:B解析:解:∵f(0)=1−1−6<0,f(1)=−72<0,f(2)=9−6−√2+1=4−√2>0,∴函数f(x)的零点在区间(1,2)能,故选:B.分别求出f(0),f(1),f(2)的值,得出f(1)<0,f(2)>0,从而得出答案.本题考查了函数的零点的判定定理,用特殊值代入即可求出.6.答案:A解析:【分析】本题考查对数函数、指数函数的单调性,以及增函数和减函数的定义.容易得出0<sin2<1, log 0.3π<0, 40.5>1,从而得出a ,b ,c 的大小关系. 【解答】解:∵0<sin2<1,log 0.3π<log 0.31=0,40.5>40=1, ∴b <a <c . 故选:A . 7.答案:B解析:【分析】本小题主要考查函数单调性的应用、函数的最值及其几何意义、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.先根据符号:min{a,b}的含义化简函数f(x)的表达式,变成分段函数的形式,再画出函数的图象,观察图象的最高点即可得f(x)的最大值. 【解答】解:由方程2x −1=1x ,(x >0), 得:x =1,∴f(x)={2x −1,0<x ≤11x,x >1,画出此函数的图象,如图,由图可知:当x =1时,f(x)的值最大,最大值为1. 故选B . 8.答案:C解析:本题考查了数学归纳法的步骤的第二步②注意从k 到k +1的变化.显然13k 不是第k 项,应是第2k 项,数列各项分母是连续的自然数,最后一项是以3k 收尾故n =k +1时最后一项应为13(k+1)所以在3k 后面还有3k +1、3k +2.最后才为3k +3即3(k +1)应选择C . 9.答案:D解析:【分析】本题考查函数的单调性和奇偶性,以及函数的对称性,属于中档题.根据题意,由f(x +3)是R 上的偶函数,分析可得函数f(x)的图象关于直线x =3对称,进而分析可得函数f(x)在(−∞,3]上是增函数,可得在[3,+∞)上是减函数,从而将f(2a −1)≤f(4)转化为|2a −1−3|≥4−3,解可得a 的取值范围,即可得答案. 【解答】解:根据题意,f(x +3)是R 上的偶函数, 则函数f(x)的图象关于直线x =3对称,又由函数f(x)满足对任意的x 1,x 2∈(−∞,3],(x 1−x 2)[f(x 1)−f(x 2)]>0, 则函数f(x)在(−∞,3]上是增函数,又由函数f(x)的图象关于直线x =3对称, 则函数f(x)在[3,+∞)上是减函数, 若f(2a −1)≤f(4),则有|2a −1−3|≥4−3,即|a −2|≥12, 解得:a ≤32或a ≥52,所以a 的取值范围是(−∞,32]∪[52,+∞). 故选:D . 10.答案:D解析:【分析】本题考查利用导数研究函数单调性,以及利用构造法构造新函数解不等式,同时考查了转化思想,属于中档题.根据条件构造F(x)=f(x)−x ,利用导数研究函数的单调性,然后将f(x 2)<x 2+1可转化成f(x 2)−x 2<f(2)−2即F(x 2)<F(2),根据单调性建立关系,解之即可. 【解答】解:令F(x)=f(x)−x ,又f ′(x )<1, 则F′(x)=f ′(x )−1<0, ∴F(x)在R 上单调递减. ∵f(2)=3,∴f(x 2)<x 2+1可转化成f(x 2)−x 2<f(2)−2, 即F(x 2)<F(2).根据F(x)在R 上单调递减则x 2>2, 解得x ∈(−∞,−√2)∪(√2,+∞). 故选:D . 11.答案:2解析:【分析】本题考查了幂函数的解析式和求值,属于基础题. 【解答】解:设幂函数的解析式为y =x a ,则函数y =f(x)的图象经过点(2,12),故2a =12,解得a =−1,故函数解析式为y =x −1,则f(12)=2.故答案为2.12.答案:(1,2)解析:【分析】本题考查函数的单调性,涉及不等式的解法,问题等价于k 2−3k +2<0,解不等式可得,属基础题. 【解答】解:∵函数f(x)=(k 2−3k +2)x +b 在R 上是减函数, ∴k 2−3k +2<0,即(k −1)(k −2)<0, 解不等式可得1<k <2 ∴k 的取值范围为:(1,2) 故答案为(1,2)13.答案:2100解析:解:∵从10名女生与5名男生中选出6名学生组成课外活动小组, 由分层抽样知道从男生中抽取6×515=2人,从女生中抽取6×1015=4人,共有C 52C 104=2100种, 故答案为:2100.用分层抽样做出从男生中抽取2人,从女生中抽取4人,共有C 52C 104种结果,问题得以解决. 本题考查了分层抽样和排列组合的问题,属于基础题. 14.答案:4π解析:函数f(x)=√3sin (x2−π4) 的最小正周期为T =2π12=4π .15.答案:112解析:解:展开式的通项为T r+1=(−2)r C 8r x83−43r , 令83−43r =0得r =2,所以展开式中的常数项为(−2)2C 82=112. 故答案为:112.利用二项展开式的通项公式求出二项式(√x 3−2x )8展开式的通项,令x 的指数为0求出r ,将r 的值代入通项求出展开式的常数项.本题考查利用二项展开式的通项公式解决二项展开式的特定项问题. 16.答案:256解析:解:∵随机变量X ~B(100,0.2), ∴Dξ=100×0.2×0.8=16,∴D(4X +3)=16Dξ=16×16=256.故答案为:256.利用二项分布的方差的性质求解.本题考查二项分布的方差的计算,解题时要认真审题,是基础题. 17.答案:(0,2)解析:解:已知函数的图象如图:方程f(x)=t 恰有3个不同的实数根, 则圆锥函数图象与y =t 有三个交点,由图象可知,当t ∈(0,2)满足题意;故答案为:(0,2)由题意,画出已知函数的图象,结合图象找出满足与y =t 有三个交点的t 的范围.本题考查的知识点是函数的零点个数的判定定理,分段函数的应用,考查数形结合的思想方法;难度中档.18.答案:解:(1)由A 中不等式变形得:(x −2)(x −4)<0, 解得:2<x <4,即A ={x|2<x <4}.把a =1代入B 得:(x −1)(x −3)<0,解得:1<x <3,即B ={x|1<x <3}.则A ∩B ={x|2<x <3}. (2)要满足A ∩B =⌀,当a =0时,B =⌀满足条件;当a >0时,B ={x|a <x <3a},可得a ≥4或3a ≤2. 解得:0<a ≤23或a ≥4;当a <0时,B ={x|3a <x <a},显然a <0时成立, 综上所述,a 的取值范围是(−∞,23]∪[4,+∞).解析:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.(1)求出A 中不等式的解集确定出A ,把a =1代入确定出B ,求出A 与B 的交集即可; (2)由A 与B 交集为空集,分a =0,a >0与a <0三种情况求出a 的范围即可. 19.答案:解:(1)ξ可能取的值为0,1,2, 且P(ξ=0)=C 20·C 53C 73=27,P(ξ=1)=C 21·C 52C 73=47,P(ξ=2)=C 22·C 51C 73=17,所以ξ的分布列为(2)E(ξ)=0×27+1×47+2×17=67,D(ξ)=(0−67)2×27+(1−67)2×47+(2−67)2×17=140343=2049.解析:本题考查离散型随机变量及其分布列以及期望与方差的计算,属于中档题.(1)ξ可能取的值为0,1,2,求出相应的概率,进而得到分布列; (2)通过期望和方差公式计算,即可得到ξ的均值与方差.20.答案:解:f(x)=−x 2+2x =−(x −1)2+1,a >−2, (1)当−2<a ≤1时,f(x)在[−2,a]单调递增,f (x )min =f (−2)=−8,f (x )max =f (a )=−a 2+2a , ∴f(x)的值域为[−8,−a 2+2a];(2)当1≤a ≤4时,f(x)在[−2,1]递增,在[1,a]递减,f (x )min =f (−2)=−8,f (x )max =f (1)=1, ∴f(x)的值域为[−8,1]; (3)当a >4时,f(x)在[−2,1]递增,在[1,a]递减,f (x )min =f (a )=−a 2+2a,f (x )max =f (1)=1, ∴f(x)的值域为[−a 2+2a,1].综上:当−2<a ≤1时,f(x)的值域为[−8,−a 2+2a]; 当1≤a ≤4时,f(x)的值域为[−8,1]; 当a >4时,f(x)的值域为[−a 2+2a,1].解析:本题考查二次函数单调性与最值问题,对称轴固定,区间不定,通过讨论a 与对称轴的关系,讨论函数在区间上的单调性与最值.21.答案:解:(1)设函数f(x)的最小正周期为T ,由图象知:A =2,14T =π6−(−π12)=π4,所以周期T =π,从而ω=2πT=2.因为函数图象过点(−π12,2),所以sin(−π6+φ)=1.因为0<φ<π,所以−π6<−π6+φ<5π6,所以−π6+φ=π2,解得φ=2π3.因此A =2,ω=2,φ=2π3.(2)由(1)知f(x)=2sin(2x +2π3).因为x ∈[−π2,π12], 所以−π3≤2x +2π3≤5π6,所以− √32≤sin(2x +2π3)≤1,从而函数f(x)的值域为[−√3,2].解析:本题考查三角函数y =Asin(ωx +φ)的图像与性质,属于中档题.(1)根据函数的图像写函数的解析式;(2)由x 得范围得到−π3≤2x +2π3≤5π6,然后求得− √32≤sin(2x +2π3)≤1,从而确定函数的值域. 22.答案:解:(1)函数y =f(x)的定义域为(0,+∞),f ′(x)=1+lnx +k ,f ′(1)=1+k ,∵f(1)=k ,∴函数y =f(x)在点(1,f(1))处的切线方程为y −k =(k +1)(x −1), 即y =(k +1)x −1;(2)设g(x)=lnx −x +k −1,g ′(x)=1x −1, x ∈(0,1),g ′(x)>0,g(x)单调递增, x ∈(1,+∞),g ′(x)<0,g(x)单调递减, ∵不等式f(x)≤x 2+x 恒成立,且x >0, ∴lnx −x +k −1≤0,∴g(x)max =g(1)=k −2≤0即可,故k ≤2, (3)由(2)可知:当k =2时,lnx ≤x −1恒成立, 令x =14i 2−1,由于i ∈N ∗,14i 2−1>0.故,ln 14i 2−1<14i 2−1−1,整理得:ln(4i 2−1)>1−14i 2−1, 变形得::ln(4i 2−1)>1−1(2i+1)(2i−1), 即:ln(4i 2−1)>1−12(12i−1−12i+1) i =1,2,3……,n 时,有ln3>1−12 (1−13)’ ln5>1−12 (1−13)…………ln(4n 2−1)>1−12 (12n−1−12n+1)两边同时相加得:∑ln n i=1(4i 2−1)>n −12(1−12n+1)=2n22n+1>2n2−n 2n+1,所以不等式在n ∈N ∗上恒成立.解析:本题考查了导数的几何意义,导数证明单调性,导数恒成立问题,导数中的不等式证明,属于难题.(1)先对函数求导,然后结合导数的几何意义求出切线斜率,进而可求切线方程;(2)构造函数g(x)=lnx −x +k −1,然后求导,结合导数可研究其单调性,由不等式的恒成立转化为求解函数的最值,可求;(3)由(2)可知:当k =2时,lnx ≤x −1恒成立,对已知不等式进行赋值,转化为所要证明的不等式的左边,利用累加法即可证明.。
2020年高二暑假数学补习训练题 (29)-0708(解析版)

2020年高二暑假数学补习训练题 (29)一、选择题(本大题共12小题,共36.0分)1.已知集合A={x||x−3|<4},B={x|x2+2x−8≥0},则A∩∁R B=()A. {x|−1<x<2}B. {x|−4<x<7}C. {x|−1<x<7}D. {x|x>2或x<−4}2.已知复数z=1+i,则|zi|等于()A. 4B. 2C. √2D. 123.已知a=21.2,b=2log52,c=ln13,则()A. a>b>cB. a>c>bC. b>a>cD. b>c>a4.函数y=sinxcosx−1的最小正周期是()A. 4πB. 2πC. πD. π25.同时掷3枚硬币,最多有2枚正面向上的概率是()A. 78B. 58C. 38D. 186.若m,n,l是不同的直线,α,β是不同的平面,则下列命题正确的是()A. 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB. 如果直线l⊥平面α,直线l⊥平面β,则α//βC. 如果直线m//平面α,直线n//平面α,那么m//nD. 如果直线m//n,且直线m//平面α,那么直线n//平面α7.执行如图所示的程序框图,输出的s值为()A. 12B. 56C. 76D. 7128. 已知奇函数f(x)={3x −x +a,x ≥0g(x),x <0,则g(−2)+f(3)=( )A. 7B. 17C. 27D. 379. 以抛物线x 2=4y 的焦点F 为圆心的圆交抛物线于A 、B 两点,交抛物线的准线于C 、D 两点,若四边形ABCD 是矩形,则圆的方程为( )A. x 2+(y −1)2=3B. x 2+(y −1)2=4C. x 2+(y −1)2=12D. x 2+(y −1)2=16 10. 已知函数f(x)=xlnx ,则函数f(x)在x =1处的切线方程( )A. x −y +1=0B. x +y −1=0C. x −y −1=0D. 2x −y +1=011. 在等差数列{a n }中,3(a 2+a 6)+2(a 3+a 10+a 17)=24,则此数列前13项的和为( )A. 13B. 26C. 52D. 15612. 边长为2的正三角形ABC 中,D ,E ,M 分别是AB ,AC ,BC 的中点,N 为DE 的中点,将△ADE沿DE 折起至A′DE 位置,使A′M =√62,设MC 的中点为Q ,A′B 的中点为P ,则①A′N ⊥平面BCED ②NQ//平面A′EC ③DE ⊥平面A′MN④平面PMN//平面A′EC 以上结论正确的是( )A. ①②④B. ②③④C. ①②③D. ①③④二、填空题(本大题共4小题,共12.0分)13. 在等比数列{a n }中,已知a 1=−1,a 4=27,则a 5=__________.14. 若向量a ⃗ 与b ⃗ 的夹角θ的正弦值为√22,则θ= ______ .15. (2x −√x)6的展开式中常数项为______ . 16. 已知点F 1,F 2为椭圆C 1:x 2a2+y 2b 2=1(a >b >0)和双曲线C 2:x 2a′2−y 2b ′2=1(a′>0,b′>0)的公共焦点,点P 为两曲线的一个交点,且满足∠F 1PF 2=90°,设椭圆与双曲线的离心率分别为e 1,e 2,则1e 12+1e 22=______.三、解答题(本大题共7小题,共84.0分)17. 在△ABC 中,已知2sinBcosA =sin(A +C).(1)求角A ;(2)若BC =2,△ABC 的面积是√3,求AB .18.如图,在矩形ABCD中,AB=2BC=2,点M为DC的中点,将△ADM沿AM折起,使得平面△ADM⊥平面ABCM.(1)求证:AD⊥平面BMD;(2)求二面角M一BD−C的余弦值.19.幸福指数常用于衡量人们对自身生存和发展状况的感受和体验.某单位对所处地区的幸福指数进行了调查,将结果分为“幸福、一般、不幸福”三类,根据年收入的不同将该地区的家庭分为高收入家庭与低收入家庭两类,其中高收入家庭2000户,低收入家庭1600户.为了解收入对幸福感的影响,按收入采用分层抽样的方法从这些家庭中共抽取了180户进行调查,统计如幸福等级幸福一般不幸福家庭收入高收入(户数)6020m低收入(户数)6012n(1)根据表中数据填写以下2×2列联表,并判断是否有99%的把握认为“幸福与收入有关”?高收入低收入总计幸福一般或不幸福总计(2)以(1)中抽取的180户的幸福等级的频率作为该地区各个幸福等级发生的概率,且每户是否“幸福”相互独立,现从该地区家庭中随机抽取4户.记X表示这4户中调查结果为“幸福”的户数,求随机变量X的分布列和数学期望.,其中n=a+b+c+d.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)临界值表:P(K2≥k0)0.150.100.050.0250.010 k0 2.072 2.706 3.841 5.024 6.63520.已知椭圆E:x2a2+y2b2=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=−x+3与椭圆E有且只有一个公共点T.(Ⅰ)求椭圆E的方程及点T的坐标;(Ⅱ)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.21.已知函数f(x)=(x2−1)e x+x.(1)求f(x)在[−14,1]上的最小值;(2)g(x)=f(x)−ae x−x,当g(x)有两个极值点x1,x2(x1<x2)时.总有g(x2)≤t(2+x1)(e x2+1),求此时实数t的值.22.在直角坐标系xOy中,点(12,√3)在曲线C:为参数)上,对应参数为φ=π3.以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的极坐标为(2,π6).(1)直接写出点P的直角坐标和曲线C的极坐标方程;(2)设A,B是曲线C上的两个动点,且OA⊥OB,求|OA|2+|OB|2的最小值.23.设函数f(x)=|x+1|+|x−2|.(1)解不等式f(x)<5;(2)求函数y=f(x)的最小值.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查了集合的运算问题,是基础题.解不等式求出集合A、B,根据补集与交集的定义写出运算结果即可.【解答】解:集合A={x||x−3|<4}={x|−4<x−3<4}={x|−1<x<7},B={x|x2+2x−8≥0}={x|x≤−4或x≥2},∴∁R B={x|−4<x<2},∴A∩∁R B={x|−1<x<2}.故选:A.2.答案:C解析:解:复数z=1+i,则|zi |=|1+ii|=|1−i|=√2.故选:C.直接利用复数的模的运算法则化简求值即可.本题考查复数求模的运算法则的应用,基本知识的考查.3.答案:A解析:解:∵a=21.2>2,0=log51<b=log54<log55=1,c=ln13<ln1=0,∴c<b<a.故选:A.利用指数函数、对数函数的性质求解.本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数性质的合理运用.4.答案:C解析:【分析】本题考查利用二倍角公式化简以及三角函数的周期性,属于基础题.【解答】解:函数,函数周期为,故选C . 5.答案:A解析:解:同时掷3枚硬币, 基本事件总数n =23=8,最多有2枚正面向上的对立事件是三枚硬全都正面向上, ∴最多有2枚正面向上的概率:p =1−C 33(12)3=78.故选:A .最多有2枚正面向上的对立事件是三枚硬全都正面向上,由此利用对立事件概率计算公式能求出最多有2枚正面向上的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用. 6.答案:B解析:解:如果平面α⊥平面β,那么平面α内与两平面交线垂直的直线都垂直于平面β,故A 错误; 如果直线l ⊥平面α,直线l ⊥平面β,则α//β,故B 正确;如果直线m//平面α,直线n//平面α,那么m//n 或m ,n 相交或m ,n 异面,故C 错误; 如果直线m//n ,且直线m//平面α,那么直线n//平面α或n ⊂α,故D 错误. 故选:B .由面面垂直的性质定理可判断A ;由同垂直于一条直线的两平面平行可判断B ; 由线面平行的性质可判断C ;由线面的位置关系可判断D .本题考查空间线线、线面和面面的位置关系,考查平行和垂直的判定和性质,考查空间想象能力和推理能力,属于基础题. 7.答案:B解析:解:执行循环前:k =1,s =1, 在执行第一次循环时,s =1−12=12, 由于k =2<3,所以执行下一次循环,s =12+13=56, k =3,直接输出s =56,故选:B .根据题意,即可得解.本题考查程序框图和循环结构,属于基础题. 8.答案:B解析:【分析】本题主要考查了函数的奇偶性以及分段函数的性质,属于基础题.先求出a ,根据奇偶性求出f(x)在x <0时的解析式,然后分段代入求解即可. 【解答】解:∵函数f(x)是奇函数,∴f(0)=1−0−a =0, 解得a =1,∴f (3)=33−3+1=25,若x <0,则−x >0,g (x )=−f (−x )=−(3−x +x +1), ∴g (−2)=−(32−2+1)=−8, ∴g (−2)+f (3)=−8+25=17, 故选B . 9.答案:D解析:解:如图,连接AC ,BD ,抛物线x 2=4y 的焦点坐标(0,1),由抛物线的定义与性质可知圆心坐标为F(0,1),|FA|=|FB|,设圆的半径r , ∠FAB =θ,则A(rcosθ,1+rsinθ),而A 在抛物线上,故r 2cos 2θ=4+4rsinθ,又rsinθ=2,所以sinθ=12,θ=π6,∴r =4,所求圆的方程为:x 2+(y −1)2=16. 故选D .连接AC ,BD ,抛物线的定义与性质求出圆心坐标为F(0,1),|FA|=|FB|,设圆的半径r ,∠FAB =θ,则A(rcosθ,1+rsinθ),而A 在抛物线上,化简求解即可.本题考查抛物线与圆的方程的综合应用,考查转化思想以及计算能力. 10.答案:C解析:【分析】本题主要考查导数的几何意义,属于基础题,通过求的导数,求出切点的坐标与斜率即可. 【解答】 解:∵函数,,∴在x =1处的切线的斜率k =f ′(1)=ln1+1=1, 又f(1)=0,∴函数f(x)在x =1处的切线方程为y =x −1,即x −y −1=0. 故选C . 11.答案:B解析:解:设等差数列{a n }的公差为d ,∵3(a 2+a 6)+2(a 3+a 10+a 17)=24, ∴6a 1+18d +6a 1+54d =24, 化为:a 1+6d =2, 则此数列前13项的和=13a 1+13×122d =13(a 1+6d)=26.故选:B .设等差数列{a n }的公差为d ,根据3(a 2+a 6)+2(a 3+a 10+a 17)=24,利用通项公式可得:a 1+6d =2,再利用求和公式即可得出.本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.12.答案:C解析:解:如图所示,①由等边三角形的性质可得A ′N =AN =MN =√32,∴A ′N 2+MN 2=(√32)2×2=A′M 2.∴A′N ⊥MN ,又A′N ⊥DE ,ED ∩MN =N ,∴A′N ⊥平面BCED ,正确. ②∵NQ//AC ,NQ ⊄平面A′EC ,AC ⊂平面A′EC ,∴NQ//平面A′EC ,正确;③由①可得A′N ⊥平面BCED ,∴A′N ⊥DE ,又DE ⊥MN ,MN ∩A′N =N ,∴DE ⊥平面A′MN ,正确;④∵MN ∩平面A′EC =A ,∴平面PMN//平面A′EC 不正确. 综上可得:只有①②③正确. 故选:C .①由等边三角形的性质可得A ′N =AN =MN =√32,可得A ′N 2+MN 2=(√32)2×2=A′M 2.可得A′N ⊥MN ,又A′N ⊥DE ,利用线面垂直的判定定理即可得出.②由于NQ//AC ,利用线面平行的判定定理可得NQ//平面A′EC ;③由①可得A′N ⊥平面BCED ,A′N ⊥DE ,又DE ⊥MN ,利用线面垂直的判定定理即可得出; ④由于MN ∩平面A′EC =A ,因此平面PMN//平面A′EC 不正确.本题综合考查了线面面面平行与垂直的判定性质定理、三角形的中位线定理、勾股定理的逆定理,考查了空间想象能力,考查了推理能力与计算能力,属于难题. 13.答案:−81解析:【分析】本题考查了等比数列的通项公式、设等比数列{a n }的公比为q ,则27=−1×q 3,解得q ,进而得出a 5. 【解答】解:设等比数列{a n }的公比为q ,则27=−1×q 3,解得q =−3. ∴a 5=−1×(−3)4=−81. 故答案为−81.14.答案:π4或3π4解析:解:∵向量a ⃗ 与b ⃗ 的夹角θ的正弦值为√22,∴sinθ=√22, ∵0≤θ≤π, ∴θ=π4或3π4,故答案为:π4或3π4根据向量的夹角的范围和特殊角的三角函数值即可求出本题考查了向量的夹角的范围和特殊角的三角函数值,属于基础题.15.答案:60解析:【分析】本题考查了二项式定理的应用、组合数的计算公式,考查了推理能力与计算能力,属于基础题.利用二项展开式的通项公式即可得出.【解答】解:(2x−√x)6的展开式中的通项公式:T r+1=C6r(2x)6−r(−√x)r=(−1)r26−r C6r x3r2−6,令3r2−6=0,解得r=4.∴(2x−√x)6的展开式中常数项=(−1)4×22C64=60.故答案为60.16.答案:2解析:【分析】本题考查椭圆和双曲线的定义和离心率公式,考查勾股定理和化简整理的运算能力,属于中档题.可设P为第一象限的点,|PF1|=m,|PF2|=n,运用椭圆和双曲线的定义,可得m,n,再由勾股定理,结合离心率公式,化简可得所求值.【解答】解:可设P为第一象限的点,|PF1|=m,|PF2|=n,由椭圆的定义可得m+n=2a,由双曲线的定义可得m−n=2a′,可得m=a+a′,n=a−a′,由∠F1PF2=90°,可得m2+n2=(2c)2,即为(a+a′)2+(a−a′)2=4c2,化为a2+a′2=2c2,则a2c2+a′2c2=2,即有1e12+1e22=2.故答案为:2.17.答案:解:(1)由A+B+C=π,得sin(A+C)=sinB;所以2sinBcosA=sin(A+C)=sinB,解得cosA=12,又因为A∈(0,π),所以A=π3;(2)由余弦定理,得BC 2=AB 2+AC 2−2AB ⋅ACcosA =22,①因为△ABC 的面积为S △ABC =12AB ⋅ACsin π3=√3, 所以AB ⋅AC =4,② 由①、②组成方程组,解得AB =BC =2.解析:(1)根据三角形内角和定理与正弦定理,即可求出A 的值;(2)利用余弦定理和三角形的面积公式,列出方程组即可求出AB 的值.本题考查了三角形内角和定理与正弦、余弦定理、三角形面积公式的应用问题,是综合性题目. 18.答案:(1)证明:取AM 中点O ,连结DO ,∵平面ADM ⊥平面ABCM ,AD =DM ,∴DO ⊥平面ABCM ,DO ⊥BM ,可知AM ⊥BM ,∴BM ⊥平面ADM ,∴BM ⊥AD ,而AD ⊥DM ,∴AD ⊥平面BMD ;(2)解:如图,以O 为原点建立空间直角坐标系,(x 轴垂直AB 交AB 于E ,y 轴垂直BC 交BC 于F ,OD 为z 轴).则A(12,−12,0),B(12,32,0),C(−12,32,0),D(0,0,√22),M(−12,12,0). BC ⃗⃗⃗⃗⃗ =(−1,0,0),DC ⃗⃗⃗⃗⃗ =(−12,32,−√22), 设n⃗ =(x,y,z)是平面BCD 的一个法向量, 由{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =−x =0n ⃗ ⋅DC ⃗⃗⃗⃗⃗ =−12x +32y −√22z =0,令z =√2,得n ⃗ =(0,23,√2),|n ⃗ |=√223, 由(1)知AD ⃗⃗⃗⃗⃗⃗ 是平面MBD 的一个法向量,且AD ⃗⃗⃗⃗⃗⃗ =(−12,12,√22),|AD ⃗⃗⃗⃗⃗⃗ |=1. cos <n ⃗ ,AD ⃗⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|AD ⃗⃗⃗⃗⃗⃗ |=431×√223=2√2211, 又∵二面角M −BC −C 为锐角,∴二面角M −BD −C 的余弦值为2√2211.解析:(1)取AM 中点O ,连结DO ,由面面垂直的性质可得DO ⊥平面ABCM ,则DO ⊥BM ,得到AM ⊥BM ,从而BM ⊥平面ADM ,则BM ⊥AD ,结合AD ⊥DM ,由线面垂直的判定可得AD ⊥平面BMD ;(2)以O 为原点建立空间直角坐标系,(x 轴垂直AB 交AB 于E ,y 轴垂直BC 交BC 于F ,OD 为z 轴),分别求出平面BCD 与平面MBD 的一个法向量,由两法向量所成角的余弦值可得二面角M −BD −C 的余弦值.本题考查空间位置关系,二面角及其应用等知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,是中档题.19.答案:解:(1)设在该地区高收入家庭中抽出x 户,则x 2000=1802000+1600,解得x =100.∴m =100−80=20,n =80−72=8, 2×2K 2=180×(60×20−60×40)2120×60×100×80=4.5<6.635,∴没有99%的把握认为“幸福与收入有关”;(2)该地区家庭为“幸福”的频率为120180=23,所以从该地区家庭中随机抽取1户,结果为“幸福”的概率为23,则随机变量X ∼B(4,23),且X 的可能取值为0,1,2,3,4.P(X =0)=C 40(13)4(23)0=181,P(X =1)=C 41(13)3(23)1=881, P(X =2)=C 42(13)2(23)2=827P(X =3)=C 43(13)1(23)3=3281, P(X =4)=C 44(13)0(23)4=1681, 所以随机变量X 的分布列为:随机变量X 的数学期望E(X)=4×23=83.解析:本题考查独立性检验,和离散型随机变量求分布列和数学期望,属于中档题.(1)正确列出2×2列联表,求出K 2判断结果;(2)写出X 的取值,以及每个值对应的概率,列出分布列,求期望即可.20.答案:(Ⅰ)解:依题意可知b =c ,∴a 2=2b 2,可设椭圆方程为x 22b 2+y 2b 2=1, 即x 2+2y 2−2b 2=0,由{y =−x +3x 2+2y 2−2b 2=0,整理得3x 2−12x +18−2b 2=0, 由△=122−12(18−2b 2)=0,得b 2=3,故椭圆E 的方程为x 26+y 23=1,点T 的坐标为(2,1);(Ⅱ)证明:设直线l′:y =12x +m (m ≠0),设A(x 1,y 1),B(x 2,y 2),由{y =12x +m y =−x +3,得P (2−23,1+23m), ∴|PT|2=89m 2,由{y =12x +m x 26+y 23=1,3x 2+4mx +(4m 2−12)=0, ∴△=16(9−2m 2)>0,则x 1+x 2=−43m ,x 1x 2=4m 2−123, ∴|PA |=√1+(12)2|2−2m 3−x 1|=√52|2−2m 3−x 1|, 同理|PB |=√52|2−2m 3−x 2|,∴|PA |·|PB |=54|(2−2m 3)2−(2−2m 3)(x 1+x 2)+x 1x 2| =54|(2−2m 3)2−(2−2m 3)(−4m 3)+4m 2−123|=10m 29, ∴存在常数λ=45,使得PT 2=λ|PA|⋅|PB|.解析:本题考查直线与椭圆的位置关系、椭圆的标准方程.(Ⅰ)根据椭圆的短轴端点C 与左右焦点F 1、F 2构成等腰直角三角形,结合直线l 与椭圆E 只有一个交点,利用判别式△=0,即可求出椭圆E 的方程和点T 的坐标;(Ⅱ)设出点P 的坐标,根据l′//OT 写出l′的参数方程,代人椭圆E 的方程中,整理得出方程,再根据参数的几何意义求出|PT|2、|PA|和|PB|,由|PT|2=λ|PA|⋅|PB|求出λ的值.21.答案:解:(1)函数f(x)=(x 2−1)e x +x 的定义域为R ,f ′(x)=2x ⋅e x +(x 2−1)e x +1=(x 2+2x −1)e x +1,令ℎ(x)=f ′(x)ℎ′(x)=(x 2+4x +1)e x ,∵y =x 2+4x +1在[−14,1]上单调递增,当x =−14时,y >0,∴ℎ′(x)=(x 2+4x +1)e x ≥0在[−14,1]上恒成立.∴f ′(x)=(x 2+2x −1)e x +1,在[−14,1]上单调递增,且f ′(0)=0.∴f(x)在[−14,0)上单调递减,在(0,1]上单调递增,∴f(x)min =f(0)=−1.(2)∵g(x)=f(x)−ae x −x =(x 2−1−a)e x ,∴g ′(x)=(x 2+2x −1−a)e x ,∵g(x)有两个极值点x 1,x 2(x 1<x 2)时,∴{Δ=4+4(1+a)>0x 1+x 2=−2x 1x 2=−1−a⇒a >−2,x 2∈(−1,+∞), g(x 2)≤t(2+x 1)(e x 2+1)⇒(x 22−1−a)e x 2≤t(2+x 1)(e x 2+1),∵x 22+2x 2−1−a =0,∴−2x 2e x 2≤t(−x 2)(e x 2+1),当x 2=0时,t ∈R 当x 2∈(−1,0)时,t ≥2e x 2e x 2+1=2−2e x 2+1, 显然函数y =2−2e x +1在(−1,0)递增,∴t ≥1当x 2∈(0,+∞)时,t ≤2−2e x +1,显然函数y =2−2e x +1在(0,+∞)递增,∴t ≤1,综上所述,t =1.解析:本题考查了利用导数求解函数的最值、极值,考查了分类讨论思想、转化思想,属于难题.(1)通过求导与构造函数可以得到f(x)的单调性,从而求得最值;(2)对函数求导,结合二次函数的性质,可以得到关于t 的不等式,再构造函数求得最值即可得到t 的范围.22.答案:解:(1)点P 的直角坐标为(√3,1),由题意知,,解得{k =1m =2, 故x 2+(y 2)2=1,即, 可得曲线C 的极坐标方程为;(2)由(1)知曲线C :, 由A ,B 是曲线C 上的两个动点,且OA ⊥OB ,不妨设A(ρ1,θ),B(ρ2,θ+π2),且,,∴|OA|2+|OB|2=ρ12+ρ22⩾204+94=165,当时,|OA|2+|OB|2=ρ12+ρ22=165,∴|OA|2+|OB|2的最小值为165.解析:本题主要考查参数方程和极坐标方程的应用,属于中档题.(1)由极坐标公式可得点P的直角坐标为(√3,1),将点(12,√3)代入求得{k=1m=2,即可得出答案;(2)设A(ρ1,θ),B(ρ2,θ+π2),则.23.答案:解:(1)函数f(x)=|x+1|+|x−2|表示数轴上的x对应点到−1、2对应点的距离之和,而−2和3对应点到−1、2对应点的距离之和正好等于5,故不等式f(x)<5的解集为(−2,3).(2)由y=|x+1|+|x−2|≥|(x+1)−(x−2)|=3可知,当(x+1)(x−2)≤0,即−1≤x≤2时,函数y=|x+1|+|x−2|取得最小值3.解析:(1)由题意利用绝对值的意义求得不等式f(x)<5的解集.(2)由条件利用绝对值三角不等式求得f(x)的最小值.本题主要考查绝对值的意义,绝对值三角不等式,绝对值不等式的解法,属于基础题.。
2020年高二暑假数学补习训练题 (15)-0708(解析版)

2020年高二暑假数学补习训练题 (15)一、选择题(本大题共12小题,共60.0分)1.已知集合A={y|y=x2−6x+5},B={y|y=6x+3−9x2},则A∩B=()A. {(1,0),(15,9625)} B. {y|y≥−4}C. {y|−4≤y≤4}D. {y|y≤4}2.i为虚数单位,则(1−i1+i)2017=()A. −iB. −1C. iD. 13.已知等差数列{a n}的公差为d,前n项和为S n,若S6>S7>S5,则下列命题错误的是()A. d<0B. S11>0C. S12<0D. |a6|>|a7|4.若椭圆x216+y2b2=1过点(−2,√3),则其焦距为()A. 2√5B. 2√3C. 4√5D. 4√35.4个数字1和4个数字2可以组成不同的8位数共有()A. 16个B. 70个C. 140个D. 256个6.如图所示的程序运行后,输出的值是()A. 8B. 9C. 10D. 117.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B. 105+3√342C. 70+3√342D. 608.直线y=x被圆(x−1)2+y2=1所截得的弦长为()A. √22B. 1C. √2D. 29.已知函数f(x)=sin(x−φ)−1(0<φ<π2),且∫2π3 (f(x)+1)dx=0,则函数f(x)的一个零点是()A. π6B. π3C. 7π12D. 5π610.若ΔABC内角A、B、C所对的边分别为,且a2=c2−b2+√3ba,则∠A+∠B=()A. π6B. 5π6C. π4D. 3π411.函数f(x)=ax+bx2+c的图象如图所示,则下列结论成立的是()A. a>0,c>0B. a>0,c<0C. a<0,c>0D. a<0,c<012.函数y=cos2ωx−sin2ωx(ω>0)的最小正周期是π,则函数f(x)=2sin(ωx+π4)的一个单调递增区间是()A. [−π2,π2] B. [5π4,9π4] C. [−π4,3π4] D. [π4,5π4]二、填空题(本大题共4小题,共20.0分)13.如图,正方体ABCD−A1B1C1D1中,E,F,M,N分别为BC,CC1,A1D1,C1D1的中点,则直线EF,MN所成角的大小为_____.14.若双曲线x2a2−y2b2=1(a,b>0)的离心率为2,则ba=_______.15.已知|a−8b|+(4b−1)2=0,则log2a b=__________.16.已知S为{a n}的前n项和,a1=0,若a a+1=[1+(−1)n]a n+(−2)n,则S100=________三、解答题(本大题共7小题,共84.0分)17.已知a、b、c是△ABC的内角A、B、C所对的边,△ABC的面积为4√3,C=60∘,且.(1)求a+b的值;(2)若点D为AC边上一点,且BD=AD,求CD的长.18. 如图,在四棱锥S −ABCD 中,AD ⊥平面ABC ,二面角B −AD −S为60∘,E 为SD 中点.⑴求证:CE ⊥SA ;⑴求AB 与平面SCD 所成角的余弦值.19. 某手机公司生产某款手机,如果年返修率不超过千分之一,则生产部门当年考核优秀,现获得该公司2010−2018年的相关数据如下表所示:年份2010 2011 2012 2013 2014 2015 2016 2017 2018 年生产量(万台) 3 4 5 6 7 7 9 10 12 产品年利润(千万元) 3.6 4.1 4.4 5.2 6.2 7.8 7.5 7.9 9.1 年返修量(台)474248509283728790(1)从该公司2010−2018年的相关数据中任意选取3年的数据,以X 表示3年中生产部门获得考核优秀的次数,求X 的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润y(千万元)关于年生产量x(万台)的线性回归方程(精确到0.01).部分计算结果:y =19∑y i 9i=1=6.2,∑x i 29i=1=509,∑x i 9i=1y i =434.1.附:;线性回归方程y ̂=b ̂x +a ̂中,b̂=∑ni=1(x i −x)(y i −y)∑n i=1(x i−x)2=∑ni=1x i y i −nxy∑ni=1x i2−nx 2,â=y ̂−b ̂x .20. 已知抛物线y 2=2px(p >0)的准线与x 轴交于点M ,(1)若M 点坐标为(−1,0),求抛物线的方程;(2)过点M 的直线l 与抛物线交于两点P ,Q ,若FP⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =0(其中F 试抛物线的焦点),求证:直线l 的斜率为定值.21. 函数f(x)=x 3+ax 2+bx +a 2在x =1处有极值10,求a 、b 的值.22. 在平面直角坐标系xOy 中,曲线C 1:x 2+y 2−2y =0,倾斜角为π6的直线l 过点M(−2,0),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(1)求C 1和C 2交点的直角坐标;(2)若直线l 与C 1交于A ,B 两点,求|MA|+|MB|的值.23.设函数f(x)=|x−2|+|2x−a|.(1)当a=1时,求不等式f(x)≥3的解集;(2)当f(x)=|x−a+2|时,求实数x的取值范围.-------- 答案与解析 --------1.答案:C解析:【分析】利用配方法求得两个集合函数的值域,再根据交集运算求解.【解答】根据题意得:A=[−4,+∞),B=(−∞,4]所以A∩B={y|−4≤y≤4}.故选C.2.答案:A解析:解:(1−i1+i)2017=[(1−i)(1−i)(1+i)(1−i)]2017=(−i)2017=(−i)2016⋅(−i)=−i,故选:A.根据复数的运算性质计算即可.本题考查了复数的化简求值问题,是一道基础题.3.答案:C解析:【分析】本题考查等差数列的前n项和的最值、等差数列的通项公式、前n和等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.由S6>S7>S5,得a1>0,d<0,得a6>0,a7<0,S11=11a6>0,S12=12(a6+a7)>0,即可得出结论.【解答】解:∵等差数列{a n}中,S6最大,且S6>S7>S5,∴a1>0,d<0,故A正确;∵S6>S7>S5,∴a6>0,a7<0,S11=11a1+55d=11(a1+5d)=11a6>0,故B正确,S12=12a1+66d=12(a1+a12)=12(a6+a7)>0,∴D正确,C错误故选C.4.答案:D解析:【分析】本题主要考查了椭圆的标准方程,考查了椭圆的性质及其几何意义,属于中档题;根据条件把点(−2,√3)代入椭圆的方程可求得b2=4,得到a=4,b=2,即可求出焦距.【解答】解:由题意知,把点(−2,√3)代入椭圆的方程可求得b2=4,故椭圆的方程为x216+y24=1,所以a =4,b =2,c =√a 2−b 2=√16−4=2√3, 则其焦距为2c =4√3; 故选D . 5.答案:B解析:【分析】此题考查排列的应用,属于基础题.先把8个数字全排列,再除以1和2重复的情况数即可. 【解答】解:4个数字1和4个数字2可以组成不同的8位数共有A 88A 44·A 44=70,故选B .6.答案:B解析:【分析】本题考查了DO LOOP 循环语句,熟练掌握语句的含义是解答本题的关键. 【解答】解:本题是直到型循环结构的程序语句,算法的功能是求满足2i >2017的最小的正整数i 的值,∴输出i =9. 故选B .7.答案:D解析:【分析】本题主要考查三视图的应用,直接利用三视图进行复原,利用表面积公式求出结果. 【解答】解:根据三视图,该几何体是由一个三棱柱去掉一个三棱锥. 所以表面积为(2+5)×52+(2+5)×42+3×52+3×42+3×5=60故选D . 8.答案:C解析:【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题. 先求出圆心和半径,以及圆心到直线y =x 的距离d 的值,再利用弦长公式求得弦长. 【解答】解:由于圆(x −1)2+y 2=1的圆心为(1,0),半径等于1, 圆心到直线y =x 的距离为d =√2=√22,故弦长为2√r 2−d 2=√2. 故选C . 9.答案:D解析:由∫2π30 (f (x )+1)dx =0得:[−cos (x −ϕ)]|2π3=0,即−cos (2π3−ϕ)+cos (x −ϕ)=0,所以sin (ϕ−π3)=0,因为0<φ<π2,所以ϕ=π3,则f (x )=sin (x −π3)−1,由sin (x −π3)=1,得x =5π6+2kπ,k ∈Z ,取k =0,得x =5π6,选D .10.答案:B解析:【分析】本题考查余弦定理的应用.解题关键是由余弦定理变形求得,从而得C 角.【解答】解:∵,∴,在三角形中,,∴.故选B .11.答案:A解析:【分析】本题考查了函数图象的判断,通常从定义域,值域,特殊点等方面来判断,属于中档题. 根据f(0)=0判断b =0,根据定义域判断c ,根据函数值域判断a . 【解答】解:∵f(x)图象过原点, ∴f(0)=0,即=0,∴b =0.∵f(x)的定义域为R ,∴c >0.∵当x >0时,f(x)>0,当x <0时,f(x)<0, ∴a >0, 故选A .12.答案:B解析:【分析】本题考查正弦函数的图象与性质,先把函数化为一个角的正弦函数,再由周期求得ω的值,利用正弦函数的单调区间解得x的范围.【解答】解:∵y=cos2ωx−sin2ωx=cos2ωx,T=2π2ω=π,∴ω=1,f(x)=2sin(x+π4)单调递增区间为:2kπ−π2≤x+π4≤2kπ+π2,得2kπ−3π4≤x≤2kπ+π4(k∈Z),令k=1,∴x∈[54π,94π].故选B.13.答案:60°解析:【分析】本题考查异面直线所成角的求法,属于基础题.由题意画出图形,连接BC1,A1C1,由M,N分别为棱A1D1,C1D1的中点,得MN//A1C1,同理可得EF//BC1,则∠A1C1B即为异面直线EF,MN所成的角,再由△A1C1B为等边三角形得答案.【解答】解:如图,连接BC1,A1C1,∵E,F,M,N分别为BC,CC1,A1D1,C1D1的中点,∴MN//A1C1,EF//BC1,∴∠A1C1B即为异面直线EF与MN所成的角,连接A1B,则△A1C1B为等边三角形,可得.∴异面直线MN与EF所成的角大小为60°.故答案为:60°14.答案:√3解析:【分析】本题主要考查了双曲线的性质,属于基础题.根据双曲线x2a2−y2b2=1(a,b>0)的离心率为2,可得e=ca=√a2+b2a=2,化简即可求解.【解答】解:∵双曲线x2a2−y2b2=1(a,b>0)的离心率为2,∴e =c a=√a 2+b 2a=2,即a 2+b 2=4a 2,∴b 2=3a 2, ∴b a=√3,故答案为√3.15.答案:14解析:【分析】本题考查了对数的运算性质,属于基础题.根据绝对值和偶次方的非负性,得{a −8b =04b −1=0,求出a ,b 的值,然后利用对数的运算性质可得结果.【解答】解:由|a −8b |+(4b −1)2=0,得{a −8b =04b −1=0, 解得a =2,b =14, 所以log 2a b=log 2214=14.故答案为14.16.答案:2−21013解析:【分析】本题考查数列的递推关系及数列求和,根据递推关系分n 为奇数和n 为偶数,求出通项,即可求和,属中档题. 【解答】解:当n 为奇数时,a n+1=(−2)n ,则a 2=(−2)1,a 4=(−2)3,⋯,a 100=(−2)99,当n 为偶数时,a n +1=2a n +(−2)n =2a n +2n , 则a 3=2a 2+22=0,同理,a 5=0,⋯,a 99=0, 因为a 1=0,所以S 100=a 2+a 4+⋯+a 100+0=(−2)1+(−2)3+⋯+(−2)99 =−2×(1−450)1−4=2−21013.故答案为2−21013.17.答案:解:,∴由正弦定理得4ca =bc , ∴b =4a ,,∴a=2,b=8,∴a+b=10.(2)设CD=x,则BD=8−x,由余弦定理得,即(8−x)2=22+x2−4⋅x⋅12,∴x=307,∴CD=30 7.解析:(1)因为,所以由正弦定理得4ca=bc然后进行求解即可;(2)设CD=x,则BD=8−x,然后利用余弦定理进行求解即可.18.答案:解:(1)证明:取SA的中点F,连接EF,∵E为SD中点,,∴四边形BCEF为平行四边形,∴CE//BF,平面ABS,为二面角B−AD−S的平面角,∴∠SAB=60∘,∵AB=AS,∴BA=BS,∴BF⊥SA,∴CE⊥SA;(2)作AB中点O,由(1)知SO⊥AB,SO⊥AD,AB∩AD=D,∴SO⊥平面ABCD,如图建立空间直角坐标系O −xyz ,设BC =1, 则S(0,0,√3),C(1,1,0),D(−1,2,0),∴CD⃗⃗⃗⃗⃗ =(−2,1,0),CS ⃗⃗⃗⃗ =(−1,−1,√3), 设平面SCD 的法向量n =(x,y,z),得{−2x +y =0−x −y +√3z =0, 可取n =(1,2,√3),∵AB ⃗⃗⃗⃗⃗ =(2,0,0),,,∴AB 与平面SCD 所成角的余弦值为√144.解析:本题考查了线面垂直,线线垂直的证明,用空间向量求直线与平面所成的角,属于中档题.(1)构造平行四边形,得CE//BF ,由BA =BS 得BF ⊥SA ,即可得答案.(2)建立空间直角坐标系,求出法向量,利用向量的夹角公式即可求解.19.答案:解:(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,所以X 的所有可能取值为0,1,2,3,P(X =0)=C 50C 43C 93=121,P(X =1)=C 51C 42C 93=514, P(X =2)=C 52C 41C 93=1021,P(X =3)=C 53C 40C 93=542,故的分布列为: X 0 1 2 3P 121 514 1021 542 ∴E(X)=0×121+1×514+2×1021+3×542=53, (2)因为x 6=x =7,b ̂=n i=1i −x)(y i −y)∑(x −x)2n , 所以去掉2015年的数据后不影响b̂的值, 所以b ̂=i 9i=1i −9xy ∑x 29−9x 2=434.1−9×7×6.2509−9×72=43.568≈0.64, 去掉2015年数据后,x =7,y =9×6.2−7.88=6,所以a ̂=y −b ̂x =6−43.568×7≈1.52,故回归方程为:y ̂=0.64x +1.52.解析:本题考查离散型随机变量的分布列、数学期望的求法及应用,考查回归直线方程的求法,(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,从而X 的所有可能取值为0,1,2,3.分别示出相应的概率,由此能求出X 的分布列和数学期望.(2)因为x 6=x =7,所以去掉2015年的数据后不影响b ̂的值,由公式可得b ̂的值,故可得线性回归方程.20.答案:(1)y 2=4x(2)略解析:(1)由题意知−p 2=−1,∴p =2,∴抛物线的方程为y 2=4x.(2)设P(x 1,y 1),Q(x 2,y 2),直线l 的斜率为k ,∵FP ⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =0,F(p 2,0),∴(x 1−p 2,y 1)⋅(x 2−p 2,y 2)=0,即x 1x 2−p 2(x 1+x 2)+p 24+y 1y 2=0①,直线l 的方程为y =k(x +p 2),联立y 2=2px ,得k 2x 2+(pk 2−2p)x +k 2p 24=0,∴x 1+x 2=2p−pk 2k 2②,x 1x 2=p 24③,又y 1y 2=k 2[x 1x 2+p 2(x 1+x 2)+p 24]④,联立①②③④得k =±√22,经检验,k =±√22时,直线l 与抛物线交于两个点.21.答案:解:∵f(x)=x 3+ax 2+bx +a 2,∴f′(x)=3x 2+2ax +b ,∵函数f(x)=x 3+ax 2+bx +a 2在x =1处有极值10,∴{f′(1)=3+2a +b =0f(1)=1+a +b +a 2=10,解得{a =4b =−11,或{a =−3b =3, 当{a =4b =−11时,f′(x)=3x 2+8x −11=(3x +11)(x −1), 当−113<x <1时,f′(x)<0,当x >1时,f′(x)>0,满足x =1处为极值点;当{a =−3b =3时,f′(x)=3x 2−6x +3=3(x −1)2,易知在x =1的两侧f′(x)>0, 故x =1不是极值点,应舍去.故只有{a =4b =−11满足题意.解析:由题意可得{f′(1)=3+2a +b =0f(1)=1+a +b +a 2=10,解之可得a ,b 的值,验证需满足在x =1的两侧单调性相反,即导数异号才为极值点.本题考查函数在某点取得极值的条件,注意验证是解决问题的关键,属中档题.22.答案:解:(1)曲线C 2的极坐标方程为,化为直角坐标系的方程为x +y −2=0,联立{x +y −2=0x 2+y 2−2y =0, 消去x 得,y 2−3y +2=0,解得y =1或2,故C 1和C 2交点的坐标为(0,2),(1,1).(2)依题意,直线l 的参数方程为为参数),把直线l 的参数方程{x =−2+√32t y =12t代入x 2+y 2−2y =0, 得(−2+√32t)2+(12t)2−t =0,即t 2−(2√3+1)t +4=0,设A ,B 对应得参数分别为t 1,t 2,则t 1+t 2=2√3+1,t 1·t 2=4.易知点M 在圆x 2+y 2−2y =0外,所以|MA|+|MB|=|t 1+t 2|=2√3+1.解析:本题主要考查由直线极坐标方程求直角坐标方程,由直线直角坐标方程求其参数方程,考查参数的几何意义,属于中档题.(1)将曲线C 2的极坐标方程化成直角坐标方程,联立方程即可求解;(2)通过设直线l 的参数方程,联立方程,利用参数的几何意义求解.23.答案:解:(1)当a =1时,f (x )={−3x +3 x ≤12x +1 12<x <23x −3 x ≥2,不等式f (x )≥3可化为{−3x +3≥3x ≤12 或{x +1≥312<x <2 或{3x −3≥3x ≥2, 解得,不等式的解集为(−∞,0]∪[2,+∞).(2)f (x )≥|2x −a −(x −2)|=|x −a +2|,当且仅当(2x −a )(x −2)≤0时,取“=”,∴当a ≤4时,x 的取值范围为a2≤x ≤2;当a >4时,x 的取值范围为2≤x ≤a 2.解析:本题主要考查绝对值不等式的解法、绝对值三角不等式的应用,考查的核心素养是逻辑推理、数学运算,属于中档题.(1)分三段分别求解即可;(2)f (x )≥|2x −a −(x −2)|=|x −a +2|,当且仅当(2x −a )(x −2)≤0时,取“=,讨论a 的取值得出结论.。
2020年高二数学暑假自测题(高考模拟) (1)-0714(解析版)

2020年高二数学暑假自测题(高考模拟) (1)一、选择题(本大题共12小题,共60.0分)1.若集合A={x|0<x<6},B={x|x2+x−2>0},则A∪B=()A. {x|1<x<6}B. {x|x<−2或x>0}C. {x|2<x<6}D. {x|x<−2或x>1}2.若复数z=i−1+2i,则z−的虚部为()A. −15i B. −15C. 15i D. 153.已知S n是等差数列{a n}的前n项和,a1+a2+a3=4,S6=10,则a5=()A. 2B. 169C. 209D. 734.某四棱锥的三视图如图所示,该三棱锥的体积是()A. 43B. 83C. 4D. 6+2√35.如图所示的程序框图,输出的结果是S=2017,则输入A的值为()A. 2018B. 2016C. 1009D. 10086.已知椭圆的焦点是F1,F2,P是椭圆上一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A. 圆B. 椭圆C. 双曲线一支D. 抛物线7.函数y=sinx⋅e x+1e x−1的部分图象大致为()A.B.C.D.8. 第十九届西北医疗器械展览将于2018年5月18至20日在兰州举行,现将5名志愿者分配到3个不同的展馆参加接待工作,每个展馆至少分配一名志愿者的分配方案种数为( ) A. 540 B. 300 C. 180 D. 1509. 已知抛物线C :y 2=4x 的焦点为F ,准线为l.若射线y =2(x −1)(x ≤1)与C ,l 分别交于P ,Q两点,则|PF||PQ|=( )A. √55B. √22C. 15D. 1210. 若数列{a n }的前n 项和为S n =n 2+1,则( )A. a n =2n −1B. a n =2n +1C. a n ={2(n =1)2n −1(n ≥2)D. a n ={2(n =1)2n +1(n ≥2)11. 在三棱锥S −ABC 中,已知SA =4,AB =AC =1,∠BAC =2π3,若S ,A ,B ,C 四点均在球O的球面上,且SA 恰为球O 的直径,则三棱锥S −ABC 的体积为( )A. √312B. 14C. 12D. 3412. 已知向量a ⃗ ,b ⃗ 满足a ⃗ ⋅b ⃗ =1,|b ⃗ |=2则(3a ⃗ −2b ⃗ )⋅b ⃗ =( )A. 5B. −5C. 6D. −6 二、填空题(本大题共4小题,共20.0分)13. (x −12x )6的展开式中常数项为______,二项式系数最大的项的系数为______. 14. 已知函数f(x)=log 2x −1,若a ∈[1,10],则f(a)∈[1,2]的概率为______. 15. 过双曲线x 24−y 25=1的左焦点F 1,作圆x 2+y 2=4的切线交双曲线右支于点P ,切点为T ,PF 1的中点为M ,则|MO|−|MT|= ______ .16. 已知f(1x )=x +√1+x 2(x >0),则f(x +1)=__________. 三、解答题(本大题共7小题,共84.0分)17.某地十万余考生的成绩近似地服从正态分布,从中随机地抽取了一批考生的成绩,将其分成6组:第一组[40,50),第二组[50,60),…,第六组[90,100],作出频率分布直方图,如图所示:(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩和标准差(精确到个位);(2)以这批考生成绩的平均值和标准差作为正态分布的均值和标准差,设成绩超过93分的为“优”,现在从总体中随机抽取50名考生,记其中“优”的人数为Y,是估算Y的数学期望.18.在ΔABC中,a,b,c分别为角A,B,C所对边的长,a(sinA+sinB)=(c−b)(sinB+sinC).(1)求角C的值:(2)设函数f(x)=cosx⋅sin(x+π3)−√34,求f(A)的取值范围.19.如图所示,已知三棱锥P−ABC中,底面ABC是等边三角形,且PA=PB=AC=2,D、E分别是AB、PC的中点.(1)证明:AB⊥平面CDE;(2)若PC=√6,求二面角A−PB−C的余弦值.20.椭圆C的焦点为F1(−1,0),F2(1,0),椭圆上一点P(√3,√3).直线l的斜率存在,且不经过点F2,l2与椭圆C交于A,B两点,且∠AF2O+∠BF2O=180∘.(1)求椭圆C的方程;(2)求证:直线l过定点.21.已知函数f(x)=lnx+a(1−x),a∈R.(1)已知函数f(x)只有一个零点,求a的取值范围;(2)若存在x0∈(0,+∞),使得f(x0)≥2a−2成立,求实数a的取值范围.22.在直角坐标系xOy中,以坐标原点为极点,以x轴的非负半轴为极轴简历极坐标系,半圆C的极坐标方程为ρ=4sinθ,θ∈[0,π2](1)将半圆C化为参数方程;(2)已知直线l:y=−√33x+6,点M在半圆C上,过点M斜率为−1直线与l交于点Q,当|MQ|最小值时,求M的坐标.23.(1)已知a,b,c均为正实数,且a+b+c=1,证明1a +1b+1c≥9;(2)已知a,b,c均为正实数,且abc=1,证明√a+√b+√c≤1a +1b+1c.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查集合的并集运算,考查运算求解能力.【解答】解:因为B={x︱x<−2或x>1},所以A∪B={x︱x<−2或x>0}.故选B.2.答案:D解析:【分析】本题考查复数代数形式的乘除运算和共轭复数,考查了复数的基本概念,是基础题.直接利用复数代数形式的乘除运算化简,求出z的答案,【解答】解:z=i−1+2i =i(−1−2i)(−1+2i)(−1−2i)=2−i5=25−i5,∴z−=25+i5.∴z−的虚部为15.故选D.3.答案:A解析:【分析】本题考查等差数列的性质、等差数列的前n项和公式,属于基础题.根据题意,利用等差数列的性质可得3a2=4,3(a2+a5)=10即可得出答案.【解答】解:在等差数列{a n}中,∵a1+a2+a3=4,∴3a2=4,即a2=43,∵S6=10,∴6(a1+a6)2=3(a2+a5)=10,∴a5=2.故选A.4.答案:A解析:解:由三视图可知:该几何体为三棱锥P−ABC,其中PA⊥底面ABC,AB⊥AC,AB=AC=2,PA=2.∴V=13×2×12×22=43.故选:A .由三视图可知:该几何体为三棱锥P −ABC ,其中PA ⊥底面ABC ,AB ⊥AC ,AB =AC =2,PA =2. 本题考查了三棱锥的三视图、体积的计算公式,考查了推理能力与计算能力,属于基础题. 5.答案:D解析:解:模拟程序的运行,可得程序框图的功能是计算并输出S =2A +1的值, 由题意,可得:2017=2A +1,解得:A =1008. 故选:D .根据题意,模拟程序框图的运行过程,即可得出正的确答案. 本题主要考查了程序框图的应用,属于基础题. 6.答案:A解析:由椭圆的定义知:|PF 1|+|PF 2|=2a(a >0),且|PQ|=|PF 2|,得|PF 1|+|PQ |=2a(a >0),所以动点Q 的轨迹是以点F 1为圆心的圆.故选A . 7.答案:B解析:【分析】本题考查函数的图象,根据函数的奇偶性和特殊值可以排除选项,即可求解,属中档题. 【解答】解:由题知f(−x)=sin(−x)⋅e −x +1e −x −1=sinx ⋅e x +1e x −1=f(x),∴函数y =sinx ⋅e x +1e x −1为偶函数,图象关于y 轴对称,排除A 、C ,又当x >0且趋近0时sinx >0,e x +1e x −1>0,∴y =sinx ⋅e x +1e x −1>0,排除D .故选B . 8.答案:D解析:【分析】本题考查排列组合的综合应用,考查分类讨论的数学思想,属于中档题.将5个人分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,进而相加可得答案. 【解答】解:将5个人分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C 53·A 33种分法, 分成2、2、1时,有C 52C 32A 22⋅A 33种分法,所以共有C 53·A 33+C 52C 32A 22⋅A 33=150种分法,故选:D .9.答案:A解析:【分析】本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,考查计算能力.画出图形,利用直线的斜率,三角函数的值的求法,转化求解即可. 【解答】解:抛物线C :y 2=4x 的焦点为F(1,0),准线为l :x =−1,射线y =2(x −1)(x ≤1)过抛物线的焦点坐标(1,0),如图:直线的斜率为:2,设倾斜角为:θ,可得tanθ=2,则cosθ>0, 则cosθ=√cos 2θ=√cos 2θsin 2θ+cos 2θ=√11+tan 2θ=√55. 作PN 垂直抛物线的准线l 于N ,则PF =PN , 则|PF||PQ|=|PN||PQ|=cosθ=√55. 故选:A . 10.答案:C解析:解:由题意知,当n =1时,a 1=s 1=1+1=2,当n ≥2时,a n =s n −s n−1=(n 2+1)−[(n −1)2+1)]=2n −1, 经验证当n =1时不符合上式, ∴a n ={22n −1n =1n ≥2故选C .根据数列{a n }的前n 项和S n ,表示出数列{a n }的前n −1项和S n−1,两式相减即可求出此数列的通项公式,然后把n =1代入时不符合上式.此题考查了等差数列的通项公式,灵活运用a n =S n −S n−1求出数列的通项公式.属于基础题. 11.答案:C解析:【分析】本题考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.推导出∠ABS =∠ACS =90°,SB =SC =√15,BC =√3,取BC 中点O ,连结SO ,AO ,则SO ⊥BC ,AO ⊥BC ,AO =12,BO =√32,SO =√572,从而cos∠SAO =12,进而∠SAO =60°,S 到平面ABC 的距离d =SA ×sin60°=2√3,由此能求出三棱锥S −ABC 的体积. 【解答】解:∵在三棱锥S −ABC 中,SA =4,AB =AC =1,∠BAC =2π3,S ,A ,B ,C 四点均在球O 的球面上,且SA 恰为球O 的直径,∴∠ABS =∠ACS =90°,SB =SC =√15,BC =√1+1−2×1×1×cos2π3=√3,取BC 中点O ,连结SO ,AO ,则SO ⊥BC ,AO ⊥BC ,AO =12,BO =√32,SO =√15−34=√572, ∴cos∠SAO =SA 2+AO 2−SO 22×SA×AO=16+14−5742×4×12=12,∴∠SAO =60°,∴S 到平面ABC 的距离d =SA ×sin60°=4×√32=2√3,∴三棱锥S −ABC 的体积:V =13×S △ABC ×d =13×12×√3×12×2√3=12.故选:C . 12.答案:B解析:【分析】本题考查向量数量积的运算,属基础题. 根据向量数量积的运算法则化简即可. 【解答】 解:因为a ⃗ ⋅b ⃗ =1,|b ⃗ |=2, 所以(3a ⃗ −2b ⃗ )⋅b ⃗ =3a ⃗ ·b ⃗ −2b ⃗ 2=3−8=−5. 故选B .13.答案:154154;−52 52解析:【分析】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 由题意利用二项展开式的通项公式,求得展开式中常数项以及二项式系数最大的项的系数. 【解答】解:二项式(x −12x 2)6的展开式的通项公式为T r+1=C 6r⋅(−12)r ⋅x 6−3r , 令6−3r =0,解得r =2,故展开式中常数项为C 62⋅14=154.二项式系数最大的项为第四项(r =3),系数为C 63⋅(−12)3=−52. 故答案为154;−52.14.答案:49解析:【分析】本题考查几何概型概率的求法,考查对数不等式的解法,是基础题.由1≤log 2a −1≤2求解对数不等式可得a 的范围,再由概率是长度比得答案. 【解答】解:∵f(x)=log 2x −1,由1≤log 2a −1≤2,得2≤log 2a ≤3, ∴4≤a ≤8,则若a ∈[1,10],则f(a)∈[1,2]的概率为P =8−410−1=49. 故答案为:49.15.答案:√5−2解析:解:双曲线x 24−y 25=1的a =2,b =√5,c =√a 2+b 2=3,设双曲线的右焦点为F ,由O 为FF 1中点,M 为PF 1的中点, 可得MO 为三角形PFF 1的中位线, |MO|=12|PF|,又|MT|=|PT|−|PM|=|PF 1|−|F 1T|−12|PF 1|=12|PF 1|−|F 1T|, 所以|MO|−|MT|=−12(|PF 1|−|PF|)+|F 1T|=|F 1T|−a ,又a =2,即有|F 1T|=√|OF 1|2−4=√9−4=√5. 所以|MO|−|MT|=√5−2. 故答案为:√5−2.利用坐标原点是两焦点的中点,利用三角形的中位线的性质得到MO 用焦半径表示;将MT 用焦半径表示;利用圆的切线与过切点的半径垂直得到直角三角形;利用勾股定理及双曲线的定义,求出所求值.本题考查双曲线的定义、方程和性质,在解决双曲线中的有关中点问题时,要注意坐标原点是两个焦点的中点、解决与双曲线的与焦点有关的问题常联系双曲线的定义.16.答案:1+√x2+2x+2x+1解析:设t =1x ,则x =1t ,则t >0,则f(t)=1t +√1+(1t )2=1t +√1+t2t ,则f(x +1)=1x+1+√1+(x+1)2x+1=1+√x 2+2x+2x+1故答案为:1+√x2+2x+2x+117.答案:解:(1)由频率分布直方图,得平均数为:x =(45×0.01+55×0.02+65×0.03+75×0.025+85×0.01+95×0.005)×10=67,方差为:s 2=(45−67)2×0.01×10+(55−67)2×0.02×10+(65−67)×0.03×10+(75−67)2×0.025×10+(85−67)2×0.01×10+(95−67)2×0.005×10=166, ∴标准差为:s =√166≈13;(2)依题意X :N(67,13),P(μ−2σ<x <μ+2σ)=P(41<x <93)=0.954,∴P(x >93)=1−0.9542=0.023,Y :B(50,0.023),E(Y)=50×0.023=1.15.解析:(1)由频率分布直方图,能求出平均数和标准差.(2)X :N(67,13),P(μ−2σ<x <μ+2σ)=P(41<x <93)=0.954,P(x >93)=1−0.9542=0.023,由此能求出Y 的数学期望.本题考查平均数、方差、数学期望的求法,考查频率分布直方图、正态分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.答案:解:(1)在△ABC 中,因为a(sinA +sinB)=(c −b)(sinB +sinC),由正弦定理a sinA =b sinB =c sinC ,所以a(a +b)=(b +c)(c −b),即a 2+b 2−c 2=−ab ,由余弦定理c 2=a 2+b 2−2abcosC ,得cosC =−12,又因为0<C <π,所以C =2π3, (2)因为f(x)=cosx ⋅sin(x +π3)−√34=12sinx ⋅cosx +√32cos 2x −√34=14sin2x +√34(cos2x +1)−√34=12sin(2x +π3), 所以f(A)=12sin(2A +π3),由(1)可知C =2π3,且在△ABC 中,A +B +C =π所以0<A <π3, 即π3<2A +π3<π ,所以0<sin(2A +π3)≤1,即0<f(A)≤12所以f(A)的取值范围为(0,12] .解析:本题主要考查解三角形的应用.(1)利用正余弦定理求角.(2)正弦函数的值域的求解.19.答案:证明:(1)连接PD ,因为PA =PB =PC ,底面ABC 是等边三角形,又因为D是AB的中点,所以PD⊥AB,AB⊥CD,又因为CD∩PD=D,CD,PD⊂平面CDE,所以AB⊥平面CDE.解:(2)因为PA=PB=AC=2,由(1)可知PD=CD=√3,而PC=√6,所以PD⊥CD,以D为原点,以DB⃗⃗⃗⃗⃗⃗ 的方向为x轴正方向建立空间直角坐标系,如图所示,则A(−1,0,0),B(1,0,0),C(0,√3,0),P(0,0,√3),由题得平面ABP的一个法向量为m⃗⃗⃗ =(0,1,0).设平面BCP的一个法向量为n⃗=(x,y,z),所以{BC⃗⃗⃗⃗⃗ ⋅n⃗=−x+√3y=0 PC⃗⃗⃗⃗⃗ ⋅n⃗=√3y−√3z=0,令z=1,得x=√3,y=1,所以n⃗=(√3,1,1),所以cos<m⃗⃗⃗ ,n⃗>=5=√55,由题意知二面角A−PB−C为锐角,所以二面角A−PB−C的余弦值为√55.解析:本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.(1)连接PD,推导出PD⊥AB,AB⊥CD,由此能证明AB⊥平面CDE.(2)推导出PD⊥CD,以D为原点,以DB⃗⃗⃗⃗⃗⃗ 的方向为x轴正方向建立空间直角坐标系,利用向量法能求出二面角A−PB−C的余弦值.20.答案:(1)解:设椭圆方程为x2a2+y2b2=1(a>b>0).由题意得{3a2+34b2=1a2−b2=1,解得{a2=4b2=3,故椭圆方程为x24+y23=1;(2)证明:设直线l方程为y=kx+m,直线l与椭圆C交于A,B两点,由题意知:k AF2+k BF2=0,联立{y=kx+m x24+y23=1,(3+4k2)x2+8kmx+4m2−12=0,Δ=(8km)2−4×(3+4k2)(4m2−12)>0,即4k2−m2+3>0.设A(x1,y1),B(x2,y2),则x1+x2=−8km3+4k2,x1x2=4m2−123+4k2,由y1x1−1+y2x2−1=0,得y1(x2−1)+y2(x1−1)=0,即:2kx1x2+(m−k)(x1+x2)−2m=0,代入得:m=−4k,把m=−4k代入4k2−m2+3>0,解得−12<k<12,而直线不过点F2(1,0),所以k≠0,即−12<k<12且k≠0,所以直线l:y=k(x−4)过定点(4,0).解析:本题考查椭圆标准方程的求解,直线与椭圆的位置关系,以及圆锥曲线中的定点问题,属于较难题.(1)根据题意得到c=1,再根据椭圆的定义求出a,从而得到椭圆的标准方程;(2)设直线l方程为y=kx+m,直线l与椭圆C交于A,B两点,将直线方程与椭圆方程联立,根据由题意知:k AF2+k BF2=0,通过斜率公式并结合韦达定理,得到m=−4k,由此可以得到直线过定点.21.答案:解:(1)f′(x)=1x−a,定义域为(0,+∞),①若a≤0,则f′(x)>0,f(x)在(0,+∞)上为增函数,因为f(1)=0,有一个零点,所以a≤0符合题意;②若a>0,令f′(x)=0,得x=1a,此时f(x)在(0,1a )单调递增,(1a,+∞)单调递减,f(x)的极大值为f(1a),因为f(x)只有一个零点,所以f(1a)=0,即ln1a +a(1−1a)=0,即a−lna−1=0,令y=a−lna−1,则y′=1−1a,则函数在(0,1)上单调递减,在(1,+∞)上单调递增,当a=1时,取最小值0,故a=1,综上所述a=1或a≤0;(2)因为∃x 0∈(0,+∞),使得f(x 0)≥2a −2,所以a ≤2+lnx 01+x 0, 令g(x)=2+lnx 1+x (x >0),即a ≤g(x)最大值,因为g′(x)=1x −lnx−1(1+x)2,设ℎ(x)=1x −lnx −1,ℎ′(x)=−1x 2−1x <0,所以ℎ(x)在(0,+∞)单调递减,又ℎ(1)=0,故函数g(x)在(0,1)单调递增,(1,+∞)单调递减,g(x)的最大值为g(1),a ≤g(1)=1,即实数a 的取值范围是(−∞,1].解析:本题考查函数的零点的个数问题解法,以及不等式存在性问题,考查分类讨论思想和构造函数法,运用导数求单调性和最值,考查化简整理的运算能力,属于中档题.(1)求得f(x)的导数,讨论a >0,a ≤0,考虑单调性和最值,解方程可得所求a 的范围;(2)由题意可得a ≤2+lnx 01+x 0,令g(x)=2+lnx 1+x (x >0),即a ≤g(x)最大值,求得g(x)的导数和单调性,可得极大值,且为最大值,即可得到所求范围.22.答案:解:(1)半圆C 的极坐标方程为ρ=4sinθ,θ∈[0,π2],转化成直角坐标方程为:x 2+y 2−4y =0(0≤x ≤2)再把半圆C 化为参数方程为:{x =2cosαy =2+2sinα(α为参数,−π2≤α≤π2), (2)设M 到l 的距离为d ,则:|MQ|=d sin15°,所以:|MQ|取最小值时,仅当d 最小,故半圆C 在M 处的切线与直线l 平行,由CM ⊥l ,又l 的倾斜角为5π6,所以:点M 对应的参数为:α=π3则:点M 对应的点的坐标为(1,2+√3).解析:本题考查的知识要点:极坐标方程与直角坐标方程的互化,直线的平行问题,属于中档题.(1)首先把圆的极坐标方程转化成直角坐标方程,进一步转化成参数方程,注意参数的取值范围.(2)利用点一直线的位置关系,建立最值成立的条件,进一步求出结论.23.答案:证明:(1)因为a ,b ,c 均为正实数,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =b a +c a +1+a b +c b +1+a c +b c+1 =b a +a b +a c +c a +b c +c b+3≥9,当a =b =c 时等号成立; (2)因为a ,b ,c 均为正实数,∴1a +1b+1c=12(1a+1b+1a+1c+1b+1c)≥12×(2√1ab+2√1ac+2√1bc),又因为abc=1,所以1ab =c,1ac=b,1bc=a,∴√a+√b+√c≤1a +1b+1c.当a=b=c时等号成立,即原不等式成立.解析:(1)根据a+b+c=1,利用基本不等式即可证明;(2)根据1a +1b+1c=12(1a+1b+1a+1c+1b+1c),利用基本不等式即可证明.本题考查不等式的证明,注意运用基本不等式,考查推理能力和运算能力,属于中档题.。
2020年暑假高二数学补习题 (1)-0715(解析版)

2020年暑假高二数学补习题 (1)一、选择题(本大题共12小题,共60.0分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则下列正确的为()A. U=A∪BB. U=(C U A)∪BC. U=A∪(C U B)D. U=(C U A)∪(C U B)2.设z=21+i+2i,则z−的虚部是()A. 2B. 1C. −2D. −13.cos480°=()A. 12B. √32C. −12D. −√324.已知某高中的一次测验中,甲乙两个班的九科平均分的雷达图如图所示,则下列判断错误的是()A. 甲班的政治、历史、地理平均分强于乙班B. 甲班的物理、化学、生物平均分低于乙班C. 学科平均分分差最小的是语文学科D. 学科平均分分差最大的是英语学科5.若a=0.20.2,b=1.20.2,c=log1.20.2,则()A. a<b<cB. c<a<bC. b<c<aD. a<c<b6.在空间中,a、b是不重合的直线,α、β是不重合的平面,则下列条件中可推出a//b的是()A. a⊥α,b⊥αB. a//α,b⊂αC. a⊂α,b⊂β,α//βD. a⊥α,b⊂α7.曲线y=x3−x在点(1,0)处切线的倾斜角为α,则tanα=()A. 2B. −43C. −1D. 08.已知a⃗=(x,2),b⃗ =(−2,1),a⃗⊥b⃗ ,则|a⃗−b⃗ |=()A. √5B. 2√5C. √10D. 109.(文科做)要得到函数y=f(2x−π3)的图象,只需将函数y=f(2x)的图象()A. 向左平行移动π3个单位 B. 向右平行移动π3个单位 C. 向左平行移动π6个单位D. 向右平行移动π6个单位学10. 函数的图象大致为( )A.B.C.D.11. 点A 是抛物线C 1:y 2=2px(p >0) 与双曲线C 2:x 2a 2−y 2b 2=1 (a >0,b >0)的一条渐近线的一个交点,若点A 到抛物线C 1的焦点的距离为p ,则双曲线C 2的离心率等于( ) A. √6 B. √5 C. √3 D. √212. 已知函数f(x)={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n+1=f(a n )(n ∈N +),则a 2019=( )A. 73B. 43C. 56D. 13二、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)={log 4x,x ≥19x ,x<1,则f(f(2))的值为___________ .14. 在等差数列{a n }中,a 2+a 7=20,则数列{a n }的前8项之和S 8= ______ . 15. 若直线2x +y −2=0与圆(x −1)2+(y −a)2=1相切,则a =______.16. 三棱锥S −ABC 中,SA ⊥底面ABC ,SA =3,△ABC 是边长为2的正三角形,则其外接球的表面积为______.三、解答题(本大题共6小题,共70.0分)17. 十三届全国人大二次会议于2019年3月5日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:收看 没收看 合计男生40女生3060合计(Ⅱ)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001)附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.100.050.0250.010.005k0 2.706 3.841 5.024 6.6357.87918.设满足a1+13a2+15a3+⋯+12n−1a n=n.(1)求数列{a n}的通项公式;(2)求数列{1√a+√a}的前84项和.19.在△ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且cosBcosC =−b2a+c.(1)求∠B的大小;(2)若a=2,S=√3,求b,c的值.20.如图,在直三棱柱ABC−A1B1C1中,∠BAC=90°,AB=AC=AA1,且E,F分别是BC,B1C1中点.(1)求证:A1B//平面AEC1;(2)求直线AF与平面AEC1所成角的正弦值.21.在平面直角坐标系xOy内,有一动点P到直线x=4√33的距离和到点(√3,0)的距离比值是2√33.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)已知点A(2,0),若P不在x轴上,过点O作线段AP的垂线l交曲线C于点D,E,求|DE||AP|的取值范围.22.已知函数f(x)=1+lnxx.(Ⅰ)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;(Ⅱ)证明:当x>1时,(x+1)(x+e x)f(x)>2(1+1e).-------- 答案与解析 --------1.答案:C解析:∵全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},∴C U B={1,2,4,6,7},∴A∪C U B={1,2,3,4,5,6,7}=U.故选C.2.答案:D解析:解:∵z=21+i +2i=2(1−i)(1+i)(1−i)+2i=1−i+2i=1+i,∴z−=1−i,∴z−的虚部是−1,故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:C解析:解:cos480°=cos(360°+120°)=cos120°=−12.故选:C.直接利用诱导公式化简求值即可.本题考查诱导公式的应用,特殊角的三角函数值的求法,考查计算能力.4.答案:C解析:分析:先对图表信息的分析、处理,再结合简单的合情推理逐一检验即可得解.本题考查了对图表信息的分析及简单的合情推理,属中档题.解:由雷达图可知:选项A、B、D均正确,又由图可知学科平均分分差最小的是地理学科,即C错误,故选:C.5.答案:B解析:【分析】此题考查指数函数和对数函数的单调性,属于基础题.根据指数函数和对数函数的单调性,将a,b,c与0或1的大小进行比较,进而得出结果.【解答】解:∵0<a=0.20.2<1,b=1.20.2>1,,则c<a<b.故选B.6.答案:A解析:解:A选项正确,a⊥α,b⊥α,可由垂直于同一平面的两条直线平行这一结论得出a//bB选项不正确,因为线面平行,线与面内的线可能是异面.C选项不正确,因为两个平行平面中的两条直线的位置关系是平行或者异面.D选项不正确,因为a⊥α,b⊂α,则两线的位置关系是垂直,故选A由题设中的条件a、b是不重合的直线,α、β是不重合的平面再结合四个选项中的条件判断线线平行,得出正确选项.本题考查空间中直线与直线之间的位置关系,解答本题,关键是有一定的空间想像能力及熟练掌握线线平行的判断条件.本题考查了推理判断的能力,7.答案:A解析:解:y=x3−x的导数为y′=3x2−1,曲线y=x3−x在点(1,0)处切线的斜率为3−1=2,即tanα=2.故选:A.求得函数y的导数,由导数的几何意义,即可得到所求值.本题考查导数的运用:求切线的斜率,考查导数的几何意义,属于基础题.8.答案:C解析:解:a⃗=(x,2),b⃗ =(−2,1),a⃗⊥b⃗ ,∴a⃗⋅b⃗ =−2x+2=0,解得x=1,∴a⃗−b⃗ =(1+2,2−1)=(3,1),∴|a⃗−b⃗ |=√32+12=√10.故选:C.根据a⃗⊥b⃗ 时a⃗⋅b⃗ =0,求出x的值,再计算a⃗−b⃗ 的模长.本题主要考查两个向量垂直的性质与应用问题,是基础题目.9.答案:D解析:解:∵将函数y=f(2x)的图象向右平行移动π6个单位得:y=f[2(x−π6)]=f(2x−π3),∴要得到y=f(2x−π3)的图象,只需将函数y=f(2x)的图象向右平行移动π6个单位.故选D.利用函数y=Asin(ωx+φ)的图象变换即可求得答案.本题考查函数y=Asin(ωx+φ)的图象变换,掌握先周期变换后相位变换的规律是关键,属于中档题.10.答案:D解析:【分析】本题主要考查利用函数的特殊值判断函数的图像. 【解答】 解:因为,故排除A ,C 又,故排除B , 故选D . 11.答案:B解析:【分析】先根据条件求出店A 的坐标,再结合点A 到抛物线C 1的准线的距离为p ;得到a 2b 2=14,再代入离心率计算公式即可得到答案.本题考查双曲线的性质及其方程.双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率e 和渐近线的斜率±ba 之间有关系e 2=1+(±ba )2. 【解答】解:取双曲线的其中一条渐近线:y =ba x , 联立{y 2=2px y =ba x⇒{x =2pa 2b 2y =2pab; 故A (2pa 2b 2,2pab).∵点A 到抛物线C 1的准线的距离为p , ∴p2+2pa 2b 2=p ;∴a 2b 2=14,∴双曲线C 2的离心率e =c a=√a 2+b 2a 2=√5.故选:B . 12.答案:D解析:解:根据题意,函数f(x)={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n+1=f(a n ),则a 2=a 1−1=43, a 3=a 2−1=13, a 4=a 3+12=56,a5=2a4−1=23,a6=2a5−1=13,a7=a6+12=56,则数列{a n}满足a n+3=a n,(n≥3),即数列{a n}从第三项开始,组成周期为3的数列,则a2019=a3+2016=a3=13,故选:D.根据题意,由函数的解析式以及数列的递推公式求出数列{a n}的前7项,分析可得a n+3=a n,(n≥3),即数列{a n}从第三项开始,组成周期为3的数列,据此可得a2019=a3+2016=a3,即可得答案.本题考查数列与函数的综合应用,涉及数列的递推公式以及分段函数的解析式,属于基础题.13.答案:3解析:【分析】用函数的解析式,求解f(2),然后求解f[f(2)]的值.【解答】解:因为,故可得f(f(2))=f(12)=912=3,故答案为3.14.答案:80解析:解:由等差数列的性质可得a1+a8=a2+a7=20,∴数列{a n}的前8项之和S8=8(a1+a8)2=80故答案为:80由等差数列的性质可得a1+a8=20,代入求和公式计算可得.本题考查等差数列的求和公式和性质,属基础题.15.答案:±√5解析:解:因为直线2x+y−2=0与圆(x−1)2+(y−a)2=1相切,所以√22+12=1,解得a=±√5.故答案为:±√5.利用直线与圆相切等价于圆心到直线的距离等于半径列式可得.本题考查了直线与圆的位置关系,属基础题.16.答案:43π3解析:【分析】由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面三角形外接圆半径r,和球心距d,得球的半径R,然后求解表面积.本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.属于中档题.【解答】解:根据已知中底面△ABC是边长为3的正三角形,SA⊥平面ABC,SA=3,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,∵△ABC是边长为2的正三角形,∴△ABC的外接圆半径r=2√33,球心到△ABC的外接圆圆心的距离d=32,故球的半径R=√r2+d2=√43+94=√4312.三棱锥S−ABC外接球的表面积为:4πR2=4π×4312=433π.故答案为:43π3.17.答案:解:Ⅰ依据题中提供的数据,完成列联表如下:收看没收看合计男生8040120女生303060合计11070180(Ⅱ)根据列联表计算K2=180×(80×30−40×30)2120×60×110×70=36077≈4.675<6.635,所以没有的把握认为该校大学生收看开幕会与性别有关.解析:本题考查独立性检验在解决实际问题中的应用,属于基础题.(Ⅰ)根据题中提供数据填写列联表即可;(Ⅱ)根据列联表计算K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)和6.635比较即可得到答案.18.答案:解:(1)由a1+13a2+15a3+⋯+12n−1a n=n,得a1=1,当n≥2时,a1+13a2+15a3+⋯+12n−3a n−1=n−1,∴12n−1a n=1,a n=2n−1(n≥2),a1=1适合上式,∴a n=2n−1;(2)∵a+a =√a n+1−√a na n+1−a n=12(√a n+1−√a n)=12(√2n+1−√2n−1).∴数列{a+a }的前84项和S84=12(√3−1+√5−√3+⋯+√169−√167)=12(13−1)=6.解析:(1)由已知递推式求得首项,且得到当n≥2时,a1+13a2+15a3+⋯+12n−3a n−1=n−1,与原递推式联立即可得到数列{a n}的通项公式;(2)利用裂项相消法求数列{√a +√a }的前84项和.本题考查数列递推式,考查了利用作差法求数列的通项公式,训练了利用裂项相消法求数列的前n项和,是中档题.19.答案:解:(1)由正弦定理及cosB cosC =−b 2a+c 得:cosB cosC =−sinB2sinA+sinC ,∴cosB(2sinA +sinC)=−sinBcosC , ∴2sinAcosB +cosBsinC =−sinBcosC , ∴−2sinAcosB =sin(B +C)=sinA , ∵sinA ≠0, ∴cosB =−12, ∵0<B <π, ∴B =2π3,(2)由a =2,B =2π3,S =12acsinB =√3,解得:c =2,由余弦定理得:b 2=a 2+c 2−2accosB ,① 将,a =2,c =2,B =2π3代入①,得b =√22+22+2×2×2×12=2√3.解析:本题主要考查了正弦定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理及三角函数恒等变换的应用化简已知可得:−2sinAcosB =sinA ,结合sinA ≠0,可求cos B ,结合B 的范围可求B 的值.(2)由利用三角形面积公式、及余弦定理即可求解b 、c 的值. 20.答案:证明:(1)连接A 1C 交AC 1于点O ,连接EO , ∵ACC 1A 1为正方形,∴O 为A 1C 中点,又E 为CB 中点,∴EO 为△A 1BC 的中位线, ∴EO//A 1B ,又EO ⊂平面AEC 1,A 1B ⊄平面AEC 1, ∴A 1B//平面AEC 1.解:(2)作FM ⊥EC 1于M ,连接AM , ∵AB =AC ,E 为BC 的中点, ∴AE ⊥BC ,又∵平面ABC ⊥平面BCC 1B 1,且平面ABC ⊥平面BCC 1B 1=BC , AE ⊂平面ABC ,∴AE ⊥平面BCC 1B 1, 而AE ⊂平面AEC 1,∴平面AEC 1⊥平面BCC 1B 1,∴FM ⊥平面AEC 1, ∴∠FAM 即为直线AF 与平面AEC 1所成角, 设AB =AC =AA 1=1,则在Rt △AFM 中,FM =√33,AF =√62,∴直线AF 与平面AEC 1所成角的正弦值sin∠FAM =FM AF =√23.解析:(1)连接A 1C 交AC 1于点O ,连接EO ,则EO//A 1B ,由此能证明A 1B//平面AEC 1.(2)作FM ⊥EC 1于M ,连接AM ,推导出AE ⊥BC ,AE ⊥平面BCC 1B 1,从而平面AEC 1⊥平面BCC 1B 1,进而FM ⊥平面AEC 1,∠FAM 即为直线AF 与平面AEC 1所成角,由此能求出直线AF 与平面AEC 1所成角的正弦值.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.答案:解:(Ⅰ)设动点P 的坐标为(x,y), 根据题意得|x−4√33|√(x−√3)2+y 2=2√33,化简得曲线C 的方程为:x 24+y 2=1;(Ⅱ)∵P 不在x 轴上,故直线AP 的斜率不为0, 设直线AP 的方程为y =k(x −2),则直线DE 的方程为y =−1k x .联立{y =k(x −2)x 24+y 2=1, 得(1+4k 2)x 2−16k 2x +16k 2−4=0.设P(x 0,y 0),则2+x 0=16k 21+4k 2,即x 0=8k 2−21+4k 2. 故|AP|=√(x 0−2)2+y 02=√(1+k 2)(x 0−2)2=4√1+k 21+4k 2. 设D(x 1,y 1),由椭圆对称性可知|DE|=2|OD|.由{y =−1k x x 24+y 2=1,解得x 12=4k 24+k 2,y 12=44+k 2, |OD|=√x 12+y 12=2√1+k 2k 2+4,∴|DE|=4√1+k 2k 2+4. ∴|DE||AP|=4√1+k 2k 2+441+k 21+4k 2=2√k 2+4.设t =√k 2+4,则k 2=t 2−4,t >2.|DE||AP|=4(t 2−4)+1t =4t 2−15t (t >2).令g(t)=4t 2−15t (t >2),则g′(t)=4t 2+15t 2>0.∴g(t)是一个增函数,∴|DE||AP|=4t 2−15t >4×4−152=12.综上,|DE||AP|的取值范围是(12,+∞).解析:本题考查曲线方程的求法,直线与椭圆的位置关系,属于较难题.(Ⅰ)由直接法即可求解.(Ⅱ)设直线AP 的方程为y =k(x −2),则直线DE 的方程为y =−1k x.联立{y =k(x −2)x 24+y 2=1得到P 点坐标,求得|AP|,设D(x 1,y 1),由椭圆对称性可知|DE|=2|OD|,求得|DE|即可求解.22.答案:解:(Ⅰ)f(x)的定义域为(0,+∞),所以 f′(x)=−lnxx 2,当0<x <1时,f′(x)>0,当x >1时,f′(x)<0.所以 f(x)在(0,1)上单调递增,在(1,+∞)单调递减,则 x =1是函数f(x)的极大值点,又f(x)在(m,m +1)上存在极值,则m <1<m +1⇔0<m <1,故实数m 的取值范围是(0,1).(Ⅱ)证明:(x +1)(x +e −x )f(x)>2(1+1e )⇔1e+1⋅(x+1)(lnx+1)x >2e x−1xe x +1.令g(x)=(x+1)(lnx+1)x ,则g′(x)=x−lnxx 2, 令φ(x)=x −lnx ,则φ′(x)=1−1x =x−1x ,当x >0时,φ′(x)>0,∴φ(x)在(1,+∞)上单调递增,所以φ(x)>φ(1)=1>0,∴g′(x)>0.∴g(x)在(1,+∞)上单调递增,所以当x >1时,g(x)>g(1)=2,故g(x)e+1>2e+1令ℎ(x)=2e x−1xe x +1,则ℎ′(x)=2e x−1(1−e x )(xe x +1)2∵x >1,∴1−e x <0,∴ℎ′(x)>0,则ℎ(x)在(1,+∞)上单调递减.所以,ℎ(x)<ℎ(1)=2e+1,故 g(x)e+1>ℎ(x),即(x +1)(x +e x )f(x)>2(1+1e ).解析:本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,属于中档题. (Ⅰ)求出函数的单调性,解关于导函数的不等式,求出函数的极值点,从而求出m 的范围; (Ⅱ)问题转化为证明1e+1⋅(x+1)(lnx+1)x >2e x−1xe x +1,令f(x)=(x+1)(lnx+1)x ,g(x)=2e x−1xe x +1,根据函数的单调性求出函数的最值,从而证出结论.。
2020年暑假高二数学提分训练题 (5)-0712(解析版)

2020年暑假高二数学提分训练题 (5)一、选择题(本大题共12小题,共60.0分)1.复数z=2i2+4的虚部为()i+1A. −3B. −1C. 1D. 22.已知集合A={x∈N|lnx≤x<3},集合B={y|y=√2−x},则A∪B=()A. {1,2}B. [1,2]C. (−∞,2]D. [0,+∞)3.已知样本9,10,11,x,y的平均数是10,方差是2,则xy的值为()A. 88B. 96C. 108D. 110π,c=π−2,则()4.设a=log2π,b=log12A. a>b>cB. b>a>cC. a>c>bD. c>b>a5.已知向量a⃗=(−2,2),b⃗ =(1,m),若向量a⃗//b⃗ ,则m=()D. 2A. −1B. 1C. 12)(ω>0)的最小正周期为π,则函数f(x)的图象()6.已知函数f(x)=cos(ωx−π3A. 可由函数g(x)=cos2x的图象向左平移π个单位得到3B. 可由函数g(x)=cos2x的图象向右平移π个单位得到3C. 可由函数g(x)=cos2x的图象向左平移π个单位得到6D. 可由函数g(x)=cos2x的图象向右平移π个单位得到67.某同学用收集到的6组数据对(x i,y i)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:y∧=b∧x+a,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③b∧>1;其中正确的结论是()A. ①②B. ①③C. ②③D. ①②③8.如图所示,点F是抛物线y2=4x的焦点,点A,B分别在抛物线y2=4x及圆(x−1)2+y2=4的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围()A. (4,6)B. [4,6]C. (2,4)D. [2,4]9. 某几何体的三视图如图所示,其中网格小正方形的边长为1,则该几何体的外接球的表面积为( )A. 16πB. 24πC. 36πD. 32π10. 已知在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,ab =cosAcosB ,A =π6,BC 边上的中线长为4,则△ABC 的面积S 为( )A. 16√37B. 8√37C. 247D. 487 11. 已知实数a ,b 满足2a 2−5lna −b =0,c ∈R ,则(a −c)2+(b +c)2的最小值为( )A. 12 B. √32C. 3√22D. 92 12. 已知函数f(x)=lnx −x 3+2ex 2−(a +e 2)x 在定义域内有零点,则实数a 的取值范围为( )A. (−∞,1e )B. (−∞,1e ]C. (0,1e ]D. [1e ,+∞)二、填空题(本大题共4小题,共20.0分)13. 在某次夏令营活动中,甲、乙、丙三人都恰好报了清华大学、北京大学中的某一所大学的夏令营,三人分别给出了以下说法:甲说:“我报了清华大学的夏令营,乙也报了清华大学的夏令营,丙报了北京大学的夏令营”; 乙说:“我报了清华大学的夏令营,甲说的不完全对”; 丙说:“我报了北京大学的夏令营,乙说的对”.已知甲、乙、丙三人中,恰有一人说的不对,则报了北京大学夏令营的是________. 14. 在如图所示的正方形中随机掷一粒豆子,豆子落在正方形内切圆的上半圆(圆中阴影部分)中的概率是______ .15.已知不等式组{x+y−1≥0x−y+1≥02x−y−2≤0表示的平面区域为D,若对任意的(x,y)∈D,不等式|x−2y|≤t恒成立,则实数t的取值范围是__________.16.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线x24−y2=1的两条渐近线分别交于A,B两点,AB=√6,则p的值为______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}满足(a1+a2)+(a2+a3)+⋯+(a n+a n+1)=2n(n+1)(n∈N∗).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n2n−1}的前n项和S n.18.如图,在四棱锥P−ABCD中,底面ABCD是矩形,AD⊥平面PAB,AD=AP=PB=1,∠APB=90°,点E、F分别为BC、AP中点.(1)求证:EF//平面PCD;(2)求三棱锥D−PEF的体积.19.(为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工月工资的中位数为39百元(假设这100名农民工的月工资均在[25,55](百元)内)且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(Ⅰ)求m,n的值;(Ⅱ)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名,则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.050.010.0050.001 k0 3.841 6.6357.87910.82820.已知椭圆E:x2a2+y2b2=1(a>b>0)的焦距为2√2,左右顶点分别为A,B,且过点(√2,1).若P(x0,y0),y0≠0为直线x=4上任意一点,PA,PB分别交椭圆E于C,D两点.(Ⅰ)求椭圆E的方程;(Ⅱ)证明:直线CD过定点.21.已知函数f(x)=ax2−blnx在点(1,f(1))处的切线方程为y=1;(Ⅰ)求实数a,b的值;(Ⅱ)求f(x)的最小值.22.在直角坐标系xOy中,曲线C的参数方程为{x=2+2cosα,y=2sinα(α为参数),直线l的参数方程为{x=3−t,y=1+t(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,射线m:θ=β(ρ⩾0).(1)求C和l的极坐标方程;(2)设m与C和l分别交于异于原点O的P,Q两点,求|OP||OQ|的最大值.23.已知函数f(x)=x2−|x|+1.(1)求不等式f(x)≥2x的解集;(2)若关于x的不等式f(x)⩾|x2+a|在[0,+∞)上恒成立,求a的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 直接利用复数代数形式的乘除运算化简得答案. 【解答】 解:∵z =2i 2+4i+1=21+i=2(1−i)(1+i)(1−i)=1−i ,∴复数z =2i 2+4i+1的虚部为−1.故选B . 2.答案:D解析:【分析】本题考查并集运算和对数不等式,考查计算能力,属于基础题. 先化简A ,B ,再求并集. 【解答】解:A ∪B ={x ∈N|lnx ≤x <3}∪{y|y =√2−x}={1,2}∪{y|y ≥0}, 即A ∪B =[0,+∞), 故选D . 3.答案:B解析:【分析】本题主要考查平均数、方差等基础知识,考查运算求解能力,是基础题.样本9,10,11,x ,y 的平均数是10,方差是2,列方程组求出x ,y ,由此能求出xy 的值. 【解答】解:∵样本9,10,11,x ,y 的平均数是10,方差是2,∴{15(9+10+11+x +y)=1015[(9−10)2+(10−10)2+(11−10)2+(x −10)2+(y −10)2]=2,解得{x +y =20(x −10)2+(y −10)2=8,解得{x =12y =8或{x =8y =12,∴xy =96. 故选B . 4.答案:C解析:【分析】本题主要考查对数函数图像与性质的应用,属于基础题. 【解答】解:∵a>log22=1,b=−log2π<0,0<c<π0=1,∴a>c>b,故选C.5.答案:A解析:解:∵向量a⃗=(−2,2),b⃗ =(1,m),向量a⃗//b⃗ ,∴−21=2m,解得m=−1.故选:A.由向量a⃗//b⃗ ,列出方程,能求出m.本题考查实数值的求法,考查平面向量坐标运算法则、向量平行等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.答案:D解析:【分析】本题考查函数y=Asin(ωx+φ)的图象与性质,属于基础题.先由题意确定ω=2ππ=2,再根据g(x)平移可得.【解答】解:由题意,得ω=2ππ=2,则f(x)=cos(2x−π3)的图象可由函数g(x)=cos2x的图象向右平移π6个单位得到.故选D.7.答案:A解析:【分析】本题考查回归统计中的回归分析,属基础题.【解答】解:①.由散点图知,相关指数为r>0,①正确;②.x=16(0+1+2+3+7+5)=3,y=16(1.5+2+2.3+3+4.2+5)=3,因为样本中心点(3,3),所以回归直线l恰好过点D点,②正确;因为直线l的斜率接近与AD斜率,而k AD=kAD=3−1.53=12<1" role="presentation" style="margin: 0px; padding: 5px 2px; display: inline-block; ; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; font-family:"MicrosoftYaHei ", arial, SimSun, sans-serif, tahoma; position: relative;">3−1.53=12<1,所以③错误.故选A.8.答案:A解析:【分析】本题考查抛物线的定义,考查抛物线与圆的位置关系,确定B 点横坐标的范围是关键.由抛物线定义可得|AF|=x 1+1,从而△FAB 的周长=|AF|+|FB|+|BA|=(x 1+1)+2+(x 2−x 1)=x 2+3,确定B 点横坐标的范围,即可得到结论. 【解答】解:由题意知抛物线y 2=4x 的准线为x =−1, 设A 、B 两点的坐标分别为A(x 1,y 0),B(x 2,y 0), 则|AF|=x 1+1,由{y 2=4x (x −1)2+y 2=4, 消去y , 整理得:x 2+2x −3=0, 解得x =1,或x =−3(舍)∵B 在圆(x −1)2+y 2=4的实线部分上运动, ∴1<x 2<3,∴ΔFAB 的周长为|AF|+|FB|+|BA|=(x 1+1)+2+(x 2−x 1)=x 2+3∈(4,6), 故选A .9.答案:D解析:【分析】本题考查由三视图求几何体外接球的表面积,根据三视图知几何体是三棱柱,为长方体一部分,画出直观图,由长方体的性质求出该几何体外接球的半径,利用球的表面积公式求出该几何体外接球的表面积.【解答】解:几何体为三棱柱,是长方体一部分,且长方体的长、宽、高分别是2√2, 2√2、4, ∴三棱柱的外接球与长方体的相同, 设该几何体外接球的半径是R ,由长方体的性质可得,(2R )2=(2√2)2+(2√2)2+42=32, 解得R 2=8,∴该几何体外接球的表面积S =4πR 2=32π, 故选D . 10.答案:A解析:【分析】本题主要考查正余弦定理的应用,三角形的面积公式,属于一般题.首先根据正弦定理得出sinAcosB =sinBcosA ,得到sin(A −B)=0,然后利用余弦定理结合面积公式求出结果. 【解答】解:由题得acosB =bcosA ,再由正弦定理得sinAcosB =sinBcosA , 所以sin(A −B)=0, 故B =A =π6,得,由正弦定理得c =√3a ,由余弦定理得16=c 2+(a 2)2−2c ·a 2cos π6,得a =8√77,c =8√217, 得S =12acsinB =16√37.故选A .11.答案:D解析:【分析】本题考查两点间的距离公式,点到直线的距离公式的应用,考查求函数上一点处的切线方程,属于较难题.首先将题目转化为求曲线y =2x 2−5lnx 上一点到已知直线y +x =0距离的最小值问题,然后求出与已知直线平行且与曲线相切的直线,切点到已知直线的距离即为所求值. 【解答】分别用x 代换a ,y 代换b ,则x ,y 满足:2x 2−5lnx −y =0,即y =2x 2−5lnx(x >0), 以x 代换c ,可得点(x,−x),满足y +x =0.因此求√(a −c)2+(b +c)2的最小值即为求曲线y =2x 2−5lnx 上的点到直线y +x =0的距离的最小值.设直线y +x +m =0与曲线y =2x 2−5lnx =f(x)相切于点P(x 0,y 0), f′(x)=4x −5x,则f′(x 0)=4x 0−5x 0=−1,解得x 0=1,∴切点为P(1,2),∴点P 到直线y +x =0的距离d =√2=32√2, 据此可得:(a −c)2+(b +c)2的最小值为92. 故选D . 12.答案:B解析:【分析】本题考查了函数与方程的综合应用问题,也考查了函数零点以及利用导数研究函数的单调性与最值问题,是中档题. 令函数f(x)=0,得出,设,利用导数求得g(x)的最大值g(x)max ,设ℎ(x)=x 2−2ex +a +e 2,根据二次函数求得ℎ(x)的最小值 ℎ(x)min ,利用ℎ(x)min ≤g(x)max 求得a 的取值范围. 【解答】解:函数f(x)=lnx −x 3+2ex 2−(a +e 2)x 的定义域为(0,+∞), 令lnx −x 3+2ex 2−(a +e 2)x =0, 得;设,则,则当0<x <e 时,g′(x)>0,∴g(x)在区间(0,e)上单调递增; 当x >e 时,g′(x)<0,∴g(x)在区间(e,+∞)上单调递减; ∴x =e 时,函数g(x)取得最大值为g(x)max =g(e)=1e ; 设ℎ(x)=x 2−2ex +a +e 2=(x −e)2+a ,则当x =e 时,ℎ(x)取得最小值为ℎ(x)min =ℎ(e)=a ; 要使f(x)在定义域内有零点,则ℎ(x)min ≤g(x)max , 即a ≤1e ,∴实数a 的取值范围是(−∞,1e ]. 故选B .13.答案:甲、丙解析:【分析】本题主要考查合情推理的知识,解答本题的关键是知道合情推理的特点. 【解答】解:根据题意得,甲、乙、丙三人中,只有甲一人说的不对,则报了北京大学夏令营的是甲、丙. 故答案为甲、丙.14.答案:π8解析:【分析】本题考查了几何概型的概率求法,属于基础题.由题意,所求概率符合几何概型的概率求法,由此只要求出正方形的面积以及半圆的面积,求面积之比即可. 【解答】解:设正方形的边长为2,则豆子落在正方形内切圆的上半圆中的概率符合几何概型的概率, 所以豆子落在正方形内切圆的上半圆(圆中阴影部分)中的概率是12π×122×2=π8,故答案为:π8.15.答案:[5,+∞)解析:【分析】本题考查了不等式组表示的平面区域的画法以及应用问题,是中档题.画出不等式组表示的平面区域,根据图形求得|x −2y|max ,即可得出实数t 的取值范围. 【解答】解:画出不等式组{x +y −1≥0x −y +1≥02x −y −2≤0表示的平面区域,如图阴影所示;由图形知,在点B 处|x −2y|取得最大值,由{2x −y −2=0x −y +1=0,解得B(3,4),所以|x −2y|max =|3−2×4|=5,所以不等式|x −2y|≤t 恒成立时,实数t 的取值范围是t ≥5. 故答案为[5,+∞).16.答案:2√6解析:【分析】本题考查抛物线和双曲线的方程和性质,主要是准线方程和渐近线方程,考查方程思想和运算能力,属于基础题.求得抛物线的准线方程和双曲线的渐近线方程,联立求得A ,B 的坐标,可得|AB|,解方程可得p 的值. 【解答】解:抛物线y 2=2px(p >0)的准线为l :x =−p2, 双曲线x 24−y 2=1的两条渐近线方程为y =±12x ,可得A (−p2,−p4),B (−p 2,p4),则|AB |=|p4−(−p4)|=√6√6,可得p =2√6. 故答案为2√6.17.答案:解:(Ⅰ)设等差数列{a n }的公差为d ,由已知得{a 1+a 2=4(a1+a 2)+(a 2+a 3)=12, 即{a 1+a 2=4a 2+a 3=8, 所以{a 1+(a 1+d)=4(a 1+d)+(a 1+2d)=8,解得{a 1=1d =2, ∴a n =1+2(n −1)=2n −1; (Ⅱ)a n 2n−1=(2n −1)⋅(12)n−1,∴S n =1⋅(12)0+3⋅(12)1+5⋅(12)2+⋯+(2n −1)⋅(12)n−1①,∴12S n =1⋅(12)1+3⋅(12)2 +⋯+(2n −3)⋅(12)n−1+(2n −1)⋅(12)n② ,①− ②得12S n =1+2⋅(12)1+2⋅(12)2 +2⋅(12)3+⋯+2⋅(12)n−1−(2n −1)⋅(12)n=1+2·12(1−12n−1)1−12−(2n −1)⋅(12)n =3−(2n +3)⋅(12)n,∴S n =6−(2n +3)⋅(12)n−1=6−4n+62n.解析:本题考查了利用数列的递推公式求出通项公式和利用错位相减法求前n 项和,属于中档题. (Ⅰ)根据数列的递推公式求出公差d ,即可求出数列{a n }的通项公式, (Ⅱ)根据错位相减法即可求出前n 项和.18.答案:解:(1)证明:取PD 中点G ,连接GF ,GC ,在△PAD 中,G ,F 分别为PD 、AP 中点, ∴GF = //12AD ,在矩形ABCD中,E为BC中点,∴CE=//1AD,2∴GF=//EC,∴四边形GFEC是平行四边形,∴GC//EF,而GC⊂平面PCD,EF⊄平面PCD,∴EF//平面PCD;(2)∵AD⊥平面PAB,AD⊂平面PAD,∴平面PAD⊥平面PAB,∵BC//AD,AD⊂平面PAD,BC⊄平面PAD,∴BC//平面PAD,∵AD=AP=PB=1,∠APB=90°,,AP⊥PB,∵平面PAD∩平面PAB=PA,平面PAD⊥平面PAB,BP⊂平面PAB,∴BP⊥平面PAD,∵BC//平面PAD,∴点E到平面PAD的距离等于点B到平面PAD的距离,而,,∴三棱锥P−DEF的体积为1.12解析:本题主要考查了线面平行的判定,线面垂直的性质及判定的运用,三棱锥体积的求法,考查了空间想象能力,属于中档题.(1)取PD中点G,连接GF,GC,根据几何关系证明四边形GFEC是平行四边形,即得到GC//EF,再运用线面平行的判定定理进行判定即可得证;(2)先根据已知条件证明BP⊥平面PAD,再根据BC//平面PAD,得到点E到平面PAD的距离等于点B到平面PAD的距离,即,代入数据进行运算即可得解.19.答案:析:(Ⅰ)因为月工资收入在[45,50)(百元)内的人数为15人,所以月工资收入在[45,50)(百元)内的频率为0.15;由频率分布直方图得(0.02+2m+4n+0.01)×5+0.15=1,化简得m+2n=0.07;…①由中位数为39百元可得0.02×5+2m×5+2n×(39−35)=0.5,化简得5m+4n=0.2;…②由①②解得m=0.02,n=0.025;技术工非技术工总计月工资不高于平均数193150月工资高于平均数311950总计5050100由表中数据计算得K 2=100×(19×19−31×31)250×50×50×50=5.76<10.828,所以不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.解析:本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.(Ⅰ)根据频率分布直方图列方程组求得m 、n 的值;(Ⅱ)根据题意得到列联表,计算观测值,对照数表得出结论. 20.答案:(Ⅰ)解:依题意,得{2c =2√22a2+1b2=1a 2=b 2+c 2,解得: {a 2=4b 2=2, 故椭圆方程为:x 24+y 22=1;(Ⅱ)证明:由题意,A(−2,0),B(2,0), 设P(4,t),t ≠0,C(x 1,y 1),D(x 2,y 2), 则直线PA 的方程为:y =t6(x +2), 直线PB 的方程为:y =t 2(x −2), 联立{x 24+y 22=1y =t 6(x +2), 得(18+t 2)x 2+4t 2x +4t 2−72=0, 它的两个根分别为A,C 的横坐标, 由韦达定理:−2x 1=4t 2−7218+t 2,则x 1=36−2t 218+t 2,于是y 1=t6(x 1+2)=12t18+t 2 ,联立{x 24+y 22=1y =t2(x −2), 得(2+t 2)x 2−4t 2x +4t 2−8=0, 同理可得:2x 2=4t 2−82+t2,则x 2=2t 2−42+t 2,于是y 2=−4t2+t 2, 所以直线CD 的斜率为 k =y 1−y 2x1−x 2=12t 18+t 2+4t2+t236−2t 218+t 2−2t 2−42+t 2=4t6−t 2,所以直线CD :y +4t2+t 2=4t6−t 2(x −2t 2−42+t 2),化简可得:y =4t6−t 2(x −1),故直线CD 过定点(1,0).解析:本题考查直线与椭圆的位置关系,以及定点问题,属于中档题. (Ⅰ)由条件可得{2c =2√22a 2+1b2=1a 2=b 2+c 2,从而求出椭圆的方程;(Ⅱ)设P(4,t)t >0,由点斜式可得直线PA 、PB 的方程,分别联立直线和椭圆方程可以得到C 、D 两点的坐标,从而表示出直线CD 的方程,可以得到定点.21.答案:解:(Ⅰ)∵函数f(x)=ax 2−blnx ,∴x >0,f′(x)=2ax −bx ;又∵函数f(x)在点(1,f(1))处的切线方程为y =1, ∴{f′(1)=0f(1)=1,即{2a −b =0a =1, 解得{a =1b =2;(Ⅱ)由(Ⅰ)知,f(x)=x 2−2lnx , f′(x)=2x −2x ,由f′(x)=2x −2x =2⋅x 2−1x=0,解得x =±1(负值舍去),∴当x ∈(0,1)时,f′(x)<0,f(x)单调递减, 当x ∈(1,+∞)时,f′(x)>0,f(x)单调递增, ∴f(x)min =f(1)=1.解析:本题考查了利用导数研究函数的单调性以及求函数的最值问题,也考查了导数的几何意义,是基础题.(Ⅰ)求出函数f(x)的导数f′(x),根据题意列出方程组{f′(1)=0f(1)=1,解方程组求出a 、b 的值;(Ⅱ)利用导数判断函数f(x)的单调性,求出f(x)在定义域上的最小值f(x)min .22.答案:解:(1)∵曲线C 的参数方程为{x =2+2cosαy =2sinα(α为参数),∴曲线C 的一般方程为(x −2)2+y 2=4, 由{x =ρcosθ,y =ρsinθ,得(ρcosθ−2)2+ρ2sin 2θ=4,可得,C 的极坐标方程为ρ=4cosθ, ∵直线l 的参数方程为{x =3−ty =1+t(t 为参数),∴l 的普通方程为x +y −4=0,∴l 的极坐标方程为ρcosθ+ρsinθ−4=0, 即ρsin (θ+π4)=2√2; (2)设P(ρ1,β),Q(ρ2,β),则=sinβcosβ+cos 2β=12sin2β+12cos2β+12=√22sin(2β+ π 4)+12,由射线m 与C 相交且与直线l 相交, 则不妨设β∈(−π4,π2),则2β+π4∈(−π4,5π4),∴当2β+π4=π2,即β=π8时,|OP ||OQ |取得最大值,此时|OP ||OQ |=√2+12, 所以|OP ||OQ |的最大值为√2+12.解析:本题主要考查了参数方程、极坐标方程与直角坐标方程的互相转化,属于中档题. (1)由曲线C 的参数方程能求出曲线C 的一般方程,再由{x =ρcosθ,y =ρsinθ,能求出C 的极坐标方程;由直线l 的参数方程求出l 的普通方程,由此能求出l 的极坐标方程. (2)设P(ρ1,β),Q(ρ2,β),则,即可求出结果.23.答案:解:(1)x ≥0时,f(x)=x 2−x +1≥2x ,解得:0≤x ≤3−√52或x ≥3+√52,x <0时,f(x)=x 2+x +1≥2x ,解得:x <0, 综上,x ∈(−∞,3−√52]∪[3+√52,+∞);(2)f(x)≥|x2+a|,x ∈[0,+∞),故x 2−x +1≥|x 2+a|,故{a ≥−x 2+x2−1a ≤x 2−32x +1,解得:−1516≤a ≤716.解析:本题主要考查绝对值不等式的解法,考查恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.(1)分段讨论,去掉绝对值,即可求不等式 f(x)≥2x 的解集; (2)f(x)≥|x2+a|,x ∈[0,+∞),故x 2−x +1≥|x2+a|,故{a ≥−x 2+x2−1a ≤x 2−32x +1,可得结果.。
2020年暑假高二数学提分训练题 (50)-0712(解析版)

2020年暑假高二数学提分训练题 (50)一、选择题(本大题共12小题,共36.0分)1. 集合{x ∈Z||x −1| <2}的非空子集的个数是( )A. 4B. 6C. 7D. 8 2. 复数Z =3−4i ,则|Z|等于( )A. 3B. 4C. 5D. 63. 已知M(2,3),N(2013,1),则MN⃗⃗⃗⃗⃗⃗⃗ 的坐标是( ) A. (2011,−2) B. (−2,2011) C. (2011,2) D. (2013,−2) 4. 袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为( )A. 37B. 710C. 110D. 3105. 已知sin(π4−α)=1213,则cos(5π4+α)=( )A. −1213B. 1213C. 513D. −5136. 以双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 为圆心,12|OF |为半径的圆(O 为坐标原点)与C 的渐近线相切,则C 的渐近线方程为9( ).A. √3x ±y =0B. x ±√3y =0C. √5x ±y =0D. x ±√5y =0 7. 已知等差数列{a n }中,有a 4=18−a 5,则S 8=( )A. 18B. 36C. 54D. 72 8. 执行下面的程序框图,若输出的结果是2,则①处应填入的是( )A. x =2B. x =1C. b =2D. a =59. 函数f (x )=sin (ωx +π4)(ω>0)的图象在[0,π4]内有且仅有一条对称轴,则实数ω的取值范围是( )A. (1,5)B. (1,+∞)C. [1,5)D. [1,+∞)10. 函数f(x)={(3−a)x −1,x <2log a (x −1)+1,x ≥2,若f(x)是R 上的增函数,则a 的取值范围为( )A. a <3B. 1<a <3C. 2<a <3D. 2≤a <311. 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱12. 已知函数f(x)={3x ,x ≤0log 3x,x >0,则f[f(13)]等于( )A. −1B. log 2√3C. √3D. 13二、填空题(本大题共4小题,共12.0分)13. 已知函数y =x 2lnx 的图象在(1,0)处切线的方程是______________,该函数单调减区间为________.14. 已知实数x ,y 满足约束条件{x +y ≤4,5x +2y ≥11,y ≥12x +1,则z =2x −y 的最大值为________. 15. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,抛物线y 2=2px 的焦点与F 2重合,若点P 为椭圆和抛物线的一个公共点且cos∠PF 1F 2=79,则椭圆的离心率为______ . 16. 数列{a n }满足a n =n(n+1)2,则1a 1+1a 2+⋯+1a2018等于______.三、解答题(本大题共7小题,共84.0分)17. 在△ABC 中,√2csinAcosB =asinC .(Ⅰ)求角B 的大小;(Ⅱ)若△ABC 的面积为a 2,求cos A 的值.18. 如图,在四棱锥V −ABCD 中,底面ABCD 是直角梯形,AD//BC ,∠ABC =∠DAB =90°,BC =2AB =2AD =2,平面VCD ⊥平面ABCD .(Ⅰ)证明:BD ⊥平面VCD ;(Ⅱ)若VD =VC =√2,求三棱锥B −ACV 的体积.19.某售报亭每天以每份0.6元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.(1)若售报亭一天购进280份报纸,求当天的利润y(单位:元)关于当天需求量x的函数关系解析式;(2)售报亭记录了100天报纸的日需求量,整理得下表:②若售报亭一天购进280份报纸,以100天记录的各需求量的频率作为各销售发生的概率,求当天的利润不超过100元的概率.20.已知抛物线y2=2px(p>0)的顶点为O,准线方程为x=−12(1)求抛物线方程;(2)过点(1,0)且斜率为1的直线与抛物线交于P,Q两点,求ΔOPQ的面积。
2020年暑假高二数学提分训练题 (4)-0712(解析版)

2020年暑假高二数学提分训练题 (4)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2−2x≤0},B={x|x<m},若A⊆B,则实数m的取值范围是()A. [2,+∞)B. (2,+∞)C. (−∞,0)D. (−∞,0]2.若z=3+4i1−i+iz(i是虚数单位),则|z|=()A. 32B. 2 C. 52D. 33.设a=log2π,b=log12π,c=π−2则()A. a>b>cB. b>a>cC. a>c>bD. c>b>a4.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n行的所有数字之和为2n−1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…则此数列的前15项和为()A. 110B. 114C. 124D. 1255.函数f(x)=(21+e x−1)⋅sinx的图象大致为()A. B.C. D.6.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹.在古代是用算筹来进行计数的,表示数的算筹有纵、横两种形式,如图所示.表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位上的数用纵式表示,十位、千位、十万位上的数用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为()A. B. C.D.7. 如图所示的算法框图的输出结果为( )A. 2B. 4C. 6D. 88. 已知单位向量a ⃗ ,b ⃗ 的夹角为π3,则a ⃗ ⋅(a ⃗ +2b ⃗ )=( )A. 32B. 1+√32C. 2D. 1+√3 9. (1−x)5展开式x 3的系数是( )A. −10B. 10C. −5D. 510. 已知函数f (x )=sin(ωx +π6)(ω>0)在区间[−π4,2π3]上单调递增,则ω的取值范围为( )A. (0,83]B. (0,12]C. [12,83]D. [38,2]11. 已知点M 为双曲线C :x 2−y28=1的左支上一点,F 1,F 2分别为C 的左、右焦点,则|MF 1|+|F 1F 2|−|MF 2|=( ) A. 1 B. 4 C. 6 D. 8 12. 若函数f(2x +1)=3x −1,则函数f(−2x 2+1)的解析式为( )A. −3x 2−1B. 3x 2−1C. 3x 2+1D. −3x 2+1 二、填空题(本大题共4小题,共20.0分)13. 若等差数列{a n }前n 项之和是S n ,且a 2+a 10=4,则S 11= ______ .14. 已知函数f(x +1)为奇函数,函数f(x −1)为偶函数,且f(0)=2,则f(4)=__________. 15. 人们的出行方式越来越多,“共享单车”给人们带来了极大便利,2019年某公司推出“共享宝马汽车”,A ,B ,C ,D 四个家庭(每个家庭两个人)共8个人决定周末乘甲,乙两辆车出行,已知每车限坐4名(乘同一辆车的4人不考虑位置),则乘坐甲车的4人恰有2名来自于同一个家庭且A 户家庭两人需乘坐同一辆车的概率为_________.16. 如图所示的几何体是一个五面体,四边形ABCD 为矩形,AB =4,BC =2,且MN//AB ,MN =3,△ADM 与△BCN 都是正三角形,则此五面体的体积为______.三、解答题(本大题共7小题,共82.0分)17.已知在△ABC中,角A,B,C的对边分别为a,b,c,asinC−√3ccosA=0.(Ⅰ)求角A的大小;(Ⅱ)若a=2,△ABC的面积为√3,求b,c.18.如图,在直三棱柱ABC−A1B1C1中,AB=AC=1,且AB⊥AC,点M在棱CC1上,点N是BC的中点,且满足AM⊥B1N.(1)证明:AM⊥平面A1B1N;(2)若CM=C1M,求二面角A1−B1N−C1的正弦值.19.已知甲箱中装有3个红球、3个黑球,乙箱中装有2个红球、2个黑球,这些球除颜色外完全相同.某商场举行有奖促销活动,设奖规则如下:每次分别从以上两个箱中各随机摸出2个球,共4个球.若摸出4个球都是红球,则获得一等奖;摸出的球中有3个红球,则获得二等奖;摸出的球中有2个红球,则获得三等奖;其他情况不获奖.每次摸球结束后将球放回原箱中.(1)求在1次摸奖中,获得二等奖的概率;(2)若连续摸奖2次,求获奖次数X的分布列及数学期望E(X).20. 过双曲线x 24−y 25=1的右焦点做倾斜角为45°的弦AB.求:(1)求弦AB 的中点C 到右焦点F 2的距离; (2)求弦AB 的长.21. 已知函数f(x)=x(lnx −ax).(1)当a =1时,求函数f(x)的单调区间;(2)若f(x)有两个极值点x 1,x 2,其中x 1<x 2,求证:f(x 1)>−12.22. 已知曲线C 的参数方程为{x =√t −√ty =3(t +1t )+2(t 为参数,t >0).求曲线C 的普通方程.23. 已知函数f(x)=|x −2a|−|x −a|,a ∈R .(Ⅰ)若f(1)>1,求a 的取值范围;(Ⅱ)若a <0,对∀x,y ∈(−∞,a],都有不等式f(x)≤|y +2020|+|y −a|恒成立,求a 的取值范围.-------- 答案与解析 --------1.答案:B解析:解:集合A={x|x2−2x≤0}=[0,2]∵B={x|x<m},A⊆B,∴m>2.故选:B.由已知中,集合A={x|x2−2x≤0},解二次不等式求出集合A,再由A⊆B,即可得到实数m的取值范围.本题考查的知识点是集合关系中的参数取值问题,其中根据集合包含关系,构造出关于参数m的不等式组是解答本题的关键.2.答案:C解析:解:∵z=3+4i1−i +iz,∴z(1−i)=3+4i1−i,则z=3+4i(1−i)2=3+4i−2i,∴|z|=|3+4i−2i |=|3+4i||−2i|=52.故选:C.把已知等式变形,利用复数代数形式的乘除运算化简,再由商的模等于模的商求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础的计算题.3.答案:C解析:∵a=log2π>1,b=log12π<0,c=1π2<1,∴b<c<a.4.答案:B解析:解:数列的前15项为2,3,3,4,6,4,5,10,10,5,6,15,20,15,6,可得此数列的前15项和为2+3+3+4+6+4+5+10+10+5+6+15+20+15+6 =4−2+8−2+16−2+32−2+64−2=(4+8+16+32+64)−10=114.故选:B.由题意写出数列的前15项计算可得所求和.本题考查数列在实际问题中的运用,考查数列的求和,以及运算能力,属于基础题.5.答案:A解析:【分析】本题考查函数图象的本题考查函数图象的作法,属于较易题,根据函数的性质排除即可.【解答】解:因为,f(x)的定义域为R,所以f(x)为偶函数,其图象关于y轴对称,排除C,D,又因为,排除B,故选A.6.答案:A解析:【分析】本题考查归纳推理,根据算筹的摆放形式有纵横两种形式,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,可得结果.【解答】解:根据题意,9117按千位、百位、十位、个位排列,依次是横式9,纵式1,横式1,纵式7,故选A.7.答案:D解析:【分析】根据程序框图得出结果.【解答】解:由程序框图可得:先把2赋给a,再把4赋给a,所以最后a的值为4+4=8.故选D.8.答案:C解析:【分析】本题考查了向量的数量积公式,属于基础题.根据向量的数量积公式计算即可.【解答】解:单位向量a⃗,b⃗ 的夹角为,∴|a⃗|=|b⃗ |=1,a⃗⋅b⃗ =|a⃗|⋅|b⃗ |⋅cosπ3=12∴a⃗⋅(a⃗+2b⃗ )=a⃗2+2a⃗⋅b⃗ =1+2×12=2,故选:C9.答案:A解析:【分析】本题主要考查二项展开式的通项公式,项的系数的求解,属于基础题. 由题意利用二项展开式的通项公式,求出(1−x)5展开式x 3的系数. 【解答】解:根据(1−x)5展开式的通项公式为T r+1=C 5r ⋅(−x)r ,令r =3,可得x 3的系数是−C 53=−10,故选:A . 10.答案:B解析:【分析】本题考查了函数y =Asin(ωx +φ)的图象与性质,函数单调性的应用,属于基础题.根据正弦函数的单调性,结合在区间[−π4,2π3]上单调递增,建立不等式关系,即可求解.【解答】 解:当x ∈[−π4,2π3]时,ωx +π6∈[−π4ω+π6,2π3ω+π6],∴[−π4ω+π6,2π3ω+π6]⊆[2kπ−π2,2kπ+π2], k ∈Z ,∴{−π4ω+π6≥2kπ−π22π3ω+π6≤2kπ+π2,解得{ω≤−8k +83ω≤3k +12(k ∈Z),又∵ω>0,∴只能取k =0,此时ω∈(0,12]. 故选B . 11.答案:B解析:【分析】本题考查双曲线的几何性质,由条件求得a ,b ,c ,再结合双曲线的定义求得结果. 【解答】解:双曲线C :x 2−y 28=1,可得a =1,b =2√2,c =3,点M 为双曲线C :x 2−y 28=1的左支上一点,F 1,F 2分别为C 的左、右焦点,则|MF 1|+|F 1F 2|−|MF 2|=−2a +2c =4. 故选B . 12.答案:A解析:令2x +1=t ,则x =t−12,∴f(t)=32t −52,∴f(−2x 2+1)=32(−2x 2+1)−52=−3x 2−1.故选A .13.答案:22解析:解:∵S n 是等差数列{a n }的前n 项和,a 2+a 10=4, ∴S 11=112(a 1+a 11)=112(a 2+a 10)=22,故答案为:22.根据等差数列的定义和性质,等差数列的前n项和公式可得S11=112(a1+a11)=112(a2+a10),运算求得结果.本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.14.答案:−2解析:【分析】本题考查函数奇偶性,利用奇偶性求函数值,中等题;利用f(x+1)为奇函数,函数f(x−1)为偶函数,将f(4)转化即可【解答】解:由题意得f(x−1)=f(−x−1),令x=1∴f(0)=f(−2)=2,又∵f(x+1)=−f(−x+1),令x=3∴f(4)=−f(−2)=−2.故答案为−215.答案:1235解析:【分析】本题主要考查计数原理的运用以及古典概型的计算,属于中档题.【解答】解:由题意可将A户家庭在甲车上与A户家庭不在甲车上,进行分类讨论.(1)当A户家庭两人在甲车上时,则甲车上另外两位乘客来自剩下的三个家庭中,所以此时共有C32C21C21=12种;(2)当A户家庭两人不在甲车上时,则剩下的三个家庭必有一个家庭在甲车上,剩下的2个乘客来自于剩下的家庭,所以此时共有C31C21C21=12种;所以乘坐甲车的4人恰有2名来自于同一个家庭且A户家庭两人需乘坐同一辆车的概率为P=12+12 C84=2470=1235.故答案为1235.16.答案:11√116解析:解:采用分割的方法,分别过M,N作与平面ABCD垂直的平面,这两个平面把几何体分割成三部分,如图,包含一个三棱柱EFM−NGH,两个全等的四棱锥:M−AEFD,N−GBCH,∴这个几何体的体积:V=V EFM−NGH+2V N−GBCH=S△MEF×EG+2×13S矩形GBCH×NO=12×2×√112×3+2×13×12×2×√112=11√116.故答案为:11√116. 采用分割的方法,分别过M ,N 作与平面ABCD 垂直的平面,这两个平面把几何体分割成三部分,包括一个三棱柱和两个四棱锥,其中两个四棱锥的体积相等,三者相加得到几何体的体积.本题考查不规则几何体的体积求法,考查运算求解能力、空间想象能力,考查数形结合思想方法和数学转化思想方法,是中档题.17.答案:解:(Ⅰ)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c , asinC −√3ccosA =0,由正弦定理得sinAsinC −√3sinCcosA =0,∵sinC ≠0 ∴tanA =√3∴A =π3;(Ⅱ)a =2,△ABC 的面积为√3, ∴S =12bcsinA =√34bc =√3,可得bc =4.由a 2=b 2+c 2−2bccosA ,可得b 2+c 2−bc =4, 解得:b =c =2.解析:(Ⅰ)利用正弦定理以及同角三角函数的关系式,直接求角A 的大小; (Ⅱ)通过a =2,△ABC 的面积为√3,以及余弦定理,即可求b ,c .本题考查正弦定理以及余弦定理的应用,同角三角函数的关系式,考查计算能力.18.答案:解:(1)证明:∵直三棱柱ABC −A 1B 1C 1中,AA 1⊥AB ,AB ⊥AC ,AC ∩AA 1=A ,∴AB ⊥平面ACC 1A 1,∵AM ⊂平面ACC 1A 1,∴AB ⊥AM , ∵AB//A 1B 1,∴A 1B 1⊥AM , 又AM ⊥B 1N ,A 1B 1∩B 1N =B 1, ∴AM ⊥平面A 1B 1N.(2)解:以AB ,AC ,AA 1分别作为x ,y ,z 轴正方向建立空间直角坐标系, 设AA 1=a ,则A(0,0,0),B(1,0,0),C(0,1,0), B 1(1,0,a),M(0,1,a2),N(12,12,0),AM ⃗⃗⃗⃗⃗⃗ =(0,1,a 2),B 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(−12,12,−a),∵AM ⊥B 1N ,∴AM ⃗⃗⃗⃗⃗⃗ ⋅B 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =12−a 22=0,解得a =1,即AA 1=1, ∴B 1(1,0,1),M(0,1,12),C 1(0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(0,1,12), B 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(−12,12,−1),C 1N ⃗⃗⃗⃗⃗⃗⃗ =(12,−12,−1), 设平面B 1NC 1的法向量n⃗ =(x,y ,z), 则{n ⃗ ⋅B 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =−12x +12y −z =0n⃗ ⋅C 1N ⃗⃗⃗⃗⃗⃗⃗ =12x −12y −z =0,取x =1,得n ⃗ =(1,1,0), 由(1)由知AM ⃗⃗⃗⃗⃗⃗ =(0,1,12)是平面A 1B 1N 的一个法向量,∴cos <n ⃗ ,AM ⃗⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅AM ⃗⃗⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|AM ⃗⃗⃗⃗⃗⃗⃗ |=√2×√52=√105.∴二面角A 1−B 1N −C 1的正弦值为(√105)=√155.解析:(1)推导出AB ⊥平面ACC 1A 1,从而AB ⊥AM ,由AB//A 1B 1,得A 1B 1⊥AM ,再由AM ⊥B 1N ,能证明AM ⊥平面A 1B 1N.(2)以AB ,AC ,AA 1分别作为x ,y ,z 轴正方向建立空间直角坐标系,利用向量法能求出二面角A 1−B 1N −C 1的正弦值.本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.答案:解:(1)设“在1次摸奖中,获得二等奖”为事件A ,则P(A)=C 32C 21C 21+C 31C 31C 22C 62C 42=730.(2)设“在1次摸奖中,获奖”为事件B ,则获得一等奖的概率为P 1=C 32C 22C 62C 42=130, 获得三等奖的概率为P 3=2C 32C 22+C 31C 31C 21C 21C 62C 42=715, 所以P(B)=130+730+715=1115.由题意可知X 的所有可能取值为0,1,2.P(X =0)=(1−1115)2=16225,P(X =1)=C 21×1115×(1−1115)=88225, P(X =2)=(1115)2=121225. X所以E(X)=0×16225+1×88225+2×121225=2215.解析:(1)设“在1次摸奖中,获得二等奖”为事件A ,利用互斥事件概率计算公式能求出在1次摸奖中,获得二等奖的概率.(2)设“在1次摸奖中,获奖”为事件B ,先求出P(B),由题意可知X 的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X 的分布列和E(X).本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.20.答案:解:(1)双曲线x 24−y 25=1的右焦点(3,0),直线AB 的方程为y =x −3.代入双曲线的方程,可得x 2+24x −56=0,设A(x 1,y 1),B(x 2,y 2),∴x 1+x 2=−24,x 1x 2=−56,∴弦AB 的中点C(−12,−15),∴弦AB 的中点C 到右焦点F 2的距离√(3+12)2+(0+15)2=15√2;(2)弦AB 的长=√1+1⋅√(−24)2−4×(−56)=16√5.解析:(1)求出直线AB 的方程,代入双曲线方程,求出C 的坐标,即可求弦AB 的中点C 到右焦点F 2的距离;(2)利用弦长公式求弦AB 的长.本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题. 21.答案:解:(1)a =1时,f (x )=x (lnx −x ),定义域为(0,+∞),f′(x)=lnx +1−2x ,令g(x)=lnx −2x +1,则g′(x)=1x −2,当0<x <12时g′(x)>0,g(x)递增,当x >12时g′(x)<0,g(x)递减,g(x)最大值为g(12)=ln 12<0,故f′(x)<0,f(x)在(0,+∞)上单调递减;(2)证明:由已知条件可得f′(x)=lnx +1−2ax =0有两个相异实根x 1,x 2,令f′(x)=ℎ(x),则ℎ′(x )=1x −2a ,x >0,①若a ≤0,ℎ′(x)>0,ℎ(x)单调递增,f′(x)不可能有两根;②若a >0,令ℎ′(x)=0,得x =12a ,∴ℎ(x)在(0,12a )上单调递增,在(12a ,+∞)上单调递减,令f′(12a )>0,解得0<a <12,所以1e <12a ,f′(1e )=−2a e <0, 1a 2>12a ,f′(1a 2)=−2lna +1−2a <0,∴当0<a<1时,函数f(x)有两个极值点,2当x变化时,f′(x),f(x)的变化情况如下表:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)−0+0−f(x)↘极小值↗极大值↘1,.令,,F(x)在(0,1)单调递减,所以F(x)>F(1)=−1,,得证.即f(x1)>−12解析:本题考查了利用导数研究函数的单调性、单调区间,以及函数的极值.(1)由f(x)=x(lnx−x),得到f′(x)=lnx+1−2x,判断f′(x)<0,得到f(x)在(0,+∞)上单调递减;−2a,分类讨论a的情况,得到结果.(2)根据题意,构建f′(x)=ℎ(x),由ℎ′(x)=1x22.答案:解:∵x=√t−√t∴x2=t+1−2t=x2+2∴t+1t)+2=3(x2+2)+2∴y=3(t+1t∴y=3x2+8∴曲线C的普通方程为:x2=y−8.3解析:根据消元法把曲线C的参数方程化为普通方程即可.本题主要考查了参数方程及普通方程之间的相互转化,属于基础题,解答此题的关键是要熟练掌握转化的方法.23.答案:解:(Ⅰ)由题意知,f(1)=|1−2a|−|1−a|>1,,则不等式化为1−2a−1+a>1,解得a<−1;若a≤12<a<1,则不等式化为2a−1−(1−a)>1,解得a>1,即不等式无解;若12若a≥1,则不等式化为2a−1+1−a>1,解得a>1,综上所述,a的取值范围是(−∞,−1)∪(1,+∞).(Ⅱ)由题意知,要使得不等式f(x)≤|(y+2020|+|y−a|恒成立,只需[f(x)]max≤[|y+2020|+|y−a|]min,当x∈(−∞,a]时,|x−2a|−|x−a|≤−a,[f(x)]max=−a,因为|y+2020|+|y−a|≥|a+2020|,所以当(y+2020)(y−a)≤0时,[|y+2020|+|y−a|]min=|a+2020|,即−a≤|a+2020|,解得a≥−1010,结合a<0,所以a的取值范围是[−1010,0).解析:本题考查了含有绝对值的不等式恒成立应用问题,也考查了分类讨论思想和转化问题,是中档题.(Ⅰ)由题意不等式化为|1−2a|−|1−a|>1,利用分类讨论法去掉绝对值求出不等式的解集即可;(Ⅱ)由题意把问题转化为[f(x)]max≤[|y+2020|+|y−a|]min,分别求出[f(x)]max和[|y+2020|+ |y−a|]min,列出不等式求解集即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高二暑假数学练习题 (22)一、选择题(本大题共12小题,共60.0分)1. 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∩B)=( )A. {1,3,4}B. {3,4}C. {3}D. {4} 2. 设i 是虚数单位,则复数4−3i i=( )A. −3+4iB. 3−4iC. 3+4iD. −3−4i3. 已知函数f(x)是定义域为R 的奇函数,当x ≥0时,f(x)=x 2+2x −a ,则f(−1)=( ) A. 3 B. −3 C. −2 D. −14. 如图为一个四棱锥的三视图,其体积为( )A. 43 B. 83 C.4 D. 85. 将函数f(x)=cosx +sinx 的图象向右平移3π4个单位长度,得到函数g(x)的图象,则函数g(x)的解析式为( )A. g(x)=√2cosxB. g(x)=−√2cosxC. g(x)=√2sinxD. g(x)=−√2sinx6. 已知在△ABC 中,AB =4,BC =3,AC =5,AD ⃗⃗⃗⃗⃗⃗ =14DC ⃗⃗⃗⃗⃗ ,则BD ⋅⃗⃗⃗⃗⃗⃗⃗⃗ BC ⃗⃗⃗⃗⃗ =( ) A. 95B. 94C. 165D. 3657. 甲、乙、丙三位同学在一项集训中的40次测试分数都在[50,100]内,将他们的测试分数分别绘制成频率分布直方图,如图所示,记甲、乙、丙的分数标准差分别为s 1,s 2,s 3,则它们的大小关系为( )A. s1>s2>s3B. s1>s3>s2C. s3>s1>s2D. s3>s2>s18.已知两条不同直线l,m,两个不同平面α,β,则下列命题正确的是()A. 若α//β,l⊂α,m⊂β,则l//mB. 若α//β,m//α,l⊥β,则l⊥mC. 若α⊥β,l⊥α,m⊥β,则l//mD. 若α⊥β,l//α,m//β,则l⊥m9.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n行的所有数字之和为2n−1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5⋯,则此数列的前55项和为().A. 4072B. 2026C. 4096D.204810.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有()A. 210种B. 252种C. 343种D. 336种11.已知椭圆C:x216+3y216=1,M为椭圆C上的一个动点,以M为圆心,2为半径作圆M,OP,OQ为圆M的两条切线,P,Q为切点,则∠POQ的取值范围是()A. [π3 , π2] B. [π4 , π2] C. [π6 , π2] D. [π3 , 2π3]12.设函数f(x)=e xx +t(lnx−2x−1x)恰有两个极值点,则实数t的取值范围是()A. {√e2}∪(1,+∞) B. {e3}∪[1,+∞)C. {√e2,e3}∪[1,+∞) D. [1,+∞)二、填空题(本大题共4小题,共20.0分)13.已知等差数列{a n}的前n项的和为S n,且a1=2,S10=65,则a2020=______.14.现有三张卡片,每张卡片上分别写着广州、深圳、珠海三个城市中的两个,且卡片不重复,甲、乙、丙各选一张去对应的两个城市参观.甲看了乙的卡片后说:“我和乙都去珠海”.乙看了丙的卡片后说:“我和丙不都去深圳”,则甲、丙同去的城市为______.15.已知双曲线的顶点在坐标轴,中心在原点,渐近线经过点P(m,2m)(m≠0),则双曲线的离心率为______.16.在△ABC中,角A,B,C所对的边分别是a,b,c,若b+c=6,sinB+sinC=3sin B+C2cos B+C2,则△ABC面积的最大值为______.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项的和为S n,且满足S n=2a n−1(n∈N∗).(1)求数列{a n}的通项公式a n及S n;(2)若数列{b n}满足b n=|S n−15|,求数列{b n}的前n项的和T n.18.如图,四棱锥P−ABCD,四边形ABCD为平行四边形,AD⊥BD,AC∩BD=O,AD=BD=2,PB⊥PD,PB=PD,PA=PC,M为PD中点.(1)求证:OM//平面PBC;(2)求证:平面PAD⊥平面PBD;(3)求二面角A−PB−C的余弦值.19.已知曲线E上的点到F(1,0)的距离比它到直线l:x=−4的距离少3.(1)求曲线E的方程;(2)过点F且斜率为k的直线l0交曲线E于P,Q两点,交圆F:(x−1)2+y2=1于A,B两点,P,A在x轴上方,过点P,Q分别作曲线E的切线l1,l2,l1∩l2=M,求△PAM与△QBM的面积的积的取值范围.20.已知函数f(x)=k(x−1)e x−x2,其中k∈R.(1)当k≤2时,求函数f(x)的单调区间;(2)当k∈[1,2]时,求函数f(x)在[0,k]上的最大值g(k)的表达式,并求g(k)的最大值.21.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(n∈N∗)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(k∈N∗且k≥2)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(k∈N∗且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(i)试运用概率统计的知识,若Eξ1=Eξ2,试求p关于k的函数关系式p=f(k);(ii)若p=1−3,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总√e次数期望值更少,求k的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln4≈1.3863,ln5≈1.6094,ln6≈1.7918..以坐标原点O为极点,x轴的非22.在平面直角坐标系xOy中,直线l过点P(2,3),且倾斜角α=π6负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,求|PA|+|PB|的值.23.已知函数f(x)=|x−1|.(1)解不等式f(x)+f(x+1)≥4;)≥2.(2)当x≠0,x∈R时,证明:f(−x)+f(1x-------- 答案与解析 --------1.答案:A解析:解:∵U={1,2,3,4},A={1,2},B={2,3},∴A∩B={2},则∁U(A∩B)={1,3,4}.故选:A.根据集合的基本运算即可求A∩B,∁U A∩B,本题主要考查集合的基本运算,比较基础.2.答案:D解析:解:4−3ii =(4−3i)(−i)−i2=−3−4i.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础的计算题.3.答案:B解析:解:因为函数f(x)是定义域为R的奇函数,当x≥0时,f(x)=x2+2x−a,所以f(0)=−a=0,故a=0,则f(1)=1+2=3,所以f(−1)=−f(1)=−3故选:B.由已知结合奇函数的性质可求a,然后结合f(−1)=−f(1)即可求.本题主要考查了奇函数的性质在求解函数值中的应用,属于基础试题.4.答案:B解析:解:根据三视图转换为直观图:该几何体为四棱锥体.如图所示:所以:V=13×2×2×2=83.故选:B.首先把三视图转换为直观图,进一步求出几何体的体积.本题考查的知识要点:三视图和直观图形之间的转换,几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 5.答案:B解析:解:将函数f(x)=cosx +sinx =√2sin(x +π4)的图象向右平移3π4个单位长度, 得到函数g(x)=√2sin(x −3π4+π4)=−√2cosx 的图象,则函数g(x)的解析式为g(x)=−√2cosx , 故选:B .利用两角和的正弦公式、诱导公式化简函数的解析式,再利用函数y =Asin(ωx +φ)的图象变换规律,得出结论.本题主要考查两角和的正弦公式、诱导公式,函数y =Asin(ωx +φ)的图象变换规律,属于基础题. 6.答案:A解析:解:如图建立直角坐标系,因为在△ABC 中,AB =4,BC =3,AC =5,AD ⃗⃗⃗⃗⃗⃗ =14DC ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗⃗ =15AC ⃗⃗⃗⃗⃗ , 可得C(−3,0),A(0,4),则D(−35,165), 则BD ⋅⃗⃗⃗⃗⃗⃗⃗⃗BC ⃗⃗⃗⃗⃗ =(−35,165)⋅(−3,0)=95. 故选:A .利用已知条件,通过建立坐标系,转化求解即可.本题考查平面向量的数量积的运算,是基本知识的考查. 7.答案:B解析:解:根据三个频率分布直方图知,第一组数据的两端数字较多,绝大部分数字都处在两端数据偏离平均数远,最分散,其方差最大; 第二组数据绝大部分数字都在平均数左右,数据最集中,其方差最小; 第三组数据是单峰的每一个小长方形的差别比较小,数字分布均匀,数据不如第一组偏离平均数大,方差比第一组中数据中的方差小,比第二组数据方差大; 综上可知s 1>s 3>s 2. 故选:B .根据三个频率分布直方图,结合方差的定义,对三组数据的方差大小作出大小判断.本题利用频率分布直方图,考查了三组数据的方差与标准差的应用问题,也考查了读图能力,是基础题. 8.答案:B解析:解:对于A ,由α//β,l ⊂α,m ⊂β,得l//m 或l 与m 异面,故A 错误; 对于B ,若α//β,l ⊥β,则l ⊥α,又m//α,则l ⊥m ,故B 正确; 对于C ,若α⊥β,l ⊥α,m ⊥β,则l ⊥m ,故C 错误;对于D,若α⊥β,l//α,m//β,则l与m的位置关系是平行、相交或异面,相交与平行时,可能垂直,也可能不垂直,故D错误.故选:B.由空间中直线与直线、直线与平面、平面与平面位置关系的判定逐一核对四个选项得答案.本题考查空间中直线与直线、直线与平面、平面与平面位置关系的判定及其应用,考查空间想象能力与思维能力,是中档题.9.答案:A解析:【分析】本题主要考查数列的求和,结合杨辉三角形的系数公式以及等比数列、等差数列的求和公式是解决本题的关键,属于中档题.利用第n行的所有数字之和为2n−1,结合等比数列和等差数列的公式进行转化求解即可.【解答】解:第1行的和为20,第2行的和为21,第3行的和为22,以此类推,即每一行数字的和为首项为1,公比为2的等比数列,=2n−1,则杨辉三角形的前n项和为S n=1−2n1−2每一行的数字个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列,,则T n=n(n+1)2可得当n=12,去除所有的“1”的数字个数为78−23=55,则此数列前55项的和为S12−23=212−1−23=4072.故选:A.10.答案:D解析:解:根据题意,从3楼到9楼共有7层楼梯,分2种情况讨论:①、三人都不在同一层下电梯,在7层楼梯中任选3层,安排三人下电梯即可,有A73=210种下电梯的方法,②、三人中有2人在同一层下电梯,先在3人中任选2人,安排在某一层下电梯,有C32A71=21种情况,对于剩下的一人,在剩下的6层中任选一层,安排其下电梯,有C61=6种情况,此时有21×6=126种下电梯的方法,则下电梯的方法一共有210+126=336种;故选:D.根据题意,分2种情况讨论:①、三人都不在同一层下电梯,②、三人中有2人在同一层下电梯,此时需要分2步进行分析,分别求出每种情况下下电梯的情况数目,由加法原理计算可得答案.本题考查排列组合的应用,注意从3楼到9楼共有7层.11.答案:D解析:解:由椭圆方程可得a 2=16,b 2=163,则a =4,b =4√33,如图,设锐角∠POM =α,在Rt △POM 中,sinα=PM OM =2OM , 因为OM ∈[4√33,4],即sinα=2OM∈[12,√32], 故α∈[π6,π3], 所以∠POQ =2α∈[π3,2π3],故选:D .作出图象,得到sinα=2OM ,根据OM 的取值范围可得α取值范围,进而得到∠POQ 的取值范围 本题考查椭圆的相关性质,三角函数取值范围,数形结合思想,属于中档题. 12.答案:D解析:解:求导得f′(x)=x−1x 2[e x −(2x +1)t]有两个零点等价于函数φ(x)=e x −(2x +1)t 有一个不等于1的零点,分离参数得t =e x 2x+1=ℎ(x),令ℎ(x)=e x 2x+1(x >0),ℎ′(x)=2x−1(2x+1)2e x ,ℎ(x)在(0,12)递减,在(12,+∞)递增,显然在x =12取得最小值√e2,作ℎ(x)的图象,并作y =t 的图象,注意到ℎ(0)=1,ℎ(1)=e 3<1,(原定义域x >0,这里为方便讨论,考虑ℎ(0)), 当t ≥1时,直线y =t 与ℎ(x)=e x 2x+1只有一个交点即φ(x)只有一个零点(该零点值大于1);当t =√e2时f′(x)=x−1x 2[e x −(2x +1)t]在x =12两侧附近同号,x =12不是极值点;当t =e3时函数φ(x)=e x −(2x +1)t 有两个不同零点(其中一个零点等于1),但此时f′(x)=x−1x 2[e x −(2x +1)t]在x =1两侧附近同号,使得x =1不是极值点不合.故选:D . 求导得f′(x)=x−1x 2[e x −(2x +1)t]有两个零点等价于函数φ(x)=e x −(2x +1)t 有一个不等于1的零点,分离参数得t =e x 2x+1=ℎ(x),令ℎ(x)=e x 2x+1(x >0),ℎ′(x)=2x−1(2x+1)2e x ,利用ℎ(x)的单调性可得:在x =12取得最小值√e2,作ℎ(x)的图象,并作y =t 的图象,注意到ℎ(0)=1,ℎ(1)=e3<1,对t分类讨论即可得出.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于难题. 13.答案:2021解析:解:因为等差数列{a n }中,a 1=2,S 10=65, 所以10×2+45d =65, 解可得,d =1,则a 2020=2+2019×1=2021. 故答案为:2021.由已知结合等差数列通项公式及求和公式即可求解.本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题. 14.答案:深圳解析:解:由甲看了乙的卡片后说:“我和乙都去珠海”, 可知丙不去珠海,所以丙去广州、深圳,再由乙看了丙的卡片后说:“我和丙不都去深圳”, 可知乙不去深圳,所以乙去广州、珠海, 由此可知甲去深圳、珠海, 所以甲、丙同去的城市为深圳, 故答案为:深圳.由甲说的话可知丙去广州、深圳,再由乙说的话可知乙去广州、珠海,所以甲去深圳、珠海,从而得到结果.本题主要考查了简单的合情推理,是基础题.15.答案:√5或√52解析:解:当焦点在x 轴上时,设双曲线的方程x 2a2−y 2b 2=1,所以渐近线的方程为:y =±ba x ,由渐近线过P 点(m,2m)可得ba =2,这时双曲线的离心率e =c a =√1+b 2a =√1+4=√5,当焦点在y 轴时,设双曲线的方程为:y 2a 2−x 2b 2=1,所以渐近线的方程为:y =±ab x ,由渐近线过P 点(m,2m)可得ab =2,这时双曲线的离心率e =c a=√1+b 2a2=√1+14=√52, 故答案为:√5或√52.分双曲线的焦点在x ,y 轴上两种情况讨论,分别求得相应的渐近线的方程,将P 点的坐标代入求出a ,b 的关系,进而求出两种情况的离心率.本题考查双曲线的性质,注意讨论焦点所在的轴,属于基础题. 16.答案:2√5解析:解:∵sinB +sinC =3sinB+C 2cosB+C 2,∴sinB +sinC =32sin(B +C)=32sinA , ∴b +c =32a ,∵b +c =6, ∴a =4,由余弦定理可得,cosA =b 2+c 2−a 22bc=36−2bc−162bc=10−bc bc,所以bc =101+cosA , 由基本不等式可得bc ≤(b+c 2)2=9,当且仅当b =c 时取等号,此时cos A 取得最小值19,sin A 取得最大值4√59, 则ABC 面积最大值S =12bcsinA =12×9×4√59=2√5.故答案为:2√5.由已知结合二倍角公式及正弦定理可求a ,然后结合余弦定理及基本不等式可求bc 的范围,然后结合三角形的面积公式可求.本题主要考查了二倍角公式,正、余弦定理,基本不等式及三角形的面积公式在求解三角形中的应用,属于中档试题.17.答案:解:(1)由S n =2a n −1得:S 1=2a 1−1,即a 1=1,又由S n =2a n −1得:S n+1=2a n+1−1, 两式相减得:a n+1=2a n+1−2a n ,即a n+1=2a n , ∴数列{a n }是以1为首项,2为公比的等比数列, ∴a n =2n−1,S n =1−2n 1−2=2n −1;(2)由(1)知:b n =|2n−16|,则b n ={16−2n ,1≤n ≤42n −16,n >4,所以当1≤n ≤4时,T n =(16−21)+(16−22)+⋯+(16−2n ) =16n −(21+22+⋯+2n )=16n −2(1−2n )1−2=16n −2n+1+2;当n >4时,T n =(16−21)+(16−22)+⋯+(16−24)+(25−16)+(26−16)+(27−16)+⋯+(2n −16)=2T 4+(21+22+⋯+2n )−16n =2×34+2(1−2n )1−2−16n =2n+1−16n +66,所以T n ={16n −2n+1+2(1≤n ≤4)2n+1−16n +66(n >4).解析:(1)先由题设条件求得a 1,再由题设条件推出a n+1=2a n ,从而说明数列{a n }是以1为首项,2为公比的等比数列,求得其通项公式a n 及前n 项和S n ;(2)先由(1)求得b n ,再对n 分1≤n ≤4与n >4两种情况分别求数列{b n }的前n 项的和T n .本题主要考查等比数列的定义、通项公式、前n 项和公式及使用分类的办法求数列的前n 项和,属于中档题.18.答案:(1)证明:∵四边形ABCD 为平行四边形,AC ∩BD =O , ∴O 为BD 中点, ∵M 为PD 中点,∴OM//PB ,OM ⊄平面PBC ,PB ⊂平面PBC , ∴OM//平面PBC .(2)证明:∵四边形ABCD 为平行四边形,AC ∩BD =O , ∴O 为AC ,BD 中点, ∵PB =PD ,PA =PC ,∴PO ⊥AC ,PO ⊥BD ,AC ∩BD =O , ∴PO ⊥平面ABCD , ∴AD ⊥PO ,又AD ⊥BD ,BD ∩PO =O ,∴AD ⊥平面ABD ,AD ⊂平面PAD , ∴平面PAD ⊥平面PBD .(3)解:以DA ,DB 分别为x 轴,y 轴,过D 且与平面ABCD 垂直的直线为z 轴, 建立如图所示空间直角坐标系,∵AD =BD =2,AD ⊥BD ,∴BC ⊥BD ,BC =2,AB =CD =2√2, ∵PB ⊥PD ,PB =PD , ∴PB =PD =√2,PO =1, ∵AD =2,AD ⊥BD ,DO =1, ∴AO =√5=OC ,∴A(2,0,0),P(0,1,1),B(0,2,0),C(−2,2,0), PA ⃗⃗⃗⃗⃗ =(2,−1,−1),PB ⃗⃗⃗⃗⃗ =(0,1,−1),PC⃗⃗⃗⃗⃗ =(−2,1,−1), 设平面PAB 和平面PBC 的法向量分别为n⃗ 1=(x 1,y 1,−1),n ⃗ 2=(x 2,y 2,−1), 则n⃗ 1,n ⃗ 2夹角的补角θ就是二面角A −PB −C 的平面角,由{n ⃗ 1⋅PA⃗⃗⃗⃗⃗ =2x 1−y 1+1=0n ⃗ 1⋅PB ⃗⃗⃗⃗⃗ =y 1+1=0和{n ⃗ 2⋅PB ⃗⃗⃗⃗⃗ =y 2+1=0 n⃗ 2⋅PC ⃗⃗⃗⃗⃗ =−2x 2+y 2+1=0,解得:{x 1=−1y 1=−1和{x 2=0 y 2=−1,∴n ⃗ 1=(−1,−1,−1),n ⃗ 2=(0,−1,−1), ∴cosθ=−|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ ||n 2⃗⃗⃗⃗⃗ ||=√6=−√63, ∴二面角A −PB −C 的余弦值为−√63.解析:(1)证明OM//PB ,然后利用直线与平面平行的判断定理证明OM//平面PBC .(2)证明PO ⊥AC ,PO ⊥BD ,推出PO ⊥平面ABCD ,得到AD ⊥PO ,结合AD ⊥BD ,说明AD ⊥平面ABD ,然后证明平面PAD ⊥平面PBD .(3)以DA ,DB 分别为x 轴,y 轴,过D 且与平面ABCD 垂直的直线为z 轴,建立如图所示空间直角坐标系,求出平面PAB 和平面PBC 的法向量,利用空间向量的数量积求解二面角A −PB −C 的余弦值即可.本题考查直线与平面平行的判断定理的应用,直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力,逻辑推理能力以及计算能力. 19.答案:解:(1)因为曲线E 上的点到F(1,0)的距离比它到直线l :x =−4的距离少3, 所以曲线E 上的点到F(1,0)的距离和它到直线l :x =−1的距离相等, 故曲线E 是F(1,0)为焦点,l :x =−1为准线的抛物线 故E :y 2=4x .(2)由题设知:k ≠0, 则l 0:y =k(x −1), 设P(x 1,y 1),Q(x 2,y 2), ∵P ,A 在x 轴上方,∴x 1>0,x 2>0,y 1>0,y 2<0l 0与E 方程联立消得y 2−4k y −4=0,…∗ 则y 1,y 2是“∗”的二根,则{y 1+y 2=4k y 1y 2=−4且“∗”的△=16k +16>0, 由 E :y 2=4x 得y >0时y =2√x ,则y′=√x ;y <0时y =−2√x ,则y′=√x x=x 1=√x =2y 1,y′x=x 2=√x =2y 2,故l 1:y −y 1=2y 1(x −y 124),l 2:y −y 2=2y 2(x −y 224),l 1,l 2联立消y 得x =−1,同时带入l 1,l 2方程相加得y =2k , ∴M(−1,2k ),M(−1,2k )到l 0:kx −y −k =0的距离d =2√k 2+1|k|,|PA|=|PF|−1=x 1=y 124,|QB|=|QF|−1=x 2=y 224,S △PAM ⋅S △QBM =12|PA|d ⋅12|QB|d =14|PA|⋅|QB|⋅d 2=164(y 1y 2)2d 2=k 2+1k 2=1+1k 2>1,∴△PAM与△QBM的面积的积的取值范围是(1,+∞).解析:(1)条件转化为曲线E上的点到F(1,0)的距离和它到直线l:x=−1的距离相等,说明曲线E 是F(1,0)为焦点,l:x=−1为准线的抛物线,求解即可.(2)设l0:y=k(x−1),设P(x1,y1),Q(x2,y2),l0与E方程联立消得y2−4ky−4=0,结合P,A在x轴上方,利用韦达定理判别式△>0,利用抛物线转化为函数的导数,求解切线方程,求出M坐标,利用距离公式,转化求解三角形的面积.本题考查抛物线的简单性质,直线与抛物线的位置关系的应用,函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是难题.20.答案:解:(1)f′(x)=kxe x−2x=x(ke x−2),………………………………………………(1分)当k≤0时,ke x−2<0,令f′(x)>0,得x>0;令f′(x)<0,得x<0;故f(x)的单调递增区间为(−∞,0),f(x)的单调递减区间为(0,+∞).……………………………………………(3分)当0<k≤2时,令f′(x)=0,得x=0,或x=ln2k≥0,当0<k<2时ln2k >0,当f′(x)>0时x>ln2k或x<0;当f′(x)>0时0<x<ln2k;f(x)的单调递增区间为(−∞,0),(ln2k ,+∞);减区间为(0,ln2k).………………………(5分)当k=2时ln2k=0,当x>0时,f′(x)>0;当x<0时,f′(x)>0;f(x)的单调递增区间为(−∞,+∞);…………………………………………………………………………………(6分)(2)当1≤k<2时由(1)知,f(x)的单调递增区间为为(−∞,0),(ln2k ,+∞);减区间为(0,ln2k).令g(k)=ln2k −k, k∈[1, 2],g′(k)=k2 × 2(−1k)−1=−1k−1<0,故g(k)在[1,2]上单调递减,故g(k)≤g(1)=ln2−1<0⇒ln2k<k,…………………………(7分)所以当x∈[0,k]时函数f(x)单调减区间为(0,ln2k ),单调增区间为(ln2k,k);故函数f(x)max=max{f(0), f(k)}=max{−k, k(k−1)e k−k2}, k∈[1, 2].由于f(k)−f(0)=k(k−1)e k−k2+k=k[(k−1)e k−k+1]=k(k−1)(e k−1)对于∀k∈[1,2],k(k−1)≥0,e k−1≥e−1>0,即f(k)≥f(0),当k=1时等号成立,故f(x)max=f(k)=k(k−1)e k−k2.……………………………………………………………(9分)当k=2时由(1)知;f(x)的单调递增区间为(−∞,+∞);所以当x∈[0,k]时函数f(x)单调递增,故f(x)max=f(k)=k(k−1)e k−k2.综上所述:函数f(x)在[0,k]上的最大值为g(k)=k(k−1)e k−k2,k∈[1,2]…(10分)g′(k)=(k2+k−1)e k−2k,由于k2+k−1>0,e k≥e>2,∴g′(x)=(k2+k−1)e k−2k>2k2+2k−2−2k=2(k+1)(k−1)≥0对∀k∈[1,2]恒成立.∴g(k)在[1,2]上为增函数.∴g(k)max=g(2)=2e2−4……………………(12分)解析:(1)求出函数的导数,通过讨论k 的范围,求出函数的单调区间即可;(2)根据函数的单调性求出f(x)的最大值g(k),求出g(k)的导数,求出g(k)的最大值即可.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.答案:解:(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A , 则P(A)=A 22A 33A 55=110,∴恰好经过两次检验就能把阳性样本全部检验出来的概率为110. (2)(i)由已知得Eξ1=k ,ξ2的所有可能取值为1,k +1,∴P(ξ2=1)=(1−p)k ,P(ξ2=k +1)=1−(1−p)k ,∴E(ξ2)=(1−p)k +(k +1)[1−(1−p)k ]=k +1−k(1−p)k , 若E(ξ1)=E(ξ2),则k =k +1−k(1−p)k ,则(1−p)k =1k , ∴1−p =(1k )1k,∴p =1−(1k )1k ,∴p 关于k 的函数关系式为p =f(k)=1−(1k )1k (k ∈N ∗,且k ≥2),(ii)由题意知E(ξ1)>E(ξ2),得1k <(1−p)k ,∵p =1√e 3,∴1k <(√e 3)k ,∴lnk >13k ,设f(x)=lnx −13x(x >0),则f′(x)=1x −13,令f′(x)=0,则x =3,∴当x >3时,f′(x)<0,即f(x)在(3,+∞)上单调增减, 又ln4≈1.3863,43≈1.3333,∴ln4>43, 又ln5≈1.6094,53≈1.6667,∴ln5<53,∴k 的最大值为4.解析:(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A ,利用古典概型概率公式求解即可.(2)(i)由已知得Eξ1=k ,ξ2的所有可能取值为1,k +1,求解概率,然后求解期望,推出p 关于k 的函数关系式.(ii)由题意知E(ξ1)>E(ξ2),推出lnk >13k ,设f(x)=lnx −13x(x >0),通过函数的导数,求解函数的单调性,得到结果.本题考查古典概型的概率的求法、离散型随机变量的期望的求法、函数的导数的应用,考查转化思想以及计算能力,是难题.22.答案:解:(1)由ρ=4sinθ得ρ2=4ρsinθ,圆C 的极坐标方程为ρ=4sinθ.转换为直角坐标方程为:从而有x 2+y 2=4y 即:x 2+(y −2)2=4.(2)由题意设直线l 过点P(2,3),且倾斜角α=π6.所以直线l 的参数方程为{x =3+tcos π6y =2+tsin π6,即:{x =2+√32ty =2+12t. 代入圆的方程得(3+√32t)2+(12t)2=4,整理得:t 2+3√3t +5=0, 所以t 1+t 2=−3√3,t 1t 2=5 由t 1+t 2<0且t 1t 2>0,可知|PA|+|PB|=|t 1|+|t 2|=−(t 1+t 2)=3√3.解析:(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用一元二次次方程根和系数的关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 23.答案:解:(1)由f(x)+f(x +1)≥4,得|x −1|+|x|≥4, 当x >1时,得2x −1≥4,此时x ≥52; 当0≤x ≤1时,得1≥4,此时x ∈⌀; 当x <0时,得−2x +1≥4,此时x ≤−32; ∴不等式的解集为{x|x ≥52或x ≤−32}. (2)f(−x)+f(1x )=|x +1|+|1x −1|,由绝对值三角不等式,得|x +1|+|1x −1|≥|x +1x |, 又∵x,1x 同号,∴|x +1x |=|x|+|1x |,由基本不等式,得|x|+|1x |≥2,当且仅当|x|=1时等号成立, ∴f(−x)+f(1x )≥2.解析:(1)由f(x)+f(x +1)≥4,得|x −1|+|x|≥4,然后利用零点分段法解不等式即可; (2)f(−x)+f(1x)=|x +1|+|1x−1|,利用绝对值三角不等式和基本不等式,可知f(−x)+f(1x)≥2.本题考查了绝对值不等式的解法,绝对值三角不等式,基本不等式和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.。