第09章代谢调节

合集下载

09- 脂类代谢(答案)

09- 脂类代谢(答案)
第9章脂类代谢——参考答案
一、单项选择题
1.A2.B3.C4.D5.D6.D7.B8.A9.E10.D
11.C12.D13.D14.B15.B16.B17.E18.E19.A20.E
21.B22.E23.E24.D25.C26.D27.E28.D29.E30.A
31.C32.D33.B34.C
二、多项选择题
16.存在于毛细血管内皮细胞表面,主要水解脂蛋白(CM和VLDL)颗粒中甘油三酯的酶。
17.由肝脏合成后分泌入血,在血浆中催化磷脂酰胆碱和胆固醇反应,使胆固醇酯化的酶。
18.空腹血脂浓度持续高于正常称为高脂血症。临床上的高脂血症主要是指血浆胆固醇或三酰甘油的含量单独超过正常上限,或者二者同时超过正常上限的异常状态。
9.在脂肪动员中,脂库中三酰甘油脂肪酶起决定性作用,是脂肪分解的限速酶。由于三酰甘油脂肪酶的活性受多种激素的调控,故又称为激素敏感性三酰甘油脂肪酶
10.能增加三酰甘油脂肪酶的活性,促进脂肪动员的激素称为脂解激素
11.此类激素能抑制三酰甘油脂肪酶的活性,对抗脂解激素的作用,称为抗脂解激素。
12.脂肪酸的氧化主要发生在β-碳原子上,故称为β-氧化,包括脱氢、加水、再脱氢、硫解四步连续反应。
1.A、C2.C、D3.B、C4.A、B、C
5.B、D6.A、C7.A、D8.A、C
9.A、C10.C、E11.C、E12.A、C、D
13.A、B、C、D、E14.A、B、C15.A、B、C、E16.A、B、D、E
17.A、B、D、E18.A、B、C、E19.A、B、C20.A、B、C、D、E
21.A、B、D、E22. B、C 23. C、D
CM:从小肠转运外源性三酰甘油至体内各组织;VLDL:从肝转运内源性三酰甘油至肝外组织;LDL:从肝转运胆固醇至体内各组织;HDL:将胆固醇从肝外逆向转运至肝内。

第09章糖代谢练习题

第09章糖代谢练习题

第九章糖代谢一、选择题(一)A型题1. 3-磷酸甘油醛脱氢酶的辅酶是()A. TPPB. CoASHC. NAD+D. FMNE. NADP+2. 能提供高能磷酸键使ADP生成ATP 的是()A. 1,6-二磷酸果糖B. 磷酸二羟丙酮C. 3-磷酸甘油醛D. 磷酸烯醇式丙酮酸E. 3-磷酸甘油酸3. 不参与糖酵解作用的酶是()A. 己糖激酶B. 6-磷酸果糖激酶1C. 丙酮酸激酶D. 磷酸烯醇式丙酮酸羧激酶E. 醛缩酶4. 关于糖酵解的正确描述是()A. 全过程是可逆的B. 在细胞浆中进行C. 生成38分子ATPD. 不消耗ATPE. 终产物是CO2和水5. 成熟红细胞的能源主要来自()A. 糖的有氧氧化途径B. 磷酸戊糖途径C. 糖原合成途径D. 糖异生途径E. 糖酵解途径6. 缺氧时为机体提供能量的是()A. 糖酵解途径B. 糖的有氧氧化途径C. 磷酸戊糖途径D. 糖异生途径E. 糖原合成途径7. 催化丙酮酸生成乙酰CoA的是()A. 丙酮酸激酶B. 丙酮酸羧化酶C. 丙酮酸脱氢酶系D. 磷酸烯醇式丙酮酸羧激酶E. 乳酸脱氢酶8. 下列催化氧化脱羧反应的酶是()A. 葡萄糖-6-磷酸酶B. 丙酮酸激酶C. α-酮戊二酸脱氢酶系D. ATP合成酶系E. 丙酮酸羧化酶9. 琥珀酰CoA生成琥珀酸的同时直接生成()A. ATPB. CTPC. GTPD. TTPE. UTP10. 在三羧酸循环中,催化GTP生成反应的酶是()A. 异柠檬酸脱氢酶B. α-酮戊二酸脱氢酶系C. 琥珀酸硫激酶D. 琥珀酸脱氢酶E. 苹果酸脱氢酶11. 三羧酸循环的关键酶是()A. 丙酮酸激酶B. 异柠檬酸脱氢酶C. 丙酮酸脱氢酶系D. 琥珀酸脱氢酶E. 苹果酸脱氢酶12. 三羧酸循环一周,有几次底物水平磷酸化()A. 1B. 2C. 3D. 4E. 513. 可直接转化为延胡索酸的是()A. 丙酮酸B. 6-磷酸葡萄糖C. 1,6-二磷酸果糖D. 琥珀酸E. 草酰乙酸14. 葡萄糖的有氧氧化过程共有()A. 4次脱氢和2次脱羧B. 6次脱氢和2次脱羧C. 4次脱氢和3次脱羧D. 6次脱氢和3次脱羧E. 5次脱氢和3次脱羧15. 葡萄糖的有氧氧化过程有几个耗能反应()A. 1B. 2C. 3D. 4E. 516. 1分子丙酮酸在线粒体内氧化生成CO2和H2O,可产生ATP的分子数是()A. 4B. 8C. 12D. 14E. 1517. 1分子3-磷酸甘油醛经过糖的有氧氧化途径彻底氧化,经底物水平磷酸化生成的ATP分子数是()A. 2B. 3C. 4D. 5E. 618. 下列物质彻底氧化生成ATP最多的是()A. 6-磷酸葡萄糖B. 1,6-二磷酸果糖C. 3-磷酸甘油醛D. 磷酸烯醇式丙酮酸E. 草酰乙酸19. 一分子乙酰CoA彻底氧化可生成的ATP数是()A. 36B. 24C. 12D. 2E. 320. 关于三羧酸循环的错误叙述是()A. 在线粒体内进行B. 反应是可逆的C. 是糖、脂肪、蛋白质的共同氧化途径D. 产生NADH和FADH2E. 有GTP生成21. 蚕豆病与缺乏下列哪种酶有关()A. 葡萄糖激酶B. 丙酮酸激酶C. 6-磷酸葡萄糖脱氢酶D. 内酯酶E. 转酮基酶22. 谷胱甘肽还原酶的辅酶是()A. NADPHB. NADHC. FMNH2D. FADH2E. CoASH23. 糖原合成的引物是()A. 原有的糖原分子B. UDP-GlcC. 葡萄糖D. UTPE. 6-磷酸葡萄糖24. 糖原合成所需的“活性葡萄糖”存在于下列哪种物质()A. UDP-GlcB. ADP-GlcC. CDP-GlcD. TDP-GlcE. 6-磷酸葡萄糖25. 需要UTP参与的是()A. 糖异生途径B. 糖的有氧氧化途径C. 糖原分解途径D. 糖原合成途径E. 磷酸戊糖途径26. 糖原分子中每增加1个葡萄糖单位消耗的高能化合物数是()A. 1B. 2C. 3D. 4E. 527. 糖原合成过程的关键酶是()A. UDP-Glc焦磷酸化酶B. 糖原合成酶C. 分支酶D. 己糖激酶E. 葡萄糖激酶28. 糖原分解第一步反应的产物是()A. 6-磷酸葡萄糖B. 1-磷酸葡萄糖C. 葡萄糖D. UDP-GlcE. 1,6-二磷酸果糖29. 糖原分解的关键酶是()A. 磷酸化酶B. 脱支酶C. 寡葡聚糖转移酶D. 分支酶E. 葡萄糖-6-磷酸酶30. 肝细胞中催化6-磷酸葡萄糖生成葡萄糖的酶是()A. 葡萄糖激酶B. 己糖激酶C. 磷酸化酶D. 葡萄糖-6-磷酸酶E. 6-磷酸葡萄糖脱氢酶31. 糖原合成与分解发生于糖原分子的()A. 还原末端B. 非还原末端C. N-末端D. C-末端E. 3'-末端32. 糖酵解、糖原合成、糖原分解等途径的共同中间产物是()A. 乳酸B. 丙酮酸C. 6-磷酸葡萄糖D. 6-磷酸果糖E. 1,6-二磷酸果糖33. 生理条件下发生糖异生的主要器官是()A. 肝B. 肺C. 肌肉D. 肾E. 脑34. 饥饿时,肝脏内下列哪条途径的酶活性最强()A. 磷酸戊糖途径B. 糖异生途径C. 脂肪合成途径D. 糖酵解途径E. 糖原合成途径35. 不属于糖异生作用的酶是()A. 葡萄糖-6-磷酸酶B. 果糖-1,6-二磷酸酶C. 丙酮酸羧化酶D. 磷酸烯醇式丙酮酸羧激酶E. 丙酮酸激酶36. 使血糖降低的激素是()A. 胰岛素B. 胰高血糖素C. 肾上腺素D. 糖皮质激素E. 生长素37. 能同时促进糖原、脂肪合成的激素是()A. 肾上腺素B. 胰岛素C. 糖皮质激素D. 胰高血糖素E. 生长素(二)B型题A. 葡萄糖激酶B. 丙酮酸激酶C. 6-磷酸果糖激酶1D. 3-磷酸甘油酸激酶E. 磷酸烯醇式丙酮酸羧激酶38. 由葡萄糖进行酵解,催化其第二步不可逆反应的酶是()39. 葡萄糖在肝脏进行糖酵解,催化其第一步反应的酶是()40. 底物是磷酸烯醇式丙酮酸的酶是()A. 36分子ATPB. 24分子ATPC. 4分子ATPD. 2分子ATPE. 3分子ATP41. 由1分子葡萄糖生成1分子1,6-二磷酸果糖消耗()42. 1分子1,6-二磷酸果糖经糖酵解生成乳酸同时生成()43. 1分子丙酮酸转化为1分子乙酰CoA 可生成()A. 糖酵解途径B. 糖的有氧氧化途径C. 磷酸戊糖途径D. 糖异生途径E. 糖原合成途径44. 体内能量的主要来源是()45. 需分支酶参与的是()46. 只在肝、肾进行的糖代谢途径是()A. α-酮戊二酸脱氢酶系B. 丙酮酸羧化酶C. 丙酮酸激酶D. 丙酮酸脱氢酶系E. 磷酸烯醇式丙酮酸羧激酶47. 生物素是其辅基的是()48. 催化反应需GTP供能的是()A. 甘油B. 1,6-二磷酸果糖C. 3-磷酸甘油醛D. 1,3-二磷酸甘油酸E. 乳酸49. 不存在于糖酵解途径的化合物是()50. 糖酵解途径中发生裂解反应的是()51. 含有高能磷酸键的是()A. 丙酮酸B. 6-磷酸葡萄糖C. 磷酸二羟丙酮D. 琥珀酸E. 草酰乙酸52. 可直接生成6-磷酸葡萄糖酸的是()53. 可直接转化为3-磷酸甘油醛的是()54. 可直接生成延胡索酸的是()A. 琥珀酰CoAB. 3-磷酸甘油C. 3-磷酸甘油醛D. 1,3-二磷酸甘油酸E. 2,3-二磷酸甘油酸55. 可直接脱氢磷酸化生成高能化合物的是()56. 将细胞浆NADH传递的电子对送入呼吸链的是()57. 属于三羧酸循环中间产物的是()A. NAD+B. NADP+C. FMND. FADE. NADPH58. 琥珀酸脱氢酶的辅基是()59. 与3-磷酸甘油醛转化为1,3-二磷酸甘油酸有关的辅酶是()60. 与6-磷酸葡萄糖转化为6-磷酸葡萄糖酸有关的辅酶是()(三)D型题61. 下列酶中,催化底物水平磷酸化反应的两个酶是()A. 己糖激酶B. 葡萄糖激酶C. 6-磷酸果糖激酶1D. 3-磷酸甘油酸激酶E. 丙酮酸激酶62. 三羧酸循环中琥珀酸转化为草酰乙酸时生成的两种还原型辅酶(基)是()A. FADH2B. FMNH2C. CoASHD. NADH + H+E. NADPH + H+63. 同是糖、脂肪、蛋白质分解最后通路的两条代谢途径是()A. 三羧酸循环B. 氧化磷酸化C. 糖酵解D. 糖原分解E. 磷酸戊糖途径64. 同是磷酸戊糖途径生成的用于体内生物合成的两种物质是()A. NADH + H+B. NADPH + H+C. 5-磷酸核糖D. 磷酸二羟丙酮E. 丙酮酸65. 由葡萄糖合成糖原要消耗()A. ATPB. CTPC. GTPD. TTPE. UTP66. 共同参与催化糖原分解的两个酶是()A. 葡萄糖激酶B. 葡萄糖-6-磷酸酶C. 己糖激酶D. 磷酸化酶E. 6-磷酸果糖激酶167. 同属于丙酮酸羧化支路并与CO2相关的两种酶是()A. 丙酮酸激酶B. 丙酮酸羧化酶C. 丙酮酸脱氢酶系D. 烯醇化酶E. 磷酸烯醇式丙酮酸羧激酶68. 丙酮酸羧化支路消耗的两种高能化合物是()A. ATPB. CTPC. GTPD. TTPE. UTP69. 催化同一化学键的改变但反应方向相反的两种酶是()A. 磷酸化酶B. 葡萄糖-6-磷酸酶C. 焦磷酸化酶D. 6-磷酸葡萄糖脱氢酶E. 糖原合成酶70. 属于糖酵解同一种酶的底物的是()A. 磷酸二羟丙酮B. 磷酸烯醇式丙酮酸C. 乳酸D. 3-磷酸甘油E. 3-磷酸甘油醛71. 丙酮酸脱氢酶系的底物和产物是()A. 丙酮酸B. 乙酰CoAC. 乳酸D. 磷酸烯醇式丙酮酸E. 磷酸二羟丙酮72. 含有硫酯键、都参与三羧酸循环的化合物是()A. 乙酰CoAB. 乙酰乙酸C. 琥珀酰CoAD. 丙二酸E. 3-磷酸甘油醛73. 下列化合物中,有2个必须在3种酶5种辅助因子作用下才能生成含高能键的产物,它们是()A. 3-磷酸甘油醛B. 2-磷酸甘油酸C. 丙酮酸D. α-酮戊二酸E. 肌酸74. 催化葡萄糖磷酸化生成6-磷酸葡萄糖的两种同工酶是()A. 醛缩酶B. 己糖激酶C. 异构酶D. 葡萄糖激酶E. 磷酸化酶75. 同属于三羧酸循环的中间产物,又能直接脱氢氧化的羧酸是()A. 丙酮酸B. β-羟丁酸C. 琥珀酸D. α-酮戊二酸E. 柠檬酸76. 可催化底物循环的两种酶是()A. 己糖激酶B. 磷酸化酶C. 醛缩酶D. 葡萄糖-6-磷酸酶E. 6-磷酸葡萄糖脱氢酶77. 在维持血糖浓度恒定时起主要作用的代谢途径是()A. 糖原合成与分解途径B. 糖有氧氧化途径C. 糖酵解途径D. 糖异生途径E. 磷酸戊糖途径78. 糖酵解中可在同一酶催化下相互转化的两种化合物是()A. 葡萄糖B. 6-磷酸葡萄糖C. 乳酸D. 丙酮酸E. 3-磷酸甘油醛79. 同作用于α-1,6-糖苷键,但作用相反的两个酶是()A. 分支酶B. 脱支酶C. 糖原合成酶D. 磷酸化酶E. 淀粉酶80. 所催化的反应有巯基参与并有高能键形成的是()A. 丙酮酸脱氢酶系B. 丙酮酸激酶C. 6-磷酸果糖激酶1D. 己糖激酶E. α-酮戊二酸脱氢酶系81. 既是糖酵解产物,又是糖异生原料的是()A. 甘油B. 乳酸C. 乙酰CoAD. 丙酮E. 丙酮酸(四)X型题82. 关于丙酮酸激酶催化的反应,正确的是()A. 底物是磷酸烯醇式丙酮酸B. 底物是2-磷酸甘油酸C. 产物有ATPD. 产物有丙酮酸E. 是不可逆反应83. 下列酶中,催化不可逆的耗能反应的是()A. 己糖激酶B. 异构酶C. 6-磷酸果糖激酶1D. 3-磷酸甘油酸激酶E. 丙酮酸激酶84. 有氧时仍靠糖酵解供能的组织是()A. 肌肉B. 成熟红细胞C. 睾丸D. 视网膜E. 皮肤85. 丙酮酸脱氢酶系的产物是()A. 乙酰CoAB. CO2C. NADH + H+D. NADPH + H+E. FADH286. 以辅酶或辅基形式参与糖代谢的Vit有()A. Vit CB. Vit B1C. Vit B2D. Vit PPE. 泛酸87. α-酮戊二酸氧化脱羧的产物是()A. 琥珀酸B. 琥珀酰CoAC. NADH + H+D. NADPH + H+E. CO288. 三羧酸循环中琥珀酸转化为草酰乙酸的中间产物是()A. 延胡索酸B. 苹果酸C. α-酮戊二酸D. 柠檬酸E. 异柠檬酸89. 参与三羧酸循环的有()A. 丙酮酸B. 乙酰CoAC. 草酰乙酸D. 异柠檬酸E. 琥珀酸90. 三羧酸循环生成NADH的反应是()A. 柠檬酸→异柠檬酸B. 异柠檬酸→α-酮戊二酸C. α-酮戊二酸→琥珀酰CoAD. 琥珀酸→延胡索酸E. 苹果酸→草酰乙酸91. 关于三羧酸循环(1次),下列说法正确的是()A. 消耗1个乙酰基B. 有4次脱氢C. 有2次脱羧D. 生成1分子FADH2E. 生成3分子NADH + H+92. 葡萄糖通过有氧氧化可产生()A. 6-磷酸葡萄糖B. 6-磷酸果糖C. 1-磷酸葡萄糖D. 3-磷酸甘油酸E. 琥珀酸93. NADPH + H+的主要功能是()A. 氧化供能B. 参与脂肪酸的合成C. 参与胆固醇的合成D. 是谷胱甘肽还原酶的辅酶E. 参与肝内生物转化94. 糖原合成必需的是()A. UTPB. 糖原磷酸化酶C. 糖原合成酶D. ATPE. 糖原引物95. 乳酸循环的意义是()A. 有利于回收乳酸B. 防止酸中毒C. 补充血糖D. 促进糖异生E. 促进氨基酸的分解代谢96. 能转化为糖的非糖物质有()A. 甘油B. 乳酸C. 丙酮酸D. 丙氨酸E. 天冬氨酸97. 关于丙酮酸羧化反应()A. 底物包括丙酮酸B. 底物包括CO2C. 产物包括草酰乙酸D. 由ATP供能E. 由丙酮酸羧化酶催化98. 从磷酸烯醇式丙酮酸开始的糖异生过程所必需的酶是()A. 丙酮酸羧化酶B. 磷酸烯醇式丙酮酸羧激酶C. 果糖-1,6-二磷酸酶D. 6-磷酸果糖激酶1E. 葡萄糖-6-磷酸酶99. 血糖可转化为()A. 糖原B. 脂肪C. 胆红素D. 核糖E. CO2和H2O100. 肾上腺素促进()A. 肝糖原合成B. 肝糖原分解C. 肌糖原分解D. 糖异生E. 糖转化成脂肪二、名词解释101. 物质代谢102. 糖酵解103. 糖的有氧氧化104. 三羧酸循环105. 糖原合成106. 糖原分解107. 糖异生108. 底物循环109. 血糖110. 肾糖阈111. 低血糖112. 高血糖113. 磷酸戊糖途径114. 耐糖现象115. 情感性糖尿116. 肾性糖尿117. 乳酸循环118. 丙酮酸羧化支路三、填空题119. 物质代谢包括____、____和____三个阶段。

第09章 肠杆菌属1

第09章 肠杆菌属1

第09章肠杆菌属一、概述肠杆菌属(Escherichia)是革兰氏阴性杆菌的一种,是许多生物的肠道内的常见细菌。

肠杆菌属菌株能够合成大量涉及生物体代谢和营养物质的酶,与微生物、人类、植物等具有协同共生关系。

此外,肠杆菌属菌株也是一些肠道相关疾病的致病菌。

二、形态学肠杆菌属的细胞呈革兰氏阴性杆状,通常为无芽胞,对氧气敏感,不能形成耐受性芽孢。

三、生理学肠杆菌属菌株是一种革兰氏阴性菌,能够进行厌氧和好氧代谢,并能兼嗜热和嗜冷。

该属菌株产生大量葡萄糖酶、乳糖酶等代谢酶,可以利用多种碳水化合物进行代谢。

此外,它们还能分解许多脂肪酸和氨基酸。

四、生态学肠杆菌属菌株广泛存在于自然环境、土壤、水、植物等地,也是人体肠道內常见微生物。

此外,肠杆菌属也己被植入了其他生物體内,如果蝇,沙漠小鼠等。

五、分类学肠杆菌属是以德国科学家 Escherich 姓名命名,目前约知 Escherichia 下有 30 个物种,其中以下是常见的物种:•大肠杆菌(Escherichia coli)•哈氏肠杆菌(Escherichia hermannii)•日本肠杆菌(Escherichia japonica)•Shigella flexneri(归属位置争议)大肠杆菌是肠杆菌属中极为重要的代表,也是人体内重要的正常菌群。

目前,学界已经分离到了O157: H7、O104: H4等致病菌株。

六、致病学大肠杆菌不仅是人体肠道中最普遍的细菌,也是其他生物体肠道微生物群落中以不参与协生的确诊致病菌株数量最多的一种。

它们可以分泌神经毒素和肠毒素等引起多种疾病:如食物中毒、尿路感染、痢疾、败血症等。

与此同时,许多肠道相关的慢性病,如炎症性肠病(IBD)、类风湿性关节炎和银屑病等,也与肠杆菌属的数量、种类、多样性和平衡有关。

七、研究应用肠杆菌属菌株是微生物学、医学、生态学和农学等学科中的一种重要研究对象。

研究肠杆菌属的物种鉴定、遗传学、基因工程、代谢组学等方面已经取得了重要成果。

生物化学_09 核酸降解和核苷酸的代谢

生物化学_09 核酸降解和核苷酸的代谢

IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。

09 肌肉活动的激素调节

09 肌肉活动的激素调节

《人体生理.对内脏平滑肌的作用 3.对骨骼肌的作用 4.对代谢的作用 5.对神经系统的作用
《人体生理学》

脂肪组织
乙氨酸
组织
糖原
FFA氧化
阻止进入

FFA + 甘油

(—)
(+)
(+)
儿茶酚胺:E和NE
儿茶酚胺在基础代谢中的作用
《人体生理学》
(二)儿茶酚胺在“应急”反应中的作 用
长 反 馈
腺垂体 ACTH 肾上腺皮质
ACTH
短 反 馈
糖皮质激素
糖皮质激素分泌的调节示意图 (实线表示促进 点线表示抑制 )
《人体生理学》

肾上腺髓质激素生物合成示意图
《人体生理学》
六、肌肉活动时的激素反应
《人体生理学》
运动期间肾素-血管紧张素-醛固酮系统的变化
《人体生理学》
(一)快反应类激素
《人体生理学》
类固醇激素作用原理示意图
《人体生理学》
四、激素的作用特点
(一)特异性 (二)无始动作用 (三)高效性
《人体生理学》
五、激素分泌的调节
(一)反馈调节 --- 激素作用于靶 细胞引起特定的生理效应
(二)非反馈调节 --- 神经系统对 激素分泌的调节
《人体生理学》
应激刺激
下丘脑
CRH
cAMP是第二信使,信息由第一信使传递 给第二信使, cAMP使无活性的蛋白激酶系 统活化,从而激活磷酸化酶,引起靶细胞 《人体生理学》 固有的反应。
含氮激素对靶细胞的作用
腺细胞分泌 肌细胞收缩与舒张 神经细胞出现电位变化 细胞膜通透性改变 细胞分裂与分化以
及各种酶反应等

物质代谢调节及激素的作用机制

物质代谢调节及激素的作用机制
延胡索酸
琥珀酸
苹果酸
草酰乙酸
3-磷酸甘油
三羧酸循环
乙醛酸循环
甘油
乙酰 CoA
糖原(或淀粉)
1,6-二磷酸果糖
磷酸二羟丙酮
磷酸烯醇丙酮酸
丙酮酸
植物或微生物
糖代谢为蛋白质的合成提供碳源和能源:如糖分解过程中可产生丙酮酸,丙酮酸经TCA循环产生α—酮戊二酸和草酰乙酸,它们均可经加氨基或氨基移换作用形成相应的氨基酸。另外,糖分解过程中产生的能量可供氨基酸和蛋白质的合成之用。
酶合成诱导的现象—Jacob and Monod的工作: 已知分解利用乳糖的酶有:-半乳糖苷酶; -半乳糖苷通透酶; -半乳糖苷转乙酰基酶。 实验:1.大肠杆菌生长在葡萄糖培养基上时,细胞内无上述三种酶合成; 2.大肠杆菌生长在唯一碳源乳糖培养基上时,细胞内有上述三种酶合成; 当换成葡萄糖培养基时,三种酶基本消失; 3.表明菌体生物合成的经济原则:需要时才合成。 某些代谢物可以诱导某些酶的合成,是通过促进为该酶编码的基因的表达而进行的,这种现象叫做酶合成的诱导。能诱导酶合成的物质叫诱导物。被诱导合成的酶叫诱导酶。
激活/抑制
磷酸化酶磷酸酶
磷酸化/脱磷酸
抑制/激活
糖原合成酶
磷酸化/脱磷酸
抑制/激活
丙酮酸脱氢酶
磷酸化/脱磷酸
抑制/激活
脂肪酶
磷酸化/脱磷酸
激活/抑制
谷氨酰胺合成酶
腺苷化/脱腺苷
抑制/激活
黄嘌呤氧化酶
-SH/-S-S-
脱氢/氧化
二、激素水平的调节
含量少;在生物体某特定组织细胞产生。 通过体液的运动被输送到其他组织中发挥作用。 作用很大,效率高,在新陈代谢中起调节控制作用。 在医疗上,激素也是一类重要药物。

09氨基酸代谢

09氨基酸代谢
CH2NH2 CH2
H CH2NH2 C OH
苯乙胺
CH2NH2 CH2
苯乙醇胺
CH2NH2 H C OH
OH
OH
酪胺
β-羟酪胺
(二)肠道细菌通过脱氨基或尿素酶的作用 产生氨
未被吸收的氨基酸 脱氨基作用 氨 (ammonia) 渗入肠道的尿素 尿素酶
肝硬化病人为什么用酸性药灌肠?
降低肠道pH,NH3转变为NH4+以胺盐形式排出,可减少 氨的吸收,这是酸性灌肠的依据。
第 七 章
氨基酸代谢
Metabolism of Amino Acids
李 志 红
医学院生物化学教研室
Topics

Nutritional Function of Protein Digestion, Absorption and Putrefaction of Proteins


General Metabolism of Amino Acids
Semi-essential
amino acids: His,Arg Required by infants and growing children

蛋白质的营养价值(nutrition value) 蛋白质的营养价值是指
食物蛋白质在体内的利用率, 取决于必需氨基酸的数量、 种类、量质比。

site:
stomach, small intestine
胃蛋白酶 胰液分泌的蛋白水解酶 • 内肽酶: • 胰蛋白酶
• 糜蛋白酶 • 弹性蛋白酶
• 外肽酶
•羧基肽酶A和羧基肽 酶B
Amino acids
Initiated in stomach enzymes: 胃蛋白酶(pepsin)

人体解剖生理学课后习题答案

人体解剖生理学课后习题答案

人体解剖生理学课后习题答案绪论~第二章绪论生理领域做出重要贡献的部分著名科学家:亚里士多德(Aristotle,公元前384-322)古希腊著名生物学家,动物学的远祖。

最早对动物进行分类研究的生物学家,对鱼、两栖、爬行、鸟、兽等动物的结构和功能作了大量工作。

盖伦(Galen,129-199)古希腊解剖学家、医生。

写出了大量医学和人体解剖学方面的文章。

维萨力欧(Vesalius,1514-1564)比利时解剖学家。

开始用人尸作解剖材料,被誉为现代解剖学奠基人,1543年发表《人体的结构一书》,首次引入了寰椎、大脑骈胝体,砧骨等解剖学名词。

哈维(Havey,1578-1657)英国动物生理学家,血液循环理论的创始人。

1682年发表《动物心脏和血液运动的解剖论》一书,其研究标志近代生理学的开始。

洛维(Lower R,1631-1691)英国解剖学家。

首次进行动物输血实验,后经丹尼斯(Denis)第一次在人类进行输血并获得成功。

列文虎克(Avan Leewenhock,1632-1723)荷兰生物学家。

改进了显微镜,观察了动物组织的微结构,是首次观察到细菌和原生物的微生物学家。

林奈(Linnaeus,1707-1778)瑞典博物学家。

1735年出版《自然系统》,奠定了动物学分类的基础。

伽尔夫尼(Galvani L,1737-1798)意大利生理学家。

首次发现机体中的带电现象,进行了大量“动物电”方面的实验,开创了生物电研究的先河。

巴甫洛夫(Sechenov IM,1829-1905)德国著名生理学家。

在心血管神经支配、消化液分泌机制方面进行了大量研究,首次提出高级神经活动的条件反射学说。

施塔林(Starling EH,1866-1927)英国生理学家。

1915年首次宣布“心的定律”的发现,对循环生理作出独创性成就。

1902年与裴理斯(Beiliss WM)合作,发现刺激胰液分泌的促胰液素,1905年首次提出“激素”一词。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Metabolic network and regulation第一节物质代谢的特点The Specialty of Metabolism一、整体性糖类脂类蛋白质水无机盐维生素•各种物质代谢之间互有联系,相互依存。

消化吸收中间代谢废物排泄二、代谢调节机体有精细的调节机制,调节代谢的强度、方向和速度内外环境不断变化影响机体代谢适应环境的变化三、各组织、器官物质代谢各具特色结构不同酶系的种类、含量不同不同的组织、器官代谢途径不同、功能各异四、各种代谢物均具有各自共同的代谢池例如各种组织消化吸收的糖肝糖原分解糖异生血糖五、ATP是机体能量利用的共同形式营养物分解释放能量ADP+PiATP直接供能六、NADPH是合成代谢所需的还原当量例如乙酰CoANADPH + H+脂酸、胆固醇磷酸戊糖途径第二节物质代谢的相互联系Metabolic Interrelationships一、在能量代谢上的相互联系三大营养素共同中间产物共同最终代谢通路糖脂肪蛋白质乙酰CoATAC2HATPCO2●三大营养素可在体内氧化供能。

●从能量供应的角度看,三大营养素可以互相代替,并互相制约。

●一般情况下,供能以糖、脂为主,并尽量节约蛋白质的消耗。

脂肪分解增强ATP 增多ATP/ADP 比值增高●任一供能物质的代谢占优势,常能抑制和节约其他物质的降解。

糖分解被抑制6-磷酸果糖激酶-1被抑制(糖分解代谢限速酶之一)例如•饥饿时肝糖原分解↑,肌糖原分解↑肝糖异生↑,蛋白质分解↑以脂酸、酮体分解供能为主蛋白质分解明显降低1 ~2 天3 ~4 周(一)糖代谢与脂代谢的相互联系1. 摄入的糖量超过能量消耗时二、糖、脂和蛋白质之间的相互联系葡萄糖乙酰CoA合成脂肪(脂肪组织)合成糖原储存(肝、肌肉)2. 脂肪的甘油部分能在体内转变为糖脂酸乙酰CoA 葡萄糖脂肪甘油甘油激酶肝、肾、肠磷酸-甘油葡萄糖3. 脂肪的分解代谢受糖代谢的影响•饥饿、糖供应不足或糖代谢障碍时高酮血症草酰乙酸相对不足糖不足脂肪大量动员酮体生成增加氧化受阻(二)糖与氨基酸代谢的相互联系例如丙氨酸丙酮酸脱氨基糖异生葡萄糖1. 大部分氨基酸脱氨基后,生成相应的α-酮酸,可转变为糖。

2. 糖代谢的中间产物可氨基化生成某些非必需氨基酸糖丙酮酸草酰乙酸乙酰CoA柠檬酸α-酮戊二酸丙氨酸天冬氨酸谷氨酸(三)脂类与氨基酸代谢的相互联系1. 蛋白质可以转变为脂肪氨基酸乙酰CoA脂肪2. 氨基酸可作为合成磷脂的原料丝氨酸磷脂酰丝氨酸胆胺脑磷脂胆碱卵磷脂3. 脂肪的甘油部分可转变为非必需氨基酸脂肪甘油磷酸甘油醛糖酵解途径丙酮酸某些非必需氨基酸其他α-酮酸——但不能说,脂类可转变为氨基酸。

(四)核酸与糖、蛋白质代谢的相互联系1. 氨基酸是体内合成核酸的重要原料甘氨酸天冬氨酸谷氨酰胺一碳单位合成嘌呤合成嘧啶2. 磷酸核糖由磷酸戊糖途径提供葡萄糖、糖原丙酮酸乙酰CoA脂肪Leu 、Lys草酰乙酸α-酮戊二酸琥珀酸延胡索酸Tyr ProVal, Ile,AspGluArg His Pro胆固醇、酮体Ala Trp Ser Gly Thr Cys甘油脂酸第三节组织、器官的代谢特点及联系Metabolic Specialty andInterrelationships of Tissues andApparatus是机体物质代谢的枢纽。

•在糖、脂、蛋白质、水、盐及维生素代谢中均具有独特而重要的作用。

肝•合成、储存糖原•分解糖原生成葡萄糖,释放入血•是糖异生的主要器官肝在糖代谢中的作用如——肝在维持血糖稳定中起重要作用。

酮体乳酸游离脂酸葡萄糖•以葡萄糖有氧氧化供能为主。

脑•耗能大,耗氧多。

•葡萄糖为主要能源。

•不能利用脂酸,葡萄糖供应不足时,利用酮体。

肌肉•合成、储存糖原;•通常以脂酸氧化为主要供能方式;剧烈运动时,以糖酵解为主。

红细胞•能量主要来自糖酵解。

脂肪组织•合成及储存脂肪的重要组织;•将脂肪分解成脂酸、甘油,供机体其他组织利用。

肾脏•也可进行糖异生和生成酮体;•肾髓质主要由糖酵解供能;肾皮质主要由脂酸、酮体有氧氧化供能。

第四节代谢调节方式The Way for Regulation ofMetabolism•代谢调节普遍存在于生物界,是生物的重要特征。

单细胞生物主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,这种调节称为原始调节或细胞水平代谢调节。

高等生物——三级水平代谢调节•细胞水平代谢调节•激素水平代谢调节高等生物在进化过程中,出现了专司调节功能的内分泌细胞及内分泌器官,其分泌的激素可对其他细胞发挥代谢调节作用。

•整体水平代谢调节在中枢神经系统的控制下,或通过神经纤维及神经递质对靶细胞直接发生影响,或通过某些激素的分泌来调节某些细胞的代谢及功能,并通过各种激素的互相协调而对机体代谢进行综合调节。

一、细胞水平的代谢调节• 细胞水平的代谢调节主要是酶水平的调节。

• 细胞内酶呈隔离分布。

• 代谢途径的速度、方向由其中的关键酶(key enzyme)的活性决定。

• 代谢调节主要是通过对关键酶活性的调节而实现的。

(一)细胞内酶的隔离分布•代谢途径有关酶类常常组成多酶体系,分布于细胞的某一区域。

多酶体系在细胞内的分布多酶体系分布糖酵解胞液磷酸戊糖途径糖异生糖原合成三羧酸循环线粒体氧化磷酸化线粒体胞液胞液胞液多酶体系分布线粒体脂酸 氧化脂酸合成胞液内质网、胞液胆固醇合成磷脂合成内质网DNA、RNA合成细胞核•酶的隔离分布的意义——避免了各种代谢途径互相干扰。

多酶体系分布蛋白质合成多种水解酶溶酶体线粒体、胞液尿素合成血红素合成内质网、胞液线粒体、胞液•代谢途径是一系列酶促反应组成的,其速度及方向由其中的关键酶决定。

•关键酶催化的反应具有以下特点:①速度最慢,它的速度决定整个代谢途径的总速度,故又称其为限速酶(limiting velocity enzymes)。

②催化单向反应不可逆或非平衡反应,它的活性决定整个代谢途径的方向。

③这类酶活性除受底物控制外,还受多种代谢物或效应剂的调节。

例:糖代谢的关键酶•快速代谢•迟缓代谢数秒、数分钟通过改变酶的活性数小时、几天通过改变酶的含量变构调节(allosteric regulation)化学修饰调节(chemical modification)• 代谢调节主要是通过对关键酶活性的调节而实现的。

(二)关键酶的变构调节1. 变构调节的概念小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。

•被调节的酶称为变构酶或别构酶(allosteric enzyme)•使酶发生变构效应的物质,称为变构效应剂(allosteric effector)• 变构激活剂(allosteric effector)——引起酶活性增加的变构效应剂。

• 变构抑制剂(allosteric effector)——引起酶活性降低的变构效应剂。

2. 变构调节的机制变构酶催化亚基调节亚基变构效应剂:底物、终产物其他小分子代谢物变构效应剂+ 酶的调节亚基酶的构象改变酶的活性改变(激活或抑制)疏松亚基聚合紧密亚基解聚酶分子多聚化3. 变构调节的生理意义①代谢终产物反馈抑制(feedback inhibition)反应途径中的酶,使代谢物不致生成过多。

丙二酰CoA 乙酰CoA乙酰CoA羧化酶长链脂酰CoA②变构调节使能量得以有效利用,不致浪费。

G-6-P –+糖原磷酸化酶抑制糖的氧化糖原合酶促进糖的储存③变构调节使不同的代谢途径相互协调。

柠檬酸–+6-磷酸果糖激酶-1抑制糖的氧化乙酰辅酶A 羧化酶促进脂酸的合成(三)酶的化学修饰调节1. 化学修饰的概念酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰(covalent modification),从而引起酶活性改变,这种调节称为酶的化学修饰。

2. 化学修饰的主要方式磷酸化---去磷酸乙酰化---脱乙酰甲基化---去甲基腺苷化---脱腺苷SH 与–S —S –互变。

相关文档
最新文档