第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

合集下载

第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)
1.磷酸化葡萄糖被ATP磷酸化,产生6-磷酸葡萄糖。
反应放能,在生理条件下不可逆(K大于300)。由己糖激酶或葡萄糖激酶催化,需要Mg2+或Mn2+。己糖激酶可作用于D-葡萄糖、果糖和甘露糖,是糖酵解过程中的第一个调节酶,受6-磷酸葡萄糖的别构抑制。有三种同工酶。葡萄糖激酶存在于肝脏中,只作用于葡萄糖,不受6-磷酸葡萄糖的别构抑制肌肉的己糖激酶Km=0.1mM,肝脏的葡萄糖激酶Km=10mM,平时细胞中的葡萄糖浓度时5mM,只有进后葡萄糖激酶才活跃,合成糖原,降低血糖浓度,葡萄糖激酶是诱导酶,胰岛素可诱导它的合成。6-磷酸葡萄糖也可由糖原合成,由糖原磷酸化酶催化,生成1-磷酸葡萄糖,在磷酸葡萄糖变位酶的催化下生成6-磷酸葡萄糖。此途径少消耗1个ATP。6-磷酸葡萄糖由葡萄糖6-磷酸酶催化水解,此酶存在于肝脏和肾脏中,肌肉中没有。
三、能量变化
C6H12O6+2Pi+2ADP+2NAD+=2C3H4O3+2ATP+2NADH+2H++2H2O
有氧时2个NADH经呼吸链可产生6个ATP,共产生8个ATP;无氧时生成乳酸,只有2个ATP。在骨骼肌和脑组织中,NADH进入线粒体要经过甘油磷酸穿梭系统,在细胞质中由3-磷酸甘油脱氢酶催化,将磷酸二羟丙酮还原生成3-磷酸甘油,进入线粒体后再氧化生成磷酸二羟丙酮,返回细胞质。因为其辅酶是FAD,所以生成FADH2,只产生2个ATP。这样其还原当量(2H++2e)被带入线粒体,生成FADH2,进入呼吸链,结果共生成6个ATP。
二、糖的消化和吸收
(一)消化
淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,支链淀粉由上千个葡萄糖构成,每24-30个残基中有一个分支。糖类只有消化成单糖以后才能被吸收。

生物化学王境岩第三版课后习题答案

生物化学王境岩第三版课后习题答案

生物化学王境岩第三版课后习题答案第1章糖类1.环己酮糖中有多少可能的光学异构体,为什么?[25=32]解:考虑到c1、c2、c3、c4及αβ两种构型,故总的旋光异构体为2的4次方乘以2=32个。

2.含有d-半乳吡喃糖和d-吡喃葡萄糖的双糖中可能有多少异构体(不包括异构体)?含有相同残基的糖蛋白的双糖链中有多少异构体?[20;32]解:一个单糖的c1可以与另一单糖的c1、c2、c3、c4、c6形成糖苷键,于是α-d-吡喃半乳基-d-吡喃葡萄糖苷、β-d-吡喃半乳基-d-吡喃葡萄糖苷、α-d-吡喃葡萄糖基-d-吡喃半乳糖苷、β-d-吡喃葡萄糖基-d-吡喃半乳糖苷各有5种,共5×4=20个异构体。

糖蛋白上的二糖链,其中一个单糖的C1用于连接多肽,C2、C3、C4和C6用于与另一个单糖的C1形成糖苷键。

算法同上,共4×4=16,考虑到二糖与多肽连接时的异构体构象,异构体数为16×2=32。

3.写出β-d-脱氧核糖、α-d-半乳糖、β-l-山梨糖和β-d-n-乙酰神经氨酸(唾液酸)的fischer投影式,haworth式和构象式。

4.记下(a)如下所示(b)两种单糖(D/L,α/β,F/P)的正式名称,表明(c)(D)两种结构的构型由RS系统(R/s)表示[a、α-d-f-fru;b、α-l-p-glc;c、r;d、s]5.测定L7葡萄糖α和β异构体[αD20]的比旋度分别为+112.2°和+18.70°。

当α-当D-吡喃葡萄糖晶体样品溶解在水中时,比旋度将从+112.2°降低到+52.70°的平衡值。

混合物α和β的平衡计算——异头菌的比例。

假设开链形式和呋喃形式可以忽略不计。

【α异头菌的比例为36.5%,β差异为63.5%】溶液:设置α如果异构体的比例为x,则有112.2x+18.7(1-x)=52.7,溶液为x=36.5%,因此(1-x)=63.5%。

最新王镜岩生化第三版考研课件 第11章 代谢调节-精品课件

最新王镜岩生化第三版考研课件 第11章 代谢调节-精品课件
第二十八页,编辑于星期日:十四点 七分。
B2: 二价或多价反馈抑制(divalent or multivalent
feedback inhibition) 同工酶调节
X
E1
E2
A B CD
E1’
E3
Y
在Lys Met Ile合成时的反馈 抑制
第二十九页,编辑于星期日:十四点 七分。
顺序反馈抑制
X
G 6- P- G 6- -FP 1.6-二 -F P PEP 丙酮酸
前馈激活
B、前馈抑制(feedforward inhibition)
乙酰CoA + CO2 +H2O + ATP乙酰CoA丙羧二化酸酶 单酰CoA + ADP+Pi
前馈抑制
第二十七页,编辑于星期日:十四点 七分。
(2)反馈作用(feedback)代谢产物对前面的某一酶有作用
乙酸 + ATP+CoA 硫激乙酶酰CoA +AMP+PPi
乙酰CoA + H2O 硫酯乙酶 酸 +CoA
第十页,编辑于星期日:十四点 七分。
三、分解为合成提供还原力、能量和构造单元
代谢的基本要略是通过分解代谢形成ATP、还原 力和构造单元用于生物合成
底物水平磷酸化、氧化磷酸化
ATP
磷酸戊糖途径
胰凝乳蛋白酶
第十六页,编辑于星期日:十四点 七分。
胰蛋白酶原的激活及其功能
水解Arg Lys
羧基形成的肽键
胰蛋白酶原
肠激酶 六肽
胰凝乳蛋白酶原
胰蛋白酶
弹性蛋白酶原
胰凝乳蛋白酶 羧肽酶原
弹性蛋白酶
羧肽酶
第十七页,编辑于星期日:十四点 七分。

核酸 王镜岩《生物化学》第三版笔记(打印版)

核酸 王镜岩《生物化学》第三版笔记(打印版)

第六章核酸提要一.概述核酸分类分布与功能二.核苷酸碱基嘌呤与嘧啶DNA与RNA中的核苷与核苷酸多磷酸核苷酸环核苷酸三.DNA的结构磷酸二酯键DNA的一级结构DNA的二级结构DNA的三级结构DNA的拓扑结构四.RNA的结构DNA与RNA的区别RNA的种类与功能tRNA的结构特点mRNA的结构特点五.核酸的理化性质紫外吸收DNA的变性与复性限制性内切酶第一节概述一发现核酸占细胞干重的5-15%,1868年被瑞士医生Miescher发现,称为“核素”。

在很长时间内,流行“四核苷酸假说”,认为核酸是由等量的四种核苷酸构成的,不可能有什么重要功能。

1944年Oswald Avery通过肺炎双球菌的转化实验首次证明DNA是遗传物质。

正常肺炎双球菌有一层粘性发光的多糖荚膜,有致病性,称为光滑型(S型);一种突变型称为粗糙型(R型),无荚膜,没有致病能力(缺乏UDP-葡萄糖脱氢酶)。

1928年,格里菲斯发现肺炎双球菌的转化现象,即将活的粗糙型菌和加热杀死的光滑型菌混合液注射小鼠,可致病,而二者单独注射都无致病性。

这说明加热杀死的光滑型菌体内有一种物质使粗糙型菌转化为光滑型菌。

艾弗里将加热杀死的光滑型菌的无细胞抽提液分级分离,然后测定各组分的转化活性,于1944年发表论文指出“脱氧核糖型的核酸是型肺炎球菌转化要素的基本单位”。

其实验证据如下:DNA组成非常接近。

DNA的相似。

RNA酶处理也不不影响其转化活性。

酶可使其转化活性丧失。

艾弗里的论文发表后,有些人仍然坚持蛋白质是遗传物质,认为他的分离不彻底,是混杂的微量的蛋白质引起的转化。

1952年,Hershey和Chase的T2噬菌体旋切实验彻底证明遗传物质是核酸,而不是蛋白质。

他们用35S标记蛋白质,用32P标记核酸。

用标记的噬菌体感染细菌,然后测定宿主细胞的同位素标记。

当用硫标记的噬菌体感染时,放射性只存在于细胞外面,即噬菌体的外壳上;当用磷标记的噬菌体感染时,放射性在细胞内,说明感染时进入细胞的是DNA,只有DNA是连续物质,所以说DNA是遗传物质。

《生物化学》王镜岩(第三版)课后习题解答

《生物化学》王镜岩(第三版)课后习题解答

第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,那么属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反响经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

生物化学王镜岩(第三版)课后习题解答全

生物化学王镜岩(第三版)课后习题解答全

第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

王镜岩《生物化学》笔记(完整版)

王镜岩《生物化学》笔记(完整版)

王镜岩《生物化学》笔记(完整版)第一章蛋白质化学教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew)在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

王镜岩生物化学考研第三版笔记.

王镜岩生物化学考研第三版笔记.

王镜岩生物化学考研第三版笔记第一章糖一、糖的概念糖类物质是多羟基(2个或以上)的醛类(aldehyde)或酮类(Ketone)化合物,以及它们的衍生物或聚合物。

据此可分为醛糖(aldose)和酮糖(ketose)。

还可根据碳层子数分为丙糖(triose),丁糖(terose),戊糖(pentose)、己糖(hexose)。

最简单的糖类就是丙糖(甘油醛和二羟丙酮)由于绝大多数的糖类化合物都可以用通式Cn (H2O)n表示,所以过去人们一直认为糖类是碳与水的化合物,称为碳水化合物。

现在已经这种称呼并恰当,只是沿用已久,仍有许多人称之为碳水化合物。

二、糖的种类根据糖的结构单元数目多少分为:(1)单糖:不能被水解称更小分子的糖。

(2)寡糖:2-6个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。

(3)多糖:均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质(壳多糖)不均一性多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等)(4)结合糖(复合糖,糖缀合物,glycoconjugate):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等(5)糖的衍生物:糖醇、糖酸、糖胺、糖苷三、糖类的生物学功能(1) 提供能量。

植物的淀粉和动物的糖原都是能量的储存形式。

(2) 物质代谢的碳骨架,为蛋白质、核酸、脂类的合成提供碳骨架。

(3) 细胞的骨架。

纤维素、半纤维素、木质素是植物细胞壁的主要成分,肽聚糖是细胞壁的主要成分。

(4) 细胞间识别和生物分子间的识别。

细胞膜表面糖蛋白的寡糖链参与细胞间的识别。

一些细胞的细胞膜表面含有糖分子或寡糖链,构成细胞的天线,参与细胞通信。

红细胞表面ABO血型决定簇就含有岩藻糖。

第一节单糖一、单糖的结构1、单糖的链状结构确定链状结构的方法(葡萄糖):a. 与Fehling试剂或其它醛试剂反应,含有醛基。

b. 与乙酸酐反应,产生具有五个乙酰基的衍生物。

c. 用钠、汞剂作用,生成山梨醇。

图2最简单的单糖之一是甘油醛(glyceraldehydes),它有两种立体异构形式(Stereoismeric form),图7.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章糖类代谢第一节概述一、特点糖代谢可分为分解与合成两方面,前者包括酵解与三羧酸循环,后者包括糖的异生、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。

糖代谢受神经、激素和酶的调节。

同一生物体内的不同组织,其代谢情况有很大差异。

脑组织始终以同一速度分解糖,心肌和骨骼肌在正常情况下降解速度较低,但当心肌缺氧和骨骼肌痉挛时可达到很高的速度。

葡萄糖的合成主要在肝脏进行。

不同组织的糖代谢情况反映了它们的不同功能。

二、糖的消化和吸收(一)消化淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,支链淀粉由上千个葡萄糖构成,每24-30个残基中有一个分支。

糖类只有消化成单糖以后才能被吸收。

主要的酶有以下几种:1.α-淀粉酶哺乳动物的消化道中较多,是内切酶,随机水解链内α1,4糖苷键,产生α-构型的还原末端。

产物主要是糊精及少量麦芽糖、葡萄糖。

最适底物是含5个葡萄糖的寡糖。

2.β-淀粉酶在豆、麦种子中含量较多。

是外切酶,作用于非还原端,水解α-1,4糖苷键,放出β-麦芽糖。

水解到分支点则停止,支链淀粉只能水解50%。

3.葡萄糖淀粉酶存在于微生物及哺乳动物消化道内,作用于非还原端,水解α-1,4糖苷键,放出β-葡萄糖。

可水解α-1,6键,但速度慢。

链长大于5时速度快。

4.其他α-葡萄糖苷酶水解蔗糖,β-半乳糖苷酶水解乳糖。

二、吸收D-葡萄糖、半乳糖和果糖可被小肠粘膜上皮细胞吸收,不能消化的二糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代谢。

三、转运1.主动转运小肠上皮细胞有协助扩散系统,通过一种载体将葡萄糖(或半乳糖)与钠离子转运进入细胞。

此过程由离子梯度提供能量,离子梯度则由Na-K-ATP酶维持。

细菌中有些糖与氢离子协同转运,如乳糖。

另一种是基团运送,如大肠杆菌先将葡萄糖磷酸化再转运,由磷酸烯醇式丙酮酸供能。

果糖通过一种不需要钠的易化扩散转运。

需要钠的转运可被根皮苷抑制,不需要钠的易化扩散被细胞松驰素抑制。

2.葡萄糖进入红细胞、肌肉和脂肪组织是通过被动转运。

其膜上有专一受体。

红细胞受体可转运多种D-糖,葡萄糖的Km最小,L型不转运。

此受体是蛋白质,其转运速度决定肌肉和脂肪组织利用葡萄糖的速度。

心肌缺氧和肌肉做工时转运加速,胰岛素也可促进转运,可能是通过改变膜结构。

第二节糖酵解一、定义1.酵解是酶将葡萄糖降解成丙酮酸并生成ATP的过程。

它是动植物及微生物细胞中葡萄糖分解产生能量的共同代谢途径。

有氧时丙酮酸进入线粒体,经三羧酸循环彻底氧化生成CO2和水,酵解生成的NADH则经呼吸链氧化产生ATP和水。

缺氧时NADH把丙酮酸还原生成乳酸。

2.发酵也是葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。

根据产物不同,可分为乙醇发酵、乳酸发酵、乙酸、丙酸、丙酮、丁醇、丁酸、琥珀酸、丁二醇等。

二、途径共10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;后5步是放能阶段,三碳糖生成丙酮酸,共产生4分子ATP。

总过程需10种酶,都在细胞质中,多数需要Mg2+。

酵解过程中所有的中间物都是磷酸化的,可防止从细胞膜漏出、保存能量,并有利于与酶结合。

1.磷酸化葡萄糖被ATP磷酸化,产生6-磷酸葡萄糖。

反应放能,在生理条件下不可逆(K大于300)。

由己糖激酶或葡萄糖激酶催化,需要Mg2+或Mn2+。

己糖激酶可作用于D-葡萄糖、果糖和甘露糖,是糖酵解过程中的第一个调节酶,受6-磷酸葡萄糖的别构抑制。

有三种同工酶。

葡萄糖激酶存在于肝脏中,只作用于葡萄糖,不受6-磷酸葡萄糖的别构抑制肌肉的己糖激酶Km=0.1mM,肝脏的葡萄糖激酶Km=10mM,平时细胞中的葡萄糖浓度时5mM,只有进后葡萄糖激酶才活跃,合成糖原,降低血糖浓度,葡萄糖激酶是诱导酶,胰岛素可诱导它的合成。

6-磷酸葡萄糖也可由糖原合成,由糖原磷酸化酶催化,生成1-磷酸葡萄糖,在磷酸葡萄糖变位酶的催化下生成6-磷酸葡萄糖。

此途径少消耗1个ATP。

6-磷酸葡萄糖由葡萄糖6-磷酸酶催化水解,此酶存在于肝脏和肾脏中,肌肉中没有。

2.异构由6-磷酸葡萄糖生成6-磷酸果糖反应中间物是酶结合的烯醇化合物,反应是可逆的,由浓度控制。

由磷酸葡萄糖异构酶催化,受磷酸戊糖支路的中间物竞争抑制,如6-磷酸葡萄糖酸。

戊糖支路通过这种方式抑制酵解和有氧氧化,pH降低使抑制加强,减少酵解,以免组织过酸。

3.磷酸化 6-磷酸果糖被ATP磷酸化,生成1,6-二磷酸果糖由磷酸果糖激酶催化,是酵解的限速步骤。

是别构酶,四聚体,调节物很多,ATP、柠檬酸、磷酸肌酸、脂肪酸、DPG是负调节物;果糖1,6-二磷酸、AMP、ADP、磷酸、环AMP等是正调节物。

PFK有三种同工酶,A在心肌和骨骼肌中,对磷酸肌酸、柠檬酸和磷酸敏感;B在肝和红细胞中,对DPG敏感;C在脑中,对ATP和磷酸敏感。

各种效应物在不同组织中浓度不同,更重要的是其浓度变化幅度不同,如大鼠在运动和休息时ATP含量仅差0.8ug/g肌肉,不能改变PFK活力,而磷酸肌酸浓度变化大,效应也大。

4.裂解生成3-磷酸甘油醛和磷酸二羟丙酮由醛缩酶催化,有三种同工酶,A在肌肉中,B在肝中,C在脑中。

平衡有利于逆反应,由浓度推动反应进行。

生成西弗碱中间物。

5.异构 DHAP生成磷酸甘油醛DHAP要转变成磷酸甘油醛才能继续氧化,此反应由磷酸丙糖异构酶催化,平衡时磷酸甘油醛占10%,由于磷酸甘油醛不断消耗而进行。

受磷酸和磷酸缩水甘油竞争抑制。

以上反应共消耗2分子ATP,产生2分子3-磷酸甘油醛,原来葡萄糖的3,2,1位和4,5,6位变成1,2,3位。

6.氧化 G-3-P+NAD++H3PO4=1,3-DPG+NADH+H+由磷酸甘油醛脱氢酶催化,产物是混合酸酐,含高能键(11.8千卡)。

反应可分为两部分,放能的氧化反应偶联推动吸能的磷酸化反应。

酶是四聚体,含巯基,被碘乙酸强烈抑制。

砷酸盐与磷酸竞争,可产生3-磷酸甘油酸,但没有磷酸化,是解偶联剂。

NAD之间有负协同效应,ATP和磷酸肌酸是非竞争抑制剂,磷酸可促进酶活。

肌肉收缩开始的几秒,磷酸肌酸从20mM下降到10-5mM,使酶活升高;随着乳酸的积累,ATP 抑制增强,酶活下降。

7.放能 1,3-DPG+ADP=3-磷酸甘油酸+ATP由磷酸甘油酸激酶催化,需Mg。

是底物水平磷酸化,抵消了消耗的ATP。

8.变位 3-磷酸甘油酸变成2-磷酸甘油酸由磷酸甘油酸变位酶催化,需镁离子。

DPG是辅因子,可由1,3-二磷酸甘油酸变位而来。

机理是DPG的3位磷酸转移到底物的2位。

DPG无高能键,可被磷酸酶水解成3-磷酸甘油酸。

红细胞中有15-50%的1,3-DPG转化为DPG,以调节运氧能力。

在氧分压较高的肺泡,亲和力不变,而在组织中亲和力降低,可增加氧的释放。

9.脱水生成磷酸烯醇式丙酮酸PEP由烯醇酶催化,需镁或锰离子。

反应可逆,分子内能量重新分布,产生一个高能键。

F-可络合镁离子,抑制酶活,有磷酸盐时更强,可用来抑制酵解。

10.放能生成丙酮酸和ATP由丙酮酸激酶催化,需镁离子,不可逆。

是别构酶,F-1,6-2P活化,脂肪酸、乙酰辅酶A、ATP和丙氨酸抑制酶活。

有三种同工酶,L型存在于肝脏中,被二磷酸果糖激活,脂肪酸、乙酰辅酶A、ATP和丙氨酸抑制;A型存在于脂肪、肾和红细胞,被二磷酸果糖激活,ATP和丙氨酸抑制;M型存在于肌肉中,被磷酸肌酸抑制。

丙酮酸激酶受激素影响,胰岛素可增加其合成。

三、能量变化C6H12O6+2Pi+2ADP+2NAD+=2C3H4O3+2ATP+2NADH+2H++2H2O有氧时2个NADH经呼吸链可产生6个ATP,共产生8个ATP;无氧时生成乳酸,只有2个ATP。

在骨骼肌和脑组织中,NADH进入线粒体要经过甘油磷酸穿梭系统,在细胞质中由3-磷酸甘油脱氢酶催化,将磷酸二羟丙酮还原生成3-磷酸甘油,进入线粒体后再氧化生成磷酸二羟丙酮,返回细胞质。

因为其辅酶是FAD,所以生成FADH2,只产生2个ATP。

这样其还原当量(2H++2e)被带入线粒体,生成FADH2,进入呼吸链,结果共生成6个ATP。

其他组织如肝脏和心肌等,通过苹果酸穿梭系统,在苹果酸脱氢酶作用下还原草酰乙酸,生成苹果酸,进入线粒体后再氧化生成草酰乙酸。

不过草酰乙酸不能通过线粒体膜,必需经谷草转氨酶催化生成天冬氨酸和α-酮戊二酸才能返回细胞质。

线粒体中苹果酸脱氢酶的辅酶是NAD,所以可生成3个ATP。

四、丙酮酸的去向1.生成乙酰辅酶A:有氧时丙酮酸进入线粒体,脱羧生成乙酰辅酶A,通过三羧酸循环彻底氧化成水和CO2。

2.生成乳酸:乳酸菌及肌肉供氧不足时,丙酮酸接受3磷酸甘油醛脱氢时产生的NADH上的H,在乳酸脱氢酶催化下还原生成乳酸。

LDH有5种同工酶,A4在骨骼肌,B4在心肌。

A4以高速催化丙酮酸的还原,使骨骼肌可在缺氧时运动;H4速度慢并受丙酮酸抑制,所以心肌在正常情况下并不生成乳酸,而是将血液中的乳酸氧化生成丙酮酸,进入三羧酸循环。

骨骼肌产生的大量乳酸还可由肝脏氧化生成丙酮酸,再通过糖的异生转变为葡萄糖,供骨骼肌利用,称为乳酸循环或Coli氏循环。

3.生成乙醇:在酵母菌中,由丙酮酸脱羧酶催化生成乙醛,再由乙醇脱氢酶催化还原生成乙醇。

五、其他单糖1.果糖:可由己糖激酶催化形成6-磷酸果糖而进入酵解。

己糖激酶对葡萄糖的亲和力比果糖大12倍,只有在脂肪组织中,果糖含量比葡萄糖高,才由此途径进入酵解。

肝脏中有果糖激酶,可生成1-磷酸果糖,再被1-磷酸果糖醛缩酶裂解生成甘油醛和磷酸二羟丙酮,甘油醛由三碳糖激酶磷酸化生成3-磷酸甘油醛,进入酵解。

2.半乳糖:在半乳糖激酶催化下生成1-磷酸半乳糖(需镁离子),再在1-磷酸半乳糖尿苷酰转移酶催化下与UDP-葡萄糖生成UDP-半乳糖和1-磷酸葡萄糖,UDP-半乳糖被UDP-半乳糖4-差向酶催化生成UDP-葡萄糖。

反应是可逆的,半乳糖摄入不足时可用于合成半乳糖。

3.甘露糖:由己糖激酶催化生成6-磷酸甘露糖,被磷酸甘露糖异构酶催化生成6-磷酸果糖,进入酵解。

第三节三羧酸循环一、丙酮酸脱氢酶复合体(一)反应过程:5步,第一步不可逆。

1.脱羧,生成羟乙基TPP,由E1催化。

2.羟乙基被氧化成乙酰基,转移给硫辛酰胺。

由E2催化。

3.形成乙酰辅酶A。

由E2催化。

4.氧化硫辛酸,生成FADH2。

由E3催化。

5.氧化FADH2,生成NADH。

复合体有60条肽链组成,直径30nm,E1和E2各24个,E3有12个。

其中硫辛酰胺构成转动长臂,在电荷的推动下携带中间产物移动。

(二)活性调控此反应处于代谢途径的分支点,收到严密调控:1.产物抑制:乙酰辅酶A抑制E2,NADH抑制E3。

可被辅酶A和NAD+逆转。

相关文档
最新文档