双曲线的标准方程和几何性质

合集下载

双曲线和抛物线

双曲线和抛物线

双曲线和抛物线双曲线和抛物线一、知识梳理1.双曲线的定义双曲线是平面内与两个定点F1、F2的距离之差的绝对值为常数2a(2aF1F2时,P的轨迹不存在;当PF1-PF2=2a=F1F2时,P的轨迹为以F1、F2为端点的两条射线。

2.双曲线的标准方程和几何性质双曲线的标准方程为x^2/a^2-y^2/b^2=1(a>0,b>0),y^2/b^2-x^2/a^2=1(a>0,b>0)。

双曲线的范围为x≥a或x≤-a,对称轴为坐标轴,对称中心为原点。

双曲线有两条渐近线y=±b/a*x,顶点为(0,0),离心率为e=√(1+b^2/a^2)。

实轴长度为2a,虚轴长度为2b。

3.抛物线的定义抛物线是平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹,点F叫做抛物线的焦点,直线l叫做抛物线的准线。

当定点F在定直线l时,动点的轨迹是过点F与直线l垂直的直线。

4.抛物线的标准方程和几何性质抛物线的标准方程为y^2=2px或x^2=2py(p>0)。

抛物线的范围为x≥0或x≤0,对称轴为y轴或x轴,顶点为(0,0),离心率为e=1.焦点F在y轴上时,抛物线的准线方程为x=-p/2,焦点F在x轴上时,抛物线的准线方程为y=-p/2.二、方法归纳1.双曲线的离心率需要分两种情况计算,共渐近线的双曲线方程为x^2/a^2-y^2/b^2=λ或y^2/b^2-x^2/a^2=λ(λ≠0)。

渐近线方程为y=±b/a*x。

2.抛物线的标准方程为y^2=2px或x^2=2py(p>0),焦点在y轴上时,准线方程为x=-p/2,焦点在x轴上时,准线方程为y=-p/2.关于双曲线的渐近线,可以得出以下结论:对于已知双曲线方程为$ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 $或$ \frac{y^2}{b^2}-\frac{x^2}{a^2}=1 $的情况,它们的渐近线方程只需将常数“1”换成“0”,再写成直线方程的形式即可;对于已知双曲线的两渐近线的情况,先将它们写成一个方程$ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 $的形式,再设出双曲线方程的形式$ \frac{x^2}{a^2}-\frac{y^2}{b^2}=\lambda(\lambda\neq 0)$。

双曲线的定义、标准方程及几何性质

双曲线的定义、标准方程及几何性质

x2 a2
y2 b2
(
0)
5、双曲线的标准方程与几何性质
二、例题讲解 例 1、(1) 已知两定点 F1( 5,0) , F2(5,0) , 动点 P 满足 PF1 PF2 6 , 求动点 P 的轨迹方程
(2)已知两定点 F1( 5,0) , F2(5,0) , 动点 P 满足 PF1 PF2 10 , 求动点 P 的轨迹方程 . ( 3)已知双曲线 C 与双曲线 x2 y 2 1有公共焦点,且过点 (3 2,2) ,求该双曲线的方程。
例 4、 设 F1, F2 是双曲线 x 2 4
y2 1 的两个焦点 , 点 P 在双曲线上且满足
F1PF2 60 ,
求 PF1 F2 的面积。
例 5、求双曲线 9 y 2 16x2 144 的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
例 6、求满足下列条件的双曲线的标准方程: ( 1)顶点在 y 轴上,两顶点间的距离是 8,离心率 e 5 ; 4
注意:(1) c2
2
a
2
b
注意与椭圆的区别。
(2)方程特征:左边是平方差的结构,右边是 1;分母均大于 0,但大小不定; (3)根据方程判断焦点的位置的方法: 看系数的符号(正负) ;
即 x2 的系数大于 0 则在 x 轴上,且 x2 的分母即是 a 2 ;
反之, y2 的系数大于 0 则在 y 轴上,且 y 2 的分母即是 a2 。
3、求双曲线方程,先要判断焦点的位置,若两种均有可能,则分两种情况讨论;
有的问题也可用两种标准方程的统一形式: mx2 ny2 1(mn 0) 来设方程。
4、常用小结论:
x2 1)与双曲线 a 2
y2 b2
1 共渐近线的双曲线系方程为:

双曲线及其标准方程

双曲线及其标准方程

双曲线1.双曲线的概念平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0;(1)当a <c 时,P 点的轨迹是双曲线.(2)当a =c 时,P 点的轨迹是两条射线.(3)当a >c 时,P 点的轨迹不存在.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a对称性对称轴:坐标轴对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)1.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线.(2)当m <0,n <0时,则表示焦点在y 轴上的双曲线.2.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0).(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).3.常用结论1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.((4).双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是m (5).若双曲线x )x ±ny =0.( )2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 222.双曲线2x 2-y 2=8的实轴长是=1(此条件中两条双曲线称为共轭双曲线).( )()A .2B .22C .4D .423.(2021·全国甲卷)点(3,0)到双曲线x 216-y 29=1的一条渐近线的距离为()A.95B.85C.65D.454.(教材改编)过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是()A .28B .14-82C .14+82D .825.已知双曲线E :x 216-y 2m 2=1的离心率为54,则双曲线E 的焦距为__________.双曲线的定义的应用例题:(1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为()A.x 22-y 216=1(x ≤-2) B.x 22-y 214=1(x ≥2)C.x 22-y 216=1 D.x 22-y 214=1(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为______________(4)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=__________.(5)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为()A .1B .52C .2D .5(6).(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(7)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为()A .215a 2B .15a 2C .30a 2D .15a 2(8)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为()A .1B .2+155C .4+155D .22+1(9)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是()A.4B.6C.8D.16(10)双曲线C的渐近线方程为y=±233x,一个焦点为F(0,-7),点A的坐标为(2,0),点P为双曲线第一象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.8B.10C.4+37D.3+317双曲线的标准方程求双曲线标准方程的方法:(1)定义法(2)待定系数法①当双曲线焦点位置不确定时,设为Ax2+By2=1(AB<0);②与双曲线x2a2-y2b2=1共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);③与双曲线x2a2-y2b2=1共焦点的双曲线方程可设为x2a2-k-y2b2+k=1(-b2<k<a2).例题:(1)根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7).(2)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为(-3,0),且C 的离心率为32,则双曲线C 的方程为()A.y 24-x 25=1 B.y 25-x 24=1 C.x 24-y 25=1 D.x 25-y 24=1(3)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是()A.7x 216-y 212=1 B.y 23-x 22=1C .x 2-y 23=1D.3y 223-x 223=1(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为()A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1(5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是()A .x12-y 2=1B .x 29-y 23=1C .x 2-y 23=1D .x 223-y 232=1(6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=1(7)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点M 在双曲线的右支上,点N 为F 2M 的中点,O 为坐标原点,|ON |-|NF 2|=2b ,∠ONF 2=60°,△F 1MF 2的面积为23,则该双曲线的方程为__________.双曲线的几何性质求双曲线的渐近线方程例:(1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则双曲线C 的渐近线方程为()A .y =±3xB .y =±33x C .y =±12xD .y =±2x(2)已知双曲线T 的焦点在x 轴上,对称中心为原点,△ABC 为等边三角形.若点A 在x 轴上,点B ,C 在双曲线T 上,且双曲线T 的虚轴为△ABC 的中位线,则双曲线T 的渐近线方程为()A .y =±153xB .y =±53xC .y =±33x D .y =±55x (3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=12的焦点相同,则双曲线的渐近线方程为()A .y =±3xB .y =±33x C .y =±22x D .y =±2x(4)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形F 1NF 2M 的周长为p ,面积为S ,且满足32S =p 2,则该双曲线的渐近线方程为()A .y =±32x B .y =±233xC .y =±12xD .y =±22x求双曲线的离心率(范围)例:(1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.72B.132C.7D.13(2).已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__________.(3)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过坐标原点O 的直线与双曲线C 的左、右支分别交于点P ,Q ,若|PQ |=2|QF |,∠PQF =60°,则该双曲线的离心率为()A .3B .1+3C .2+3D .4+23(4)(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(5)圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A .(2,5)B.⎪⎭⎫⎝⎛2535,C.⎪⎭⎫⎝⎛2545,D .(5,2+1)双曲线几何性质的综合应用例:(1)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是()A.⎪⎪⎭⎫⎝⎛-3333, B.⎪⎪⎭⎫⎝⎛-6363,C.⎪⎪⎭⎫⎝⎛-322322, D.⎪⎪⎭⎫⎝⎛-332332,逻辑推理(2020·新高考卷Ⅰ)(多选)已知曲线C :mx 2+ny 2=1.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线直线与双曲线的位置关系例题:若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,求k 的值.双曲线课后练习1.方程x2m+2+y2m-3=1表示双曲线的一个充分不必要条件是()A.-3<m<0B.-1<m<3C.-3<m<4D.-2<m<3 2.在平面直角坐标系中,已知双曲线C与双曲线x2-y23=1有公共的渐近线,且经过点P(-2,3),则双曲线C的焦距为()A.3B.23C.33D.433.设双曲线C:x2-4y2+64=0的焦点为F1,F2,点P为C上一点,|PF1|=6,则|PF2|为()A.13B.14C.15D.224.若双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则C的渐近线方程为()A.y=±13x B.y=±33x C.y=±3x D.y=±3x5.若双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点A到一条渐近线的距离为223a,则双曲线的离心率为()A.223B.13C.3D.226.已知双曲线的一个焦点F(0,5),它的渐近线方程为y=±2x,则该双曲线的标准方程为_____________7.已知双曲线x24-y25=1的左焦点为F,点P为其右支上任意一点,点M的坐标为(1,3),则△PMF周长的最小值为()A.5+10B.10+10C.5+13D.9+138.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB 的中点在该双曲线上,O为坐标原点,则△AOB的面积为()A.12B.1C.2D.49.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,且|PF 1|=2|PF 2|.若cos ∠F 1PF 2=14,则该双曲线的离心率等于()A.22 B.52C .2 D.3+110.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .3211.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交双曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°,若该双曲线的离心率为e ,则e 2=()A .11+43B .13+53C .16-63D .19-10312.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线C 的离心率为()A.52 B.5C.2D .213.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为)______________14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,点P 为双曲线上一点,∠F 1PF 2=120°,则双曲线的渐近线方程为__________;若双曲线C 的实轴长为4,则△F 1PF 2的面积为__________.15.已知F 1,F 2分别是双曲线x 2-y 2b 2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于_____________16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线的左、右两支于M ,N .若以MN 为直径的圆经过右焦点F 2,且|MF 2|=|NF 2|,则双曲线的离心率为____________.17.已知点P (1,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线上,F 为双曲线C 的右焦点,O 为原点.若∠FPO =90°,则双曲线C 的方程为_____________,其离心率为__________.18.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.19.(2021·山东淄博二模)已知动点P 在双曲线C :x 2-y 23=1上,双曲线C 的左、右焦点分别为F 1,F 2,下列结论错误的是()A .C 的离心率为2B .C 的渐近线方程为y =±3xC .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,|PF 1||PF 2|2的最大值为14。

双曲线【知识要点】双曲线的定义第...

双曲线【知识要点】双曲线的定义第...

双曲线【知识要点】1.双曲线的定义第一定义:平面内与两个定点F 1、F 2的距离的差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.第二定义:平面内到定点F 的距离和到定直线的距离的比等于常数(大于1)的点的轨迹叫做双曲线,即dMF ||=e(e>1). F 为直线l 外一定点,动点到定直线的距离为d ,e 为大于1的常数. 2.双曲线的标准方程与几何性质M(x 0,y 0)为22a x -22b y =1右支上的点,则|MF 1|=ex 0+a ,|MF 2|=ex 0-a.(1)当M(x,y)为22a x -22b y =1左支上的点时,|MF 1|=-(a+ex),|MF 2|=ex-a.(2)当M(x,y)为22a y -22bx =1上支上的点时,|MF 1|=ey 0+a ,|MF 2|=ey 0-a.【基础训练】1.(2004年春季北京)双曲线42x -92y =1的渐近线方程是 ( )A.y =±23xB.y =±32xC.y =±49xD.y =±94x2.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是( )A.22y -42x =1B.42x -22y =1C.42y -22x =1D.22x -42y =13.如果双曲线642x -362y =1上一点P 到它的右焦点的距离是8,那么P 到它的右准线距离是( )A.10B.7732 C.27 D.5324.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________. 5.求与圆A :(x +5)2+y 2=49和圆B :(x -5)2+y 2=1都外切的圆的圆心P 的轨迹方程为________________.【典型例题】题型一:求双曲线的标准方程例1、 根据下列条件,求双曲线的标准方程:(1)与双曲线92x -162y =1有共同的渐近线,且过点(-3,23);(2)与双曲线162x -42y =1有公共焦点,且过点(32,2).(3)实轴长为16,离心率为45e(4)经过两点P )7,26()72,3(---Q题型二:双曲线的定义及应用例2、(2002年全国,19)设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围.例3、如下图,在双曲线122y -132x =1的上支上有三点A (x 1,y 1),B (x 2,6),C (x 3,y 3),它们与点F (0,5)的距离成等差数列. (1)求y 1+y 3的值;(2)证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.变式:、已知(2,1),A F ,P 是曲线221(0)x y x -=>上一点,当||||2PA PF +取最小值时,P 的坐标是,|||PA PF 最小值是 .题型三:双曲线的性质及应用例4、 已知双曲线22a x -22by =1的离心率e >1+2,左、右焦点分别为F 1、F 2,左准线为l ,能否在双曲线的左支上找一点P ,使得|PF 1|是P 到l 的距离d 与|PF 2|的等比中项?变式:过双曲线22a x -22by =1.的右焦点F 作渐近线的垂线,垂足为M ,交双曲线的左右两支于A 、B 两点,求双曲线离心率的取值范围。

第6节 第1课时 双曲线的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第6节  第1课时  双曲线的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第六节双曲线第1课时双曲线的定义、标准方程及其简单几何性质1.双曲线的定义把平面内与两个定点F 1,F 2的距离的差的01绝对值等于非零常数(02小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的03焦点,两焦点间的距离叫做双曲线的04焦距.2.双曲线的标准方程和简单几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质焦点05F 1(-c ,0),F 2(c ,0)06F 1(0,-c ),F 2(0,c )焦距07|F 1F 2|=2c范围08x ≤-a 或09x ≥a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性对称轴:10坐标轴;对称中心:11原点顶点12A 1(-a ,0),A 2(a ,0)13A 1(0,-a ),A 2(0,a )轴实轴:线段14A1A2,长:152a;虚轴:线段B1B2,长:162b,实半轴长:17a,虚半轴长:18b离心率e=ca∈19(1,+∞)渐近线y=±bax y=±abxa,b,c的关系c2=20a2+b2(c>a>0,c>b>0)1.双曲线的焦点到渐近线的距离为b,顶点到两条渐近线的距离为常数abc.2.双曲线上的任意点P到双曲线C的两条渐近线的距离的乘积是一个常数a2b2c2.3.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min =c-a.4.离心率e=ca=a2+b2a=1+b2a2.5.双曲线上一点P(x0,y0)与两焦点F1,F2构成的△PF1F2为焦点三角形,设∠F1PF2=θ,|PF1|=r1,|PF2|=r2,则cosθ=1-2b2r1r2,S△PF1F2=12r1r2sinθ=sinθ1-cosθ·b2=b2tanθ2.1.概念辨析(正确的打“√”,错误的打“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.()(2)方程x2m-y2n=1(mn>0)表示焦点在x轴上的双曲线.()(3)双曲线x2m2-y2n2=1(m>0,n>0)的渐近线方程是xm ±yn=0.()(4)等轴双曲线的渐近线互相垂直,离心率等于2.()答案(1)×(2)×(3)√(4)√2.小题热身(1)(人教A选择性必修第一册习题3.2T3改编)双曲线2y2-x2=1的渐近线方程是() A.y=±12x B.y=±2xC.y=±22x D.y=±2x答案C解析依题意知,双曲线y212-x2=1的焦点在y轴上,实半轴长a=22,虚半轴长b=1,所以双曲线2y 2-x2=1的渐近线方程是y=±22x.(2)若双曲线x2a2-y2b2=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A.5B.5C.2D.2答案A解析由题意知焦点到其渐近线的距离等于实轴长,即b=2a,又a2+b2=c2,∴5a2=c2.∴e2=c2a2=5,∴e= 5.故选A.(3)(人教A选择性必修第一册习题3.2T1改编)设P是双曲线x216-y220=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|=________.答案17解析根据双曲线的定义得||PF1|-|PF2||=8,因为|PF1|=9,所以|PF2|=1或17.又|PF2|≥c-a =2,故|PF2|=17.(4)(人教A选择性必修第一册习题3.2T6改编)对称轴为坐标轴,且经过点P(5,3)的等轴双曲线的标准方程为________.答案x216-y216=1解析设双曲线方程为x2-y2=λ(λ≠0),则λ=52-32=16,所以双曲线的方程为x2-y2=16,即x216-y216=1.考点探究——提素养考点一双曲线的定义及其应用(多考向探究)考向1利用双曲线的定义求轨迹方程例1(2024·山东青岛质检)已知动点M(x,y)满足x2+(y-3)2-x2+(y+3)2=4,则动点M 的轨迹方程为________________.答案y 24-x 25=1(y ≤-2)解析因为x 2+(y -3)2-x 2+(y +3)2=4表示点M (x ,y )到点F 1(0,3)的距离与到点F 2(0,-3)的距离的差为4,且4<|F 1F 2|,所以点M 的轨迹是以F 1,F 2为焦点的双曲线的下支,且该双曲线的实半轴长a =2,半焦距c =3,所以b 2=c 2-a 2=5,即动点M 的轨迹方程为y 24-x 25=1(y ≤-2).【通性通法】利用双曲线的定义求方程,要注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置.提醒:一定要分清是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.【巩固迁移】1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆的圆心M 的轨迹方程为()A .x 2-y 28=1B .x 28-y 2=1C .x 2-y28=1(x ≤-1)D .x 2-y28=1(x ≥1)答案C解析设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2外切,得|MC 1|=1+r ,|MC 2|=3+r ,|MC 2|-|MC 1|=2<6,所以圆心M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支,且2a =2,a =1,又c =3,则b 2=c 2-a 2=8,所以圆心M 的轨迹方程为x 2-y 28=1(x ≤-1).故选C.考向2利用双曲线的定义解决焦点三角形问题例2已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为________.答案23解析解法一:不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22,在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12,∴|PF 1|·|PF 2|=8,∴S △F 1PF 2=12|PF 1||PF 2|sin60°=23.解法二:S △F 1PF 2=b 2tan θ2=2tan30°=2 3.【通性通法】在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法建立与|PF 1|·|PF 2|的联系.【巩固迁移】2.(2023·河北邯郸模拟)已知F 1,F 2是双曲线x 24-y 2b 2=1(b >0)的左、右焦点,点P 为双曲线右支上一点,且P 在以F 1F 2为直径的圆上,若|PF 1|·|PF 2|=12,则tan ∠POF 2=()A .34B .43C .35D .45答案A解析解法一:设|PF 1|=m ,|PF 2|=n ,则m >n .由双曲线的定义知,m -n =4,又mn =12,故m =6,n =2,由于P 在以F 1F 2为直径的圆上,所以PF 1⊥PF 2,故有tan ∠PF 1F 2=13,从而tan ∠POF 2=tan2∠PF 1F 2=2tan ∠PF 1F 21-tan 2∠PF 1F 2=34.故选A.解法二:同解法一,得到m =6,n =2,则|F 1F 2|=210,从而得到双曲线的方程为x 24-y 26=1.设P (x 0,y 0)(y 0>0),-y 206=1,y 20=10,解得y 0x 0=34,即tan ∠POF 2=y 0x 0=34.故选A.考向3利用双曲线的定义求最值例3(2024·江西南昌外国语学校月考)已知F 1是双曲线x 216-y 29=1的左焦点,A (4,4),P 是双曲线右支上的动点,则|PF 1|+|PA |的最小值为________.答案8+17解析由题意知,a =4,b =3,c =5.设双曲线的右焦点为F 2,由P 是双曲线右支上的点,则|PF 1|-|PF 2|=2a =8,则|PF 1|+|PA |=8+|PF 2|+|PA |≥8+|AF 2|,当且仅当A ,P ,F 2三点共线时,等号成立.又A (4,4),F 2(5,0),则|AF 2|=(5-4)2+(0-4)2=17.所以|PF 1|+|PA |的最小值为8+17.【通性通法】在利用双曲线的定义求最值时,如果所求的式子不易直接求最值,那么可以先利用关系式|PF 1|=2a +|PF 2|或|PF 2|=2a +|PF 1|进行转化,然后利用三角形三边的关系来求最值.【巩固迁移】3.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x+5)2+y 2=1上,则|PQ |-|PR |的最大值是()A .9B .10C .11D .12答案B解析在双曲线C 1中,a =4,b =3,c =5,易知两圆圆心分别为双曲线C 1的两个焦点,记点F 1(-5,0),F 2(5,0),当|PQ |-|PR |取最大值时,P 在双曲线C 1的左支上,所以|PQ |-|PR |≤|PF 2|+1-(|PF 1|-1)=|PF 2|-|PF 1|+2=2a +2=10.故选B.考点二双曲线的标准方程例4(2024·天津北辰区模拟)与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线的标准方程是________________.答案x 22-y 2=1解析解法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),因为双曲线过点P (2,1),所以4a 2-1b 2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线的标准方程是x 22-y 2=1.解法二:由题意知,双曲线焦点F 1(-3,0),F 2(3,0),设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),则2a =||PF 1|-|PF 2||=(2+3)2+1-(2-3)2+1=8+43-8-43,即a =2+3-2-3,所以a 2=2,则b 2=c 2-a 2=1,所以所求双曲线的标准方程为x 22-y 2=1.解法三:设所求双曲线的标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入,可得44-λ+11-λ=1,解得λ=2(λ=-2舍去),所以所求双曲线的标准方程为x 22-y 2=1.【通性通法】求双曲线的标准方程的方法定义法由题目条件判断出动点轨迹是双曲线,由双曲线定义确定2a ,2b 或2c ,从而求得双曲线方程待定系数法能确定焦点在x 轴还是y 轴上时,设出标准方程,再由条件确定a 2,b 2的值焦点的位置不确定,要注意分类讨论.也可以将双曲线的方程设为x 2m 2-y 2n2=λ(λ≠0)或mx 2-ny 2=1(mn >0)求解与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线的方程可设为x 2a 2-y 2b2=λ(λ≠0)【巩固迁移】4.(2023·湖南郴州模拟)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________________.答案y 2-x 29=1解析设双曲线的方程是y 2-x 29=λ(λ≠0).因为双曲线过点(3,2),所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1.5.过点P (3,27),Q (-62,7)的双曲线的标准方程为________________.答案y 225-x 275=1解析设双曲线的方程为mx 2+ny 2=1(mn <0).因为所求双曲线过点P (3,27),Q (-62,7),m +28n =1,m +49n =1,=-175,=125.故所求双曲线的标准方程为y 225-x 275=1.考点三双曲线的简单几何性质(多考向探究)考向1双曲线的实轴、虚轴、焦距例5(1)双曲线x 24-y 2=1的实轴长是()A .1B .2C .5D .4答案D解析由x 24-y 2=1,得a 2=4,解得a =2,所以2a =4.故双曲线x 24-y 2=1的实轴长是4.故选D.(2)已知双曲线C :y 2-x22=1,则该双曲线的虚轴长为________,焦距为________.答案2223解析双曲线C :y 2-x 22=1的虚半轴长b =2,半焦距c =1+2=3,所以该双曲线的虚轴长为22,焦距为2 3.【通性通法】求解与双曲线几何性质有关的问题时,要理清顶点、焦点、实轴长、虚轴长、焦距等基本量的内在联系.【巩固迁移】6.(2023·河北唐山一调)设4x 2+ky 2-4k =0表示双曲线,则该双曲线的虚轴长为()A .2kB .2kC .2-kD .-2k答案C解析由题意,得k ≠0,将4x 2+ky 2-4k =0整理,得x 2k +y 24=1,由题意,得k <0,故焦点在y 轴上,b 2=-k ,所以b =-k ,所以该双曲线的虚轴长为2-k ,故选C.7.(2024·河南郑州期末)双曲线x 26-y 22=1与x 22-y 26=1有相同的()A .离心率B .渐近线C .实轴长D .焦点答案D解析对于双曲线x 26-y 22=1,其焦点在x 轴上,a 1=6,b 1=2,c 1=22,离心率e 1=c1a 1=233,渐近线y =±b 1a 1x =±33x ,实轴长2a 1=26,焦点为(±22,0);对于双曲线x 22-y 26=1,其焦点在x 轴上,a 2=2,b 2=6,c 2=22,离心率e 2=c 2a 2=2,渐近线y =±b 2a 2x =±3x ,实轴长2a2=22,焦点为(±22,0).故选D.考向2双曲线的渐近线例6(1)(2023·河北衡水模拟)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的焦距为25,且实轴长为2,则双曲线C的渐近线方程为() A.y=±12x B.y=±2xC.y=±5x D.y=±52x 答案B解析由题意可知,2c=25,2a=2,所以c=5,a=1,所以b=c2-a2=2,则ba=2.故双曲线C的渐近线方程为y=±2x.(2)(2022·全国甲卷)若双曲线y2-x2m2=1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=________.答案3 3解析双曲线y2-x2m2=1(m>0)的渐近线为y=±xm,即x±my=0,不妨取x+my=0,圆x2+y2-4y+3=0,即x2+(y-2)2=1,所以圆心为(0,2),半径r=1,依题意,圆心(0,2)到渐近线x+my=0的距离d=|2m|1+m2=1,解得m=33或m=-33(舍去).【通性通法】求双曲线渐近线方程的方法【巩固迁移】8.(2023·全国甲卷)已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率为5,其中一条渐近线与圆(x -2)2+(y-3)2=1交于A,B两点,则|AB|=()A.15B.55C .255D .455答案D解析由e =5,得c 2a 2=a 2+b 2a2=1+b 2a 2=5,解得ba =2,所以双曲线的渐近线方程为y =±2x ,易知渐近线y =2x 与圆相交,则圆心(2,3)到渐近线y =2x 的距离d =|2×2-3|22+(-1)2=55,所以弦长|AB |=2r 2-d 2=21-15=455.故选D.9.已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m =________.答案12解析由渐近线方程y =±b a x =±33x ,得b a =33,则b 2a 2=13,即m m +1=13,m =12.考向3双曲线的离心率例7(1)(2023·新课标Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A →⊥F 1B →,F 2A →=-23F 2B →,则C 的离心率为________.答案355解析解法一:依题意,设|AF 2|=2m (m >0),则|BF 2|=3m =|BF 1|,|AF 1|=2a +2m ,在Rt △ABF 1中,9m 2+(2a +2m )2=25m 2,则(a +3m )(a -m )=0,故a =m 或a =-3m (舍去),所以|AF 1|=4a ,|AF 2|=2a ,|BF 2|=|BF 1|=3a ,则|AB |=5a ,故cos ∠F 1AF 2=|AF 1||AB |=4a 5a =45,所以在△AF 1F 2中,cos ∠F 1AF 2=16a 2+4a 2-4c 22×4a ×2a=45,整理得5c 2=9a 2,故e =c a =355.解法二:依题意,得F 1(-c ,0),F 2(c ,0),令A (x 0,y 0),B (0,t ),因为F 2A →=-23F 2B →,所以(x 0-c ,y 0)=-23(-c ,t ),则x 0=53c ,y 0=-23t ,又F 1A →⊥F 1B →,所以F 1A →·F 1B →,c ,t )=83c 2-23t 2=0,则t 2=4c 2,又点A 在C 上,则259c 2a 2-49t 2b 2=1,整理得25c 29a 2-4t 29b 2=1,则25c 29a 2-16c 29b2=1,所以25c 2b 2-16c 2a 2=9a 2b 2,即25c 2(c 2-a 2)-16a 2c 2=9a 2(c 2-a 2),整理得25c 4-50a 2c 2+9a 4=0,则(5c 2-9a 2)(5c 2-a 2)=0,解得5c 2=9a 2或5c 2=a 2,又e >1,所以e =c a =355.解法三:由解法二得,t 2=4c 2,所以|AF 1|=64c 29+4t 29=64c 29+16c 29=45c3,|AF 2|=4c 29+4t 29=4c 29+16c 29=25c3,由双曲线的定义可得|AF 1|-|AF 2|=2a ,即45c 3-25c 3=2a ,即53c =a ,所以C 的离心率e =c a =35=355.(2)(2024·辽宁沈阳模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,双曲线的左顶点为A ,以F 1F 2为直径的圆交双曲线的一条渐近线于P ,Q 两点,其中点Q 在y 轴右侧,若|AQ |≥2|AP |,则该双曲线的离心率的取值范围是________.答案,213解析由题意,以F 1F 2为直径的圆的方程为x 2+y 2=c 2,如图,设双曲线的一条渐近线方程为y =b a x .=b a x ,2+y 2=c 2,=a ,=b =-a ,=-b .∴P (-a ,-b ),Q (a ,b ).又A 为双曲线的左顶点,则A (-a ,0).∴|AQ |=(a +a )2+b 2=4a 2+b 2,|AP |=[-a -(-a )]2+b 2=b ,|AQ |≥2|AP |,即4a 2+b 2≥2b ,解得4a 2≥3(c 2-a 2),∴e =c a ≤213.又e >1,故e ,213.,213.【通性通法】求双曲线离心率或其取值范围的方法直接法求a ,b ,c 的值,由c 2a 2=a 2+b 2a2=1+b 2a 2直接求e方程(不等式)法列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解【巩固迁移】10.(2024·九省联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过坐标原点的直线与C 交于A ,B 两点,|F 1B |=2|F 1A |,F 2A →·F 2B →=4a 2,则C 的离心率为()A .2B .2C .5D .7答案D解析由双曲线的对称性可知|F 1A |=|F 2B |,|F 1B |=|F 2A |,则四边形AF 1BF 2为平行四边形,令|F 1A |=|F 2B |=m ,则|F 1B |=|F 2A |=2m ,由双曲线的定义可知|F 2A |-|F 1A |=2a ,故有2m -m =2a ,即m =2a ,即|F 1A |=|F 2B |=m =2a ,|F 1B |=|F 2A |=4a ,F 2A →·F 2B →=|F 2A →||F 2B →|cos ∠AF 2B =2a ×4a cos ∠AF 2B =4a 2,则cos ∠AF 2B =12,即∠AF 2B =π3,故∠F 2BF 1=2π3,则cos ∠F 2BF 1=|F 1B |2+|F 2B |2-|F 1F 2|22|F 1B ||F 2B |=(4a )2+(2a )2-(2c )22×4a ×2a =-12,即20a 2-4c 216a 2=-12,即2016-4e 216=-12,则e 2=7,又e >1,故e =7.故选D.11.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为________.答案(1,2)解析在△PF 1F 2中,sin ∠PF 2F 1=3sin ∠PF 1F 2,由正弦定理,得|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点,所以|PF 1|-|PF 2|=2a ,所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|,得3a +a >2c ,即2a >c ,所以e =ca <2,又e >1,所以1<e <2.故双曲线C 的离心率的取值范围为(1,2).考向4与双曲线几何性质有关的最值(范围)问题例8(1)(2023·湖北名校联考)已知F 1,F 2分别是双曲线C :x 24-y 221=1的左、右焦点,动点P在双曲线C 的右支上,则(|PF 1|-4)(|PF 2|-4)的最小值为()A .-4B .-3C .-2D .-1答案B解析由双曲线的定义可得|PF 1|-|PF 2|=4,其中|PF 2|≥3,将|PF 1|=|PF 2|+4代入(|PF 1|-4)(|PF 2|-4),得|PF 2|·(|PF 2|-4)=|PF 2|2-4|PF 2|=(|PF 2|-2)2-4≥-3.故选B.(2)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是________.答案-33,解析因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33.故y 0-33,【通性通法】1.双曲线几何性质的综合应用涉及知识较宽,如双曲线定义、标准方程、对称性、渐近线、离心率等多方面的知识,在解决此类问题时要注意与平面几何知识的联系.2.与双曲线有关的取值范围问题的解题思路思路一若条件中存在不等关系,则借助此关系直接变换转化求解思路二若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决【巩固迁移】12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为103,双曲线上的点到焦点的最小距离为10-3,则双曲线上的点到点A (5,0)的最小距离为()A .1B .62C .2D .6答案B解析由已知,得c a =103,c -a =10-3,解得c =10,a =3,故b 2=c 2-a 2=1.所以双曲线的方程为x 29-y 2=1,设P (x ,y )是双曲线x 29-y 2=1上的点,则y 2=x 29-1,且x ≤-3或x ≥3,则|AP |=(x -5)2+y 2=10x29-10x +24所以当x =92时,|AP |min =32=62.故选B.课时作业一、单项选择题1.(2023·福建泉州模拟)已知双曲线C :x 2a 2-y 2b 21(a >0,b >0)的焦距为25,点P (2,1)在C的一条渐近线上,则C 的方程为()A .x 2-y24=1B .x 24-y 2=1C .3x 220-3y 25=1D .x 216-y 24=1答案B解析解法一:由已知2c =25,则c = 5.又b a =12,且a 2+b 2=c 2,所以a =2,b =1.则C 的方程为x 24-y 2=1.故选B.解法二:由已知2c =25,则c =5,对于C ,a 2+b 2=253≠5,所以排除C ;对于D ,a 2+b 2=20≠5,所以排除D ;又由点P (2,1)在C 的一条渐近线上,坐标代入方程检验可排除A.故选B.2.(2024·广东江门联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为22,则C 的离心率为()A .3B .6C .9D .12答案A解析由题意可知b a =22,则C 的离心率e =ca=a 2+b 2a 2=1+(22)2=3.故选A.3.(2023·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为()A .1B .2C .3D .6答案B解析由题意知,|PF 1|-|PF 2|=2a ,所以|PF 2|=a ,|PF 1|=3a ,又离心率e =ca=3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a =-2a 26a 2=-13,sin ∠F 1PF 2=223,所以S △PF 1F 2=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.故选B.4.已知双曲线E :x 24-y 2m =1的一条渐近线方程为3x +2y =0,则下列说法正确的是()A .E 的焦点到渐近线的距离为2B .m =6C .E 的实轴长为6D .E 的离心率为132答案D解析依题意,得32=m2,解得m =9,故B 不正确;因为b =m =3,a =2,c =a 2+b 2=13,所以E 的焦点到渐近线的距离为31332+22=3,故A 不正确;因为a =2,所以E 的实轴长为2a =4,故C 不正确;E 的离心率为c a =132,故D 正确.故选D.5.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆答案B解析如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 交于点P ,由垂直平分线的性质可得|PM |=|PF 1|,所以||PF 2|-|PF 1||=||PF 2|-|PM ||=|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.故选B.6.(2023·天津高考)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.过F 2作其中一条渐近线的垂线,垂足为P .已知|PF 2|=2,直线PF 1的斜率为24,则双曲线的方程为()A .x 28-y 24=1B .x 24-y 28=1C .x 24-y 22=1D .x 22-y 24=1答案D解析解法一:不妨取渐近线y =b a x ,此时直线PF 2的方程为y =-a b (x -c ),与y =ba x 联立,=a 2c,=ab c ,即因为直线PF 2与渐近线y =ba x 垂直,所以PF 2的长度即为点F 2(c ,0)到直线y =b a x (即bx -ay =0)的距离,由点到直线的距离公式,得|PF 2|=bc b 2+a 2=bcc =b ,所以b =2.因为F 1(-c,0),且直线PF 1的斜率为24,所以abc a 2c +c =24,化简得ab a 2+c 2=24,又b =2,c 2=a 2+b 2,所以2a 2a 2+4=24,整理得a 2-22a +2=0,即(a -2)2=0,解得a = 2.所以双曲线的方程为x 22-y 24=1.故选D.解法二:因为过点F 2向其中一条渐近线作垂线,垂足为P ,且|PF 2|=2,所以b =2,再结合选项,排除B ,C ;若双曲线方程为x 28-y 24=1,则F 1(-23,0),F 2(23,0),渐近线方程为y =±22x ,不妨取渐近线y =22x ,则直线PF 2的方程为y =-2(x -23),与渐近线方程y =22x 联立,得则kPF 1=25,又直线PF 1的斜率为24,所以双曲线方程x 28-y 24=1不符合题意,排除A.故选D.7.(2023·山西吕梁二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线y =kx 与C 交于P ,Q 两点,PF 1→·QF 1→=0,且△PF 2Q 的面积为4a 2,则C 的离心率是()A .3B .5C .2D .3答案B解析如图,若P 在第一象限,因为PF 1→·QF 1→=0,所以PF 1⊥QF 1,由图形的对称性,知四边形PF 1QF 2为矩形,因为△PF 2Q 的面积为4a 2,所以|PF 1|·|PF 2|=8a 2,又因为|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a ,在Rt △PF 1F 2中,(4a )2+(2a )2=(2c )2,解得e =ca=5.故选B.8.(2023·安徽蚌埠模拟)已知双曲线C :x 29-y 2=1,点F 1是C 的左焦点,若点P 为C 右支上的动点,设点P 到C 的一条渐近线的距离为d ,则d +|PF 1|的最小值为()A .6B .7C .8D .9答案B解析过P 作PH 垂直于双曲线的一条渐近线,垂足为H ,则|PH |=d ,连接P 与双曲线的另一个焦点F 2,如图所示.由双曲线的定义可知,d +|PF 1|=|PH |+|PF 2|+2a ,又双曲线方程为x 29-y 2=1,故a =3,b =1,c =10,所以点F 2的坐标为(10,0),双曲线的一条渐近线为y =13x ,故点F 2到渐近线的距离为103103=1,故|PH |+|PF 2|+2a ≥1+6=7.故选B.二、多项选择题9.已知双曲线C :x 2a 2-y 23=1(a >0)的左、右焦点分别为F 1,F 2,离心率为2,P 为C 上一点,则()A .双曲线C 的实轴长为2B .双曲线C 的一条渐近线方程为y =3x C .|PF 1|-|PF 2|=2D .双曲线C 的焦距为4答案ABD解析由双曲线方程,知b=3,离心率为e=ca=a2+3a=2,解得a=1,故双曲线C的标准方程为x2-y23=1,实半轴长为1,实轴长为2a=2,A正确;因为可求得双曲线的渐近线方程为y=±3x,故双曲线的一条渐近线方程为y=3x,B正确;由于P可能在C的不同分支上,则有||PF1|-|PF2||=2,C错误;焦距为2c=2a2+b2=4,D正确.故选ABD.10.已知椭圆C1:x216+y29=1与双曲线C2:x216-k+y29-k=1(9<k<16),下列关于两曲线的说法正确的是()A.C1的长轴长与C2的实轴长相等B.C1的短轴长与C2的虚轴长相等C.焦距相等D.离心率不相等答案CD解析由题意可知,椭圆C1的长轴长为2a1=8,短轴长为2b1=6,焦距为2c1=216-9=27,离心率为e1=c1a1=74,当9<k<16时,16-k>0,9-k<0,双曲线C2的焦点在x轴上,其实轴长为2a2=216-k,虚轴长为2b2=2k-9,焦距为2c2=216-k+k-9=27,离心率为e2=c2a2=716-k.故C1的长轴长与C2的实轴长不相等,C1的短轴长与C2的虚轴长不相等,C1与C2的焦距相等,离心率不相等.故选CD.三、填空题11.(2022·北京高考)已知双曲线y2+x2m=1的渐近线方程为y=±33x,则m=________.答案-3解析对于双曲线y2+x2m=1,m<0,即双曲线的标准方程为y2-x2-m=1,则a=1,b=-m,又双曲线y2+x2m=1的渐近线方程为y=±33x,所以ab=33,即1-m=33,解得m=-3.12.(2024·山东潍坊摸底)已知双曲线C的焦点分别为F1,F2,虚轴为B1B2.若四边形F1B1F2B2的一个内角为120°,则C的离心率为________.答案6 2解析因为|F1F2|=2c,|B1B2|=2b,c>b,由双曲线的对称性可得四边形F1B1F2B2为菱形,又∠F1B1F2=120°,所以|F1O|=3|B1O|,即c=3b,可得c2=3b2=3(c2-a2),整理得c2a2=32,即C 的离心率e =c a =62.13.(2024·福建厦门质检)已知双曲线C :x 29-y 27=1,F 1,F 2是其左、右焦点.圆E :x 2+y 2-4y +3=0,点P 为双曲线C 右支上的动点,点Q 为圆E 上的动点,则|PQ |+|PF 1|的最小值是________.答案5+25解析由题设知,F 1(-4,0),F 2(4,0),E (0,2),圆E 的半径r =1.由点P 为双曲线C 右支上的动点,知|PF 1|=|PF 2|+6,∴|PQ |+|PF 1|=|PQ |+|PF 2|+6,∴(|PQ |+|PF 1|)min =(|PQ |+|PF 2|)min +6=|F 2E |-r +6=25-1+6=5+25.14.(2023·T8联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,过F 2作渐近线y =b a x 的垂线,垂足为P ,若∠F 1PO =π6,则双曲线的离心率为________.答案213解析设∠POF 2=α,则tan α=b a ,又F 2P 垂直于渐近线y =ba x ,即bx -ay =0,∴|PF 2|=|bc |a 2+b 2=b ,而tan α=|PF 2||OP |=b a ,∴|OP |=a ,∴sin α=b c ,cos α=a c ,在△OF 1P 中,∠F 1PO =π6由正弦定理得a=csin π6,∴a b c ·32-a c ·12=2c ,∴a =3b -a ,∴2a =3b ,∴a =32b ,∴e =ca =a 2+b 2a2=213.四、解答题15.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =5,且过点M (-2,23).(1)求双曲线C 的标准方程;(2)求与双曲线C 有相同渐近线,且过点P (3,25)的双曲线的标准方程.解(1)因为离心率e =ca =a 2+b 2a=1+b 2a2=5,所以b 2=4a 2,又因为点M (-2,23)在双曲线C 上,所以4a 2-12b2=1,联立上述方程,解得a 2=1,b 2=4,所以双曲线C 的标准方程为x 2-y 24=1.(2)设所求双曲线的方程为x 2-y 24=λ(λ≠0),因为所求双曲线经过点P (3,25),则3-204=λ,即λ=-2,所以所求双曲线的方程为x 2-y 24=-2,其标准方程为y 28-x 22=1.16.已知双曲线x 212-y 28=1.(1)求证:双曲线上任意一点到两条渐近线的距离之积为定值;(2)求直线2x -y +1=0被两条渐近线截得的线段长.解令x 212-y 28=0,则双曲线的渐近线方程为y =±63x .(1)证明:设点P (x ,y )为双曲线上任意一点,且点P 到渐近线6x +3y =0与6x -3y =0的距离分别为d 1,d 2,则d 1d 2=|6x +3y |15·|6x -3y |15=|6x 2-9y 2|15=|2x 2-3y 2|5==245.即双曲线上任意一点到两条渐近线的距离之积为定值.(2)=63x ,x -y +1=0,=-6+610,=-1+65.=-63,x -y +1=0,=6-610,=-1+65.所以直线2x -y +1=0-6+610,所以直线2x -y +1=0被两条渐近线截得的线段长为==305.17.在①左顶点为(-3,0);②双曲线过点(32,4);③离心率e =53这三个条件中任选一个,补充在下面问题中,并解答.问题:已知双曲线与椭圆x 249+y 224=1共焦点,且________.(1)求双曲线的方程;(2)若点P 在双曲线上,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=8,求|PF 2|.注:如果选择多个条件分别解答,按第一个解答计分.解(1)因为双曲线与椭圆x 249+y 224=1共焦点,所以双曲线的焦点在x 轴上,且c =49-24=5.选条件①:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由双曲线的左顶点为(-3,0),得a =3,所以b 2=c 2-a 2=25-9=16,所以双曲线的方程为x 29-y 216=1.选条件②:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由双曲线过点(32,4),得18a 2-16b 2=1,又a 2=25-b 2,解得b 2=16,所以a 2=9,所以双曲线的方程为x 29-y 216=1.选条件③:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由离心率e =53,得5a =53,解得a =3,所以b 2=c 2-a 2=25-9=16,所以双曲线的方程为x 29-y 216=1.(2)因为|PF 1|=8,||PF 1|-|PF 2||=2a =6,所以|PF 2|=2或|PF 2|=14.18.(多选)(2023·山西太原一模)已知双曲线C :x 24-y 25=1的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线C 的右支交于A ,B 两点,且AF 1⊥AB ,则下列结论正确的是()A .双曲线C 的渐近线方程为y =±52x B .若P 是双曲线C 上的动点,则满足|PF 2|=5的点P 有3个C .|AF 1|=2+14D .△ABF 1内切圆的半径为14-2答案ACD解析双曲线C :x 24-y 25=1中,实半轴长a =2,虚半轴长b =5,半焦距c =3,焦点F 1(-3,0),F 2(3,0).对于A ,双曲线C 的渐近线方程为y =±52x ,A 正确;对于B ,设点P (x 0,y 0),则y 20=54x 20-5,|PF 2|=(x 0-3)2+y 20=94x 20-6x 0+4=|32x 0-2|=5,解得x 0=-2或x 0=143,当x 0=-2时,P (-2,0),当x 0=143时,y 0有两个值,即符合条件的点P 有3个,B 错误;对于C ,由双曲线定义知|AF 1|-|AF 2|=4,而|F 1F 2|=6,且AF 1⊥AB ,则|AF 1|2+|AF 2|2=|F 1F 2|2=36,即|AF 1|+|AF 2|=2(|AF 1|2+|AF 2|2)-(|AF 1|-|AF 2|)2=214,因此|AF 1|=2+14,C 正确;对于D ,由双曲线的定义知|BF 1|-|BF 2|=4,因为AF 1⊥AB ,所以△ABF 1内切圆的半径r =|AF 1|+|AB |-|BF 1|2=|AF 1|+|AF 2|+|BF 2|-|BF 1|2=214-42=14-2,D 正确.故选ACD.19.(多选)(2023·河北石家庄模拟)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在C 的右支上,且不与C 的顶点重合,则下列命题中正确的是()A .若a =3,b =2,则C 的两条渐近线方程是y =±32xB .若点P 的坐标为(2,42),则C 的离心率大于3C .若PF 1⊥PF 2,则△F 1PF 2的面积等于b 2D .若C 为等轴双曲线,且|PF 1|=2|PF 2|,则cos ∠F 1PF 2=35答案BC解析当a =3,b =2时,双曲线的渐近线的斜率k =±b a =±23,A 错误;因为点P (2,42)在C 上,则4a 2-32b 2=1,得b 2a 2=b 248>8,所以e =1+b 2a2>3,B 正确;因为|PF 1|-|PF 2|=2a ,若PF 1⊥PF 2,则|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,即(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,即4a 2+2|PF 1|·|PF 2|=4c 2,得|PF 1|·|PF 2|=2(c 2-a 2)=2b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|=b 2,C 正确;若C 为等轴双曲线,则a =b ,从而|F 1F 2|=2c =22a .若|PF 1|=2|PF 2|,则|PF 2|=2a ,|PF 1|=4a .在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=16a 2+4a 2-8a 22×4a ×2a =34,D错误.故选BC.20.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线的右支上一点.(1)求|PF 1|的最小值;(2)若右支上存在点P 满足|PF 1|=4|PF 2|,求双曲线的离心率的取值范围.解(1)设F 1(-c ,0),F 2(c ,0),P (x ,y )(x ≥a ),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2a 2x 2-b 2=c 2a 2x 2+2cx +a 2==|c a x +a |=c a x +a ≥ca ·a +a =a +c .当P 在右顶点时,|PF 1|最小,所以|PF 1|的最小值为a +c .(2)设∠F 1PF 2=θ,θ∈(0,π].依题意,1|-|PF 2|=2a,1|=4|PF 2|,1|=8a 3,2|=2a 3.由余弦定理,得cos θ2×8a 3×2a 3=17a 2-9c 28a 2=178-98e 2,所以-1≤178-98e 2<1,解得1<e 2≤259,又e >1,所以1<e ≤53.。

双曲线的性质及计算方法

双曲线的性质及计算方法

双曲线的性质及计算方法在数学领域中,双曲线是一种重要的曲线形式,具有独特的性质和计算方法。

本文将介绍双曲线的定义、性质以及一些常见的计算方法。

一、双曲线的定义和基本性质双曲线是在平面直角坐标系中定义的曲线,其定义可以通过以下方程得到:(x^2 / a^2) - (y^2 / b^2) = 1 (当x>0时)(y^2 / b^2) - (x^2 / a^2) = 1 (当y>0时)其中,a和b为正实数,分别称为双曲线的半轴长度。

双曲线有两个分支,分别位于x轴上方和下方,对称于y轴。

1.1 双曲线的几何性质双曲线的几何性质使其在数学和物理的各种应用中扮演重要角色。

其中一些主要性质包括:(1)渐近线:双曲线有两条渐近线,分别与曲线的两个分支趋于平行。

这两条渐近线的方程为y = (b / a) * x 和 y = -(b / a) * x。

(2)顶点:双曲线的顶点位于原点,即(0,0)。

(3)焦点:双曲线有两个焦点,分别位于曲线的两个分支与x轴的交点。

焦点到原点的距离为c,满足c^2 = a^2 + b^2。

1.2 双曲线的方程变形通过对双曲线的方程进行一些变形和移动,可以得到不同形式的双曲线。

常见的方程变形有:(1)平移:通过加减常数的方式,可以将双曲线的位置移动到任意位置。

(2)旋转:通过变化坐标轴的方向,可以将双曲线旋转到倾斜的形态。

(3)缩放:通过乘以常数的方式,可以改变双曲线的尺寸。

二、双曲线的计算方法除了了解双曲线的性质,我们还需要了解一些常见的计算方法,以便在解决实际问题时能够应用这些方法。

2.1 双曲线的焦点和直线的关系双曲线的焦点对于计算和分析双曲线至关重要。

通过焦点和直线的关系,我们可以使用以下公式计算焦点坐标:对于双曲线的基本方程(x^2 / a^2) - (y^2 / b^2) = 1,焦点的坐标为(ae, 0)和(-ae, 0),其中e为焦点到原点的距离与半轴a的比值。

双曲线的标准方程

双曲线的标准方程

双曲线的标准方程双曲线是解析几何中重要的曲线之一,它具有许多独特的性质和特点。

在数学中,双曲线的标准方程是描述双曲线的重要工具之一。

本文将介绍双曲线的基本概念,并详细讨论双曲线的标准方程及其性质。

首先,让我们来了解一下双曲线的基本定义。

双曲线是平面上一类重要的曲线,它的定义是平面上满足特定几何性质的点的集合。

双曲线有两条渐近线,分别称为虚轴和实轴,这两条渐近线的交点称为双曲线的中心。

双曲线还具有两个焦点,这两个焦点到双曲线上任意一点的距离之差是一个常数。

双曲线可以分为两种类型,横向双曲线和纵向双曲线,具体形状取决于焦点和渐近线的位置关系。

接下来,让我们来讨论双曲线的标准方程。

对于横向双曲线,其标准方程为:\[ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \]其中,a和b分别为横轴和纵轴的半轴长。

而对于纵向双曲线,其标准方程为:\[ \frac{y^2}{a^2} \frac{x^2}{b^2} = 1 \]同样地,a和b分别为纵轴和横轴的半轴长。

通过这两个标准方程,我们可以方便地确定双曲线的形状和位置。

双曲线的标准方程还可以通过参数方程得到。

对于横向双曲线,其参数方程为:\[ x = a \cosh t, y = b \sinh t \]而对于纵向双曲线,其参数方程为:\[ x = a \sinh t, y = b \cosh t \]通过参数方程,我们可以更直观地理解双曲线的形状和特点。

双曲线的标准方程是研究双曲线性质和应用的重要工具。

通过标准方程,我们可以方便地确定双曲线的形状、位置和性质。

双曲线在数学、物理、工程等领域都有着重要的应用,例如在椭圆偏振光的描述、电磁场的分布等方面都有着重要的作用。

总之,双曲线的标准方程是解析几何中重要的内容,通过本文的介绍,相信读者对双曲线的标准方程有了更深入的了解。

希望本文能够对读者有所帮助,谢谢阅读!。

双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质主讲教师:刘杨【知识概述】一、双曲线的概念平面内动点P 与两个定点F 1、F 2(|F 1F 2|=2c >0)的距离之差的绝对值为常数2a (2a <2c ),则点P 的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距. 二、标准方程与性质x ≥a 或x ≤-a ,y ∈R对称轴:坐标轴A 1(-a,0),A 2(a,0)y =±b axe =ca,e ∈(1,+2叫做双曲线的实轴,它的长的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,c 2=a 2+b【学前诊断】1.[难度] 易双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =________.2.[难度] 中双曲线方程:x 2|k |-2+y 25-k =1,那么k 的取值范围是 .3.[难度] 中若双曲线x 2a 2-y 2b 2=1的一条渐近线方程为x3+y =0,则此双曲线的离心率为________.【经典例题】例1.在平面直角坐标系xOy 中,已知ABC ∆的顶点(6,0)A -和(6,0)C ,若顶点B 在双曲线2212511x y -=的左支上,则sin sin sin A C B- =______________.例2.已知F 是双曲线221412x y -=的左焦点,A (1,4),P 是双曲线右支上的动点,则 P F P A +的最小值为________________.例3.根据下列条件,求双曲线方程:(1)与双曲线221916x y -=有共同的渐近线,且过点(3,-;(2)与双曲线221164x y -=有公共焦点,且过点2).例4. 中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.例 5.已知双曲线的中心在原点,焦点F 1、F 2,且过点P (4,. (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:120MF MF ⋅=; (3)求12F MF ∆的面积.【本课总结】解题技巧1.双曲线中a ,b ,c 的关系双曲线中有一个重要的Rt △OAB (如右图),它的三边长分别是a 、b 、c .易见c 2=a 2+b 2,若记∠AOB =θ,则e =c a =1cos θ.2.双曲线的定义用代数式表示为||MF 1|-|MF 2||=2a ,其中2a <|F 1F 2|,这里要注意两点:(1)距离之差的绝对值;(2)2a <|F 1F 2|. 这两点与椭圆的定义有本质的不同:①当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; ②当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; ③当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; ④当2a >|F 1F 2|时,动点轨迹不存在. 3.渐近线与离心率x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线的斜率为b a=b 2a 2=c 2-a 2a2=e 2-1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小. 4. 求双曲线的方程求双曲线的方程,关键是求a 、b ,在解题过程中应熟悉各元素(a 、b 、c 、e )之间的关系,并注意方程思想的应用.若已知双曲线的渐近线方程为ax ±by =0,可设双曲线方程为a 2x 2-b 2y 2=λ (λ≠0).5.焦点到渐近线的距离等于虚半轴长b .6.共用渐近线的两条双曲线可能是:共轭双曲线;放大的双曲线;共轭放大或放大后共轭的双曲线.所以与双曲线x 2a 2-y 2b 2=1共用渐近线的双曲线的方程可设为x 2a 2-y 2b 2=t (t ≠0).7.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中的“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1的两条渐近线方程.易错防范1.区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.2.双曲线的离心率大于1,而椭圆的离心率e ∈(0,1).3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1 (a >0,b >0)的渐近线方程是y =±a bx .4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.【活学活用】1.[难度] 易双曲线中心在原点,且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是 ( )A .x 24-y 2=1B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y 22=12. [难度] 中某圆锥曲线C 是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过点A (-2,23),B ⎝⎛⎭⎫32,-5,则 ( ) A .曲线C 可为椭圆也可为双曲线 B .曲线C 一定是双曲线 C .曲线C 一定是椭圆 D .这样的曲线C 不存在 3. [难度] 中已知F 为双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点且过点 ( −2,
2
2
10)的双曲线方程. 的双曲线方程
一炮弹在某处爆炸,在 处听到爆炸的 例2: 一炮弹在某处爆炸 在A处听到爆炸的 声音的时间比在B处晚 处晚2s. 声音的时间比在 处晚 (1)爆炸点应在什么样的曲线上 爆炸点应在什么样的曲线上? 爆炸点应在什么样的曲线上 (2)已知 、B两地相距 已知A、 两地相距 两地相距800m,并且此时声 已知 , 速为340m/s,求曲线的方程。 速为 ,求曲线的方程。
x2 y 2 + =1 25 9
与双曲线
=15的焦点相同 的焦点相同. x2-15y2=15的焦点相同. 变式: 变式: 上题的椭圆与双曲线的一个交点为P 上题的椭圆与双曲线的一个交点为P, 焦点为F 焦点为F1,F2,求|PF1|.
x y + = 1 有共同焦 练习:求与椭圆 练习 求与椭圆 16 25
m < −1 或 m > 2 范围_________________. 范围_________________.
变式二: 变式二:
上述方程表示焦点在y轴的双曲线时, 上述方程表示焦点在y轴的双曲线时,求m 的范围和焦点坐标。 的范围和焦点坐标。 m>2 F (0 , ± 2m −1)
练习2 练习2:证明椭圆
2 2
2 2
x2 y2 − = −1 49 25
8 2
4
6 18 |x|≥3 (±3,0)
4 4 |y|≥2 (0,±2)
10 14 |y|≥5 (0,±5)
|x|≥ 4 2
(± 4
e=
2 ,0
)
(± 6,0)
3 2 2
(± 3
10 ,0
)
(0,±2 2 )
e= 2
y = ±x
(0,±
e =
74
)
e = 10
2 2
(x 和圆B: 和圆B: − 5) + y = 1 都外切的圆 的圆心P的轨迹方程. 的圆心P的轨迹方程.
2 2
定义 图象
||MF1|—|MF2||=2a(2a<|F1F2|) ( < )
y F1 o F2 x o F1 x y F2
方程 焦点 a.b.c的 的 关系
x2 y2 − 2 =1(a > 0, b > 0) 2 a b
椭圆的标准方程和 双曲线的标准方程 有何区别呢?、c的关系是 (3)双曲线标准方程中 、b、 的关系是 )双曲线标准方程中a、
c2 =a2+b2;有别于椭圆方程中 2=a 2-b 2。 有别于椭圆方程中c
Ex: :
的焦点。 与双曲线 x2 − 15 y2 = 15的焦点。 椭圆中c 椭圆中 2=a2-b2,得:c2=25-9=16,c= ±4.故F1(-4,0),F2(4,0) 故 若为双曲线,则 若为双曲线 则(2+m)(m+1)>0, , 2 2 x y − = 1又c2=a2+b2得:c2=15+1=16, ,又 2 m 0 双曲线为 + > 15 1 若为椭圆, 若为椭圆,则 c= ±4.故F1(-4,0),F2(4,0) m + 1 < 0 故 x2 y2 − = 1表示双曲 2、已知方程 、 2+ m m+1 或 的取值范围是________________; 线,则m的取值范围是 {m|m>-1或m<-2}; 的取值范围是 若表示椭圆,则 的取值范围是 的取值范围是_____________. 若表示椭圆 则m的取值范围是 {m|-2<m<-1}
x2 y2 + = 1的焦点 1、分别求椭圆 、 25 9
同为 F( ± 4,0)
x2 y2 练习1 表示双曲线, 练习1:如果方程 2 − m − m + 1 = 1 表示双曲线,
求m的取值范围. 的取值范围.
变式一: 变式一:
x2 y2 + = 1表示双曲线时,则m的取值 表示双曲线时, 方程 2 − m m+ 1
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
c2=a2+b2
变式: 变式: 若题目改为:一炮弹在某处爆炸 在 若题目改为:一炮弹在某处爆炸,在A 、B两处 两处 听到爆炸的声音的时间相差2s。 听到爆炸的声音的时间相差 。
1、填表
方程 2a 2b 范 围 顶 点 焦点 离心率 渐近线
x − 8 y = 32
2 2
9x − y = 81 x − y = −4
74 5
2 y=± x 4
y=±3x ±
5 y定, 例3:在△ABC中,BC固定, : 顶点A移动. 顶点A移动.设|BC|= m1 , 当三个角满足条件 sin C −sin B = sin A 2 时,求A的轨迹方程式 例4:求与圆A: ( x + 5 ) + y = 49 :求与圆A:
y
M
F
o
1
F2
x
椭圆标准方程和双曲线标准方程的区别: (1)双曲线标准方程中,a>0,b>0,但a不 )双曲线标准方程中, , , 不 一定大于b;有别于椭圆中a>b. 一定大于 ;有别于椭圆中 (2)双曲线标准方程中,如果 2项的系数是 )双曲线标准方程中,如果x 正的,那么焦点在x轴上 如果y 轴上; 正的,那么焦点在 轴上;如果 2项的系数是 正的,那么焦点在y轴上.有别于椭圆通过比 正的,那么焦点在 轴上. 轴上 较分母的大小来判定焦点在哪一坐标轴上。 较分母的大小来判定焦点在哪一坐标轴上。
相关文档
最新文档