7.4平行线的性质-北师大版八年级数学上册第七章平行线的证明
数学北师大版八年级上册 第七章 平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)

数学北师大版八年级上册第七章平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)第七章平行线的证明7.5 三角形内角和定理第2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资源《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理三角形的一个外角等于和它不相邻的两个内角的和.定理三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC.求证:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.证明:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠A+∠B=180°-∠ACB(等式的性质),∵∠ACD+∠ACB=180°(平角的定义)∴∠ACD=180°-∠ACB(等式的性质)∴∠ACD=∠A+∠B(等量代换)∴∠ACD>∠A,∠ACD>∠B.在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2 如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP交BC于点D ,这时∠BPC 和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.()√(5)三角形的一个外角大于任何一个内角. ()×(6)三角形的一个内角小于任何一个与它不相邻的外角.()√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )CA.直角三角形B.锐角三角形C.钝角三角形D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )BA.120°B.115°C.110°D.105°4.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等于()A.26°B.63°C.37°D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A.110°B.160°C.137°D.115°解析:方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
北师大版八年级数学上册第七章《平行线的性质》课件

总结
求证两角相等,首先观察两角的位置(是否 为同位角、内错角等),然后选择合适的性质定 理.若无法直接证得两角相等,则分析由已知条 件可得到哪些结论,再探寻这些结论与所求角的 关系,关系找到后,问题即可解答.
1 (中考·东莞)如图,直线a∥b,∠1=75°,∠2= 35°,则∠3的度数是( C ) A.75° B.55° C.40° D.35°
才有内错角相等.
例2 如图,已知AE∥BC,∠B=∠C, AE是∠DAC 的平分线吗?若是,请写出证明过程;若不是, 请说明理由.
导引:紧扣平行线的性质定理得出角的数量关系, 进而证明角相等.
解: AE是∠DAC 的平分线. 证明如下:∵AE∥BC(已知), ∴∠DAE=∠B(两直线平行,同位角相等), ∠CAE=∠C(两直线平行,内错角相等), 又∵∠B=∠C(已知),∴∠DAE=∠CAE (等量代换), ∴AE是∠DAC 的平分线(角平分线的定义).
4.定理:平行于同一条直线的两条直线平行. (1)已知:如图,b//a,c//a,∠1,∠2,∠3是直线a,b,
c被直线d截出的同位角. 求证:b//c. 证明:∵b//a (已知),
∴∠2=∠1(两直线平行,同位角 相等).
∵c//a(已知), ∴∠3=∠1(两直线平行,同位角相等). ∴∠2 = ∠ 3(等量代换). ∴b//c(同位角相等,两直线平行).
总结
1.求角的度数的基本思路:根据平行线的判定由角的 数量关系得到直线的位置关系,根据平行线的性质 由直线的位置关系得到角的数量关系,通过上述相 互转化,从而找到所求角与已知角之间的关系.
2.两直线平行时,应联想到平行线的三个性质,由两 条直线平行的位置关系得到两个相关角的数量关系, 由角的关系求相应角的度数.
北师版八年级数学 7.4 平行线的性质(学习、上课课件)

感悟新知
知识点 2 平行线的判定与性质
平行线的判定
图示
因为 ∠ 1= ∠ 2, 所以l1 ∥ l2(同位 角 相 等 ,两直 线平行)
因为 ∠ 2= ∠ 3, 所以l 1 ∥ l2(内错 角相等 ,两直线 平行)
知2-讲
平行线的性质
因为 l1 ∥ l2,所 以∠ 1=∠ 2(两直 线平行 , 同位角 相等) 因为 l1 ∥ l2, 所 以∠ 2=∠ 3(两直 线平行 ,内错角 相等)
平行线 互逆 平行线
的判定
的性质
性质定理 证明的一般步骤
感悟新知
续表
平行线的判定与性质
平行线的判定
图示
知2-讲
平行线的性质
因为∠ 3+ ∠ 4=180° ,所以
l1 ∥ l2(同旁内 角互补,两直线
平行)
因为 l1 ∥ l2,所 以∠ 3+ ∠ 4=180°(两直线 平行 ,同旁内
角互补)
感悟新知
知2-讲
特别提醒 平行线的判定与平行线的性质的区别:
平行线的判定是根据两角的数量关系得到两条直线的 位置关系,而平行线的性质是根据两条直线的位置关系 得到两角的数量关系.
感悟新知
知2-练
例2 如图 7-4-2,在△ ABC 中,已知 AD ⊥ BC 于点 D, EF ⊥ BC 于点 F,∠ 1= ∠ 2,试判断 DG 和 BA 的 位置关系,并证明你的结论 .
感悟新知
知2-练
解题秘方:通过 观察图形猜测这两条直线平行, 然后利用已知条件、平行线的性质定 理和判定定理进行证明 .
∵BE 平分∠ABC(已知), ∴∠CBE=12∠ABC=50°(角平分线的定义), ∵AD∥BC(已知),
平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质
重
难
题
型
突
破
返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=
∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结
考
点
要判断两条直线是否平行,首先要观察图形中与要判断
清
单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后
重
难
题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确
突
破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平
重
难
∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),
北师大版八年级数学上册平行线的判定

已知 ),
∴∠1=∠2( 角平分线定义
),
又∵∠2=∠C(
已知
),
∴∠1=∠C(
等量代换
).
∴BE∥AC(
同位角相等,两直线平行
).
4.如图,∠C=∠1,∠2与∠D互余,DE⊥BF, 求证:AB∥CD. 证明:∵∠C=∠1, ∴EC∥BF, ∵DE⊥BF,∴EC⊥DE, ∴∠C+∠D=90°, 又∵∠2+∠D=90°, ∴∠2=∠C,∴AB∥CD
那么这两条直线平行 条件是什么,结论是什么?
已知:∠1和∠2是直线a、b被直 线c 截出的内错角,且
∠1=∠2.
求证:a∥b
c
a
3 1
b
2
证明:∵∠1=∠2(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
定理:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行。
简述为:内错角相等,两直线平行。
a
符号语言: ∵∠1=∠2
b
∴a∥b
c 1 2
定理:两条直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行.
已知:∠1和∠2是直线a、b被直线c截出的同旁
内角,且∠1与∠2 互补。
求证:a∥b.
证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义) ∴∠1=180°-∠2(等式的性质) ∵∠3+∠2=180°(平角定义)
• 8.如图7-3-14,已知∠1=∠2,∠3=∠4,∠5=∠6, 试判断ED与FB的位置关系,并说明理由.
解:BF∥DE.理由如下: ∵∠3=∠4, ∴BD∥CF ∴∠5=∠BAF. 又∵∠5=∠6, ∴∠BAF=∠6, ∴AB∥CD, ∴∠2=∠EHA. 又∵∠1=∠2, ∴∠1=∠EHA, ∴BF∥DE.
北师大版数学八年级上册第七章-平行线的证明讲义

实用文档第七章 平行线的证明一、思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧的内角。
于任何一个和它不相邻:三角形的一个外角大推论角的和。
于和它不相邻的两个内:三角形的一个外角等推论。
等于定理:三角形的内角和三角形内角和定理条直线平行。
平行于同一条直线的两互补。
两直线平行,同旁内角等。
两直线平行,内错角相等。
两直线平行,同位角相平行线的性质平行。
同旁内角互补,两直线行。
内错角相等,两直线平行。
同位角相等,两直线平平行线的判定的例子。
,而不具有命题的结论反例:具备命题的条件分类:真命题、假命题部分组成。
结构:由条件和结论两句子。
定义:判断一件事情的命题平行线的证明21180二、考点聚焦考点1 定义与命题例1 下列四个命题中,真命题有 ( )①任意三角形的内角和为180°。
②经过直线外一点,有且只有一条直线与这条直线平行。
③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a ⊥b ,b ⊥c ,则直线a 与c 不相交。
A.1个B.2个C.3个D.4个变式1-1:对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角。
考点2 平行线的性质和判定例2 如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由。
变式2-1:如图,直线l∥2l,∠A=125°,∠B=85°,1则∠1+∠2= ()A.30°B.35°C.36°D.40°变式2-2:如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数。
北师大版八年级数学上册第七章平行线的证明单元教学设计

(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探索、发现、总结平行线性质的过程中,培养观察、分析、归纳的能力。
2.引导学生运用演绎推理方法,从特殊到一般,逐步掌握平行线的判定方法,提高学生的逻辑思维能力。
二、学情分析
八年级学生在经过之前的学习,已经具备了一定的几何基础,对几何图形有一定的认识和理解。在此基础上,学生对平行线的概念及性质已有初步的了解,但在判定方法、性质应用等方面仍需加强。此外,学生在演绎推理、问题解决等方面的能力有待提高。因此,在教学过程中,应关注以下学情:
1.学生对平行线性质的理解程度,注重引导学生从直观到抽象,逐步提高对平行线性质的认识。
c.解决实际问题,运用平行线性质求解。
2.学生独立完成练习题,教师巡回指导,对学生的解答进行点评,及时纠正错误,巩固所学知识。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,让学生用自己的话总结平行线的性质、判定方法及其在实际问题中的应用。
2.教师强调本节课的重点知识,提醒学生注意平行线性质及判定方法的灵活运用。
2.教师提出问题:我们已经学过直线、线段、射线等基本概念,那么如何判断两条直线是否平行?这节课我们就来探讨这个问题。
(二)讲授新知
1.教师引导学生回顾同位角、内错角、同旁内角等概念,为后续学习平行线的判定方法打下基础。
2.教师通过几何画板演示,引导学生观察并总结出平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
(二)教学设想
1.创设情境,激发兴趣:
通过生活中的实例,如铁轨、教室墙壁等,引出平行线的概念,激发学生对平行线性质探究的兴趣。
北师大2014年第二版 八年级上册7.4《平行线的性质》

a b
方法一:度量法
65°
c
1 2 65°
a
b
a∥b
∠1=∠2
方法二:裁剪拼接法
c
a∥b
1 2
a b
∠1=都相等呢?
性质发现
a
1 2
结论
平行线的性质定理1b
两条平行线被第三条直线所截, c 同位角相等.
简写为: 两直线平行,同位角相等. 符号语言: ∵a∥b,
∴∠1=∠2.
小明同学遇到的问题是:
(1) 凡是同位角都相等这句话对吗?
(2) 两直线被第三条直线所截,同位角相等吗?
(3) 两条直线在什么情况下, 同位角会相等呢?
b
1
a
2
c a1 b
3
2
4 5 7 6
c
8
1、如图1,直线AB//CD, ∠1=55°,则∠2= 55° _______.
图1
图2
C
3、如图,已知AB ∥ CD, AD ∥ BC。
判断∠ 1与∠ 2是否相等,并说明理由。
D A
1 2
C B
4、已知:如图, ∠ABC+∠C=180°, BD平分∠ABC。∠CBD与∠D相等吗? 请说明理由。
A B C
D
5、已知:如图,BD平分∠ABC, ∠1=∠2 , ∠C=70,求∠ADE的度数。
C 2 B
D
60 °
F
E
平行线性质定理和判定定理的比较
同位角相等 两直线平行 内错角相等 同旁内角互补
线的关系
性质 判定
角的关系
思考: 1、判定与性质的条件与结论有什么关
系? 互换。
师生互动,典例示范
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:两直线平行,同旁内角互补 已知:如图直线a∥b,∠1和∠2是直 a 线a,b被直线c截出的同旁内角. 求证: ∠1+∠2=180°. b
1 2
c 3
证明:∵a∥b ( 已知) ∴∠2=∠3 ( 两直线平行,同位角相等 ) ∵∠1+∠3 = 180 ° ( 平角的定义 ) ∴∠1+∠2=180 ° ( 等量代换 )
平行线的性质: 1.两直线平行,同位角相等. 2.两直线平行,内错角相等。 3.两直线平行,同旁内角互补。
2016.12
平行线的性质定理与判定定理的关系: 性质定理的条件是判定定理的结论; 性质定理的结论是判定定理的条件。 性质定理与判定定理是互逆的。 平行线的性质是:由线定角 平行线的判定是:由角定线
2016.12
证明:两直线平行,内错角相等 例1.已知:如图,a∥b, ∠1和∠2是直 线a,b被直线c截出的内错角 . 求证:∠1=∠2
c
证明:∵a∥b ( 已知)
∴∠3=∠2 ( 两直线平行,同位角相等 ) ∵ ∠3=∠1 ( 对顶角相等 ) ∴∠1=∠2 ( 等量代换 )
3
1 2
a
b
2016.12
同位角相等,两直线平行
内错角相等,两直线平行 同旁内角互补,两直线平行 两条直线都和第三条直线平行,则这
——— 公理
两条直线互相平行 在同一平面内,不相交的两条直线叫 做平行线.
2016.12
小结
• 判定两条直线平行的方法: • • • 1、同位角相等,两直线平行. 2、内错角相等,两直线平行. 3、同旁内角互补,两直线平行.
2016.12
议一议 完成一个命题的证明,需要哪些主要环节?与同伴进 行交流
证明一个命题有三个步骤: (1)根据题意,画出图形 ; (2)根据题设、结论、结合图形, 写出已知、求证; (3)写出 证明过程 。
2016.12
知识技能 1.太阳灶、卫星信号接收锅、探照灯以及其他很多 灯具都与抛物线有关.如图,从点 O 照射到抛物线 上的光线 OB ,OC 等反射以后沿着与 POQ 平行的 方向射出.图中如果∠ BOP = 45°,∠ QOC = 88°,那么∠ ABO 和∠ DCO 各是多少度?
2016.12
证明:两直线平行,同位角相等 已知:如图 7-8,直线 AB ∥ CD,∠ 1 和 ∠ 2 是直 线 AB,CD 被直线 EF截出的同位角. 求证:∠ 1 = ∠ 2. 证明:假设 ∠1≠∠2, G 过点 M 作直线 GH,使 ∠EMH = ∠ 2 H ∴GH ∥ CD. 又∵ AB ∥ CD , ∴经过点 M 存在两条直线 AB 和 GH 都与直线 CD 平行. 这与“过直线外一点有且只有一条直 线与这条直线平行”相矛盾. 反证法 则∠ 1 ≠∠ 2 的假设不成立, ∴ ∠ 1 = ∠ 2.
2016.12
定理: 平行于同一条直线的两条直线平行. 已知:如图 7-11,b ∥ a,c ∥ a,∠ 1, ∠ 2,∠ 3 是直线 a,b,c 被直线 d 截出的同位角. 求证:b ∥ c. 证明: ∵ b ∥ a(已知), ∴ ∠2 = ∠1 (两直线平行,同位角相等). ∵ c ∥ a(已知), ∴ ∠3 = ∠1 (两直线平行,同位角相等). ∴ ∠2 = ∠3(等量代换). ∴b∥c (同位角相等,两直线平行).
2016.12
2016.12
1.如图,AB∥CD,则α,β,γ之间 的关系是( ) A.α+β+γ=360° B.α-β+γ=180° 作业 C.α+β-γ=180° D.β+γ-α=180°
2、如图,∠AGD=∠ACB, CD⊥AB,EF⊥AB. 求证:∠1=∠2.
2016.12
知识技能 2.已知:如图,AD∥BC,∠ ABD = ∠ D. 求证:BD 平分 ∠ ABC.
2016.12
数学理解 3.已知:如图,AB ∥ CD,AD ∥ BC. 求证:∠ A = ∠ C,∠ B = ∠ D.
2016.12
数学理解 4.如图,一条直线分别与直线 BE、直线 CE、直线 BF、直线 CF 相交于点 A,G,H,D,且∠ 1 = ∠ 2,∠ B = ∠ C. (1)找出图中相互平行的线,说说它们之间为什么 是平行的; (2)证明:∠ A = ∠ D.
上述三个命题中的条件和结论分别是什么?
2016.12
a
b
2
1
c
c a b
1
2
c
a b
2 1
平行线的性质
定理1: 两直线平行,同位角相等.
定理2: 两直线平行,内错角相等。 定理3: 两直线平行,同旁内角互补。 思考:
平行线的判定定理和性质定理在条件和结论上 有何区别?
2016.12
知识回顾 3、如何判定两条直线平行
《数学》( 北师大.八年级 上册 )
第四节
2016.12
一、温故:
1、证明一个命题有三个步骤: (1)根据题意,画出图形 ; (2)根据题设、结论、结合图形, 写出已知、求证; (3)写出 证明过程 。
2016.12
2、平行线的判定
公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. 判定定理1: 内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. 判定定理2: 同旁内角互补,两直线平行. 0 ∵∠1+∠2=180 , ∴ a∥b.
2016.12
证明一个命题的一般步骤:
(1)弄清题设和结论;
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.来自2016.12小结
• 判定两条直线平行的方法:
1、同位角相等,两直线平行.
2、内错角相等,两直线平行.
3、同旁内角互补,两直线平行.
平行线的性质: 1.两直线平行,同位角相等. 2.两直线平行,内错角相等。 3.两直线平行,同旁内角互补。
证法1:
2016.12
证明:两直线平行,同旁内角互补 已知:如图,直线a//b,∠1和∠2是直线a,b被直 c 线c截出的同旁内角. a 求证:∠1+∠2=180° 3 1 2 b 证法2:∵a//b (已知) ∴∠3=∠2 (两直线平行,内错角相等)
∵∠1+∠3=180°(平角的定义) ∴∠1+∠2=180°(等量代换) 这里的结论,以后可以直接运用.