最新人教版高中数学选修2-1第一章《全称量词、存在量词复习》教学设计
高中数学选修2-1精品教案3:1.4.1 全称量词 1.4.2 存在量词教学设计

[教学目标]1通过生活和数学中的丰富实例,理解全称量词与存在量词的意义2能准确地利用全称量词与存在量词叙述数学内容[教学重点、难点]重点:理解全称量词与存在量词的意义难点:全称命题、特称命题的真假判断[教学过程]问题1:请大家思考:下列语句是命题吗?你能发现这些语句之间的一些关系吗?(1)、3>x(2)、对所有的3,>∈x R x(3)、12+x 是整数(4)、对任意一个12,+∈x Z x 是整数(5)、312=+x(6)、存在一个,0R x ∈使3120=+x(7)、x 能被2和3整除(8)至少有一个Z x ∈0,0x 能被2和3整除学生:(1)、(3)、(5)、(7)不是命题,(2)、(4)、(6)、(8)是命题。
他们之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题。
教师:观察,分析的很好。
短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示。
含有全称量词的命题叫做全称命题。
(2)、(4)是全称命题。
短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示。
含有存在量词的命题叫做特称命题。
(6)、(8)是特称命题。
通常将含有变量x 的语句用)(x p ,)(x q ,)(x r ,…表示,变量x 的取植范围用M 表示,那么:全称命题“对M 中任意一个x ,有)(x p 成立”可用符号简记为)(,x p M x ∈∀特称命题“存在M 中的一个0x ,使)(0x p 成立”可用符号简记为)(,00x p M x ∈∃练习:判断下列命题是全称命题还是存在性命题,并找出其中的量词(1)任意实数的平方都是正数__________\__________(2)0乘以任何数都等于0______________\____________(3)至少有一个实数有相反数___________\______________(4)⊿ABC 的内角中有小于600的角___________\___________(5)正方形是矩形____________\__________问题2:如何判断一个全称命题,特称命题的真假?例1;判断下列全称命题的真假(1)、所有的素数都是奇数(2)、01,2≥+∈∀x R x(3)、对每一个无理数x ,2x 也是无理数解析:(1)、2是素数,但是2不是奇数。
人教版高中数学选修2-1导学案第一章第四节全称量词与存在量词

第一章第四节全称量词与存在量词设计者:汪代波 审核者: 执教: 使用时间:学习目标1.通过生活和数学中的实例,理解全称量词和存在量词;2.会判断含全称量词与存在量词的命题;3.会用有“∀”“∃”表示命题;4.了解全称量词和存在量词分别有哪些。
________________________________________________________________________________ 自学探究问题1. 判断下列命题哪些是全称命题哪些是特称命题。
(1)若a>0,且a≠1,则对任意实数x ,ax>0;(2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2; (3) x T x R T sin )sin(,00=+∈∃使;(4) 01,00<+∈∃x R x 使。
【试试】(1) 短语“ ”“ ”在逻辑中通常叫做全称量词,并用符号“ ”表示,含有 的命题,叫做全称命题.其基本形式为: ,()x M p x ∀∈,读作:(2) 短语“ ”“ ”在逻辑中通常叫做存在量词,并用“ ”表示,含有 的命题,叫做特称称命题.其基本形式 00,()x M p x ∃∈,读作:问题2. 分别举出全称命题和特称命题,并指出他们的全称量词和存在量词。
【技能提炼】1.判断下列命题是不是全称命题或者特称命题(1)对数函数都是单调函数; (2)有一个实数0x ,使200230x x ++=;(3)任何一个实数除以1,仍等于这个实数;(4)存在两个相交垂直于同一条直线.。
2.用符号“∀”与“∃”表示含有量词的命题。
(1)实数的平方大于等于0;(2)存在一对实数,使2x +3y +3>0成立。
3.(1)已知:对1,x R a x x +∀∈<+恒成立,求实数a 的取值范围。
(2)已知 :1,+∃∈≥+x R a x x 成立,求实数a 的取值范围。
人教课标版高中数学选修2-1:《全称量词与特称量词》教案-新版

1.4 全称量词与存在量词一、教学目标(一)学习目标1.掌握全称量词和存在量词的含义;2.掌握含有量词的全称命题和存在命题的含义;3.掌握用数学符号表示含有量词的命题并判断真假.(二)学习重点理解掌握全称量词和存在量词的含义.(三)学习难点全称命题和存在命题真假的判定.二、教学设计(一)课前设计1.预习任务(1)短语“_________” “_________”在逻辑中通常叫做全称量词,并用符号“_________”表示,常见的全称量词还有“一切”“每一个”“任给”“所有的”等.(2)含有____________的命题,叫做全称命题.(3)全称命题:“对M中任意一个x,有p(x)成立”,可用符号简记为____________.(4)短语“_________” “_________”在逻辑中通常叫做存在量词,并用符号“_________”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等.(5)含有____________的命题,叫做特称命题.(6)特称命题:“存在M中的元素x0,有p(x0)成立”,可用符号简记为________________________.【答案】(1)所有的、任意一个、∀(2)全称量词(3) ∀x∈M,p(x)(4)存在一个、至少有一个、∃(5)存在量词(6)∃x0∈M,p(x0)预习自测1.下列语句不是全称命题的是( )A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小答案:C解析:【知识点】全称命题的判断.2.下列命题是特称命题的是( )A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于等于3答案:D解析:【知识点】特称命题的判断.3.下列是全称命题且是真命题的是( )A.∀x∈R,x2>0B.∀x∈Q,x2∈QC.∃x0∈Z,2x>1D.∀x,y∈R,x2+y2>0答案:B解析:【知识点】全称命题、真命题的判断.【解题过程】A、B、D为全称命题,但A、D中的结果可能等于0,因此为假命题.点拨:全称命题的形式为:对任意x属于M,有()p x成立.4.下列四个命题中,既是特称命题又是真命题的是( )A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x20>0C.任一无理数的平方必是无理数D.存在一个负数x0,使1x0>2答案:B解析:【知识点】特称命题、真命题的判断.【解题过程】B、D为特称命题,但D为假命题.点拨:特称命题的形式为:存在x属于M,有()p x成立.(二)课堂设计教学过程设计1.知识回顾(1)逻辑联结词“非”的含义;(2)命题“p ⌝”真假的判定;(3)命题的否定和否命题的区别.2.问题探究探究一 全称量词和全称命题●活动① 设置情景,引入概念请大家思考:下列语句是命题吗?你能发现这些语句之间的一些关系吗?(1)20x ->; (2)32x +是整数; (3)对所有的,20x x ∈->R ;(4)对任意一个32x x ∈+Z ,是整数; (5)所有有中国国籍的人数学很好. 分析:(1)(2)不是命题,(3)(4)(5)是命题.它们之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题.短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称命题,(3)(4)(5)是全称命题.通常将含有变量x 的语句用()p x ,()q x ,()r x 等表示,变量x 的取值范围用M 表示,那么,全称命题“对M 中任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.【设计意图】从具体问题入手,有利于学生主动参与.●活动② 判断全称命题的真假如何判断一个全称命题的真假呢?引导学生思考,并给出例题,以便学生入手解决.判断下列全称命题的真假(1)所有的素数都是奇数;(2)R ∈∀x 01,2≥+x ; (3)对每一个无理数x ,2x 也是无理数.解析:(1)2是素数,但是2不是奇数,故此命题是假命题.(2)任取实数2,110x x +≥>,故此命题是真命题.(322=是有理数,故此命题是假命题.总结规律:全称命题,()x M p x ∀∈为真,必须对给定的集合中每一个元素x ,都使得()p x 为真,但要判断一个全称命题为假,只要在给定的集合内找出一个0x ,使0()p x 为假.【设计意图】结合实例让学生更易理解.探究二 特称量词和特称命题●活动① 设置情景,引入概念请大家思考:下列语句是命题吗?(1)(3)、(2)(4)之间有什么关系?(1)312=+x ; (2)x 能被2和3整除;(3)存在一个R ∈0x 使3120=+x ;(4)至少有一个Z ∈0x ,0x 能被2和3整除; (5)有的学生不喜欢数学.分析:(1)(2)不是命题,(3)(4)(5)是命题.它之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题. 短语“至少有一个”“存在一个”在逻辑中通常叫做特称量词,并用符号“∃”表示.含有特称量词的命题叫做特称命题,(3)(4)(5)是特称命题.通常将含有变量x 的语句用()p x ,()q x ,()r x 等表示,变量x 的取值范围用M 表示,那么,全称命题“在M 中存在一个x ,有()p x 成立”可用符号简记为“,()x M p x ∃∈”,读作“存在x 属于M ,有()p x 成立”.【设计意图】从具体问题入手,有利于学生主动参与.●活动② 判断特称命题的真假如何判断一个特称命题的真假呢?引导学生思考,并给出例题,以便学生入手解决.判断下列特称命题的真假(1)有一个实数0x ,使032020=++x x ;(2)存在两个相交平面垂直于同一直线;(3)有些整数只有两个正因数.解析:(1)2200023(1)22x x x ++=++≥,故此命题是假命题.(2)由于垂直于同一直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一直线.(3)由于存在整数3只有两个正因数1和3,故此特称命题为真命题.总结规律:存在性命题,()x M p x ∃∈为真,只要在给定的集合M 中找出一个元素x ,使命题()p x 为真,否则为假.【设计意图】结合实例让学生更易理解.●活动③ 运用反馈例1 判断下列命题是全称命题还是特称命题,并判断真假.(1)所有的实数a 、b ,关于x 的方程ax +b =0恰有唯一解.(2)存在实数x 0,使得20013234x x =-+. 【知识点】全称命题和特称命题.【解题过程】 (1)该命题是全称命题.当a =0,b ≠0时方程无解,故该命题为假命题.(2)该命题是特称命题.∵x 2-2x +3=(x -1)2+2≥2, ∴1x 2-2x +3≤12<34.故该命题是假命题.【思路点拨】 掌握全称命题和特称命题真假的判断.【答案】(1)该命题是全称命题,假命题.(2)该命题是特称命题,假命题. 同类训练 判断下列命题的真假:(1)2,;R x x x ∃∈≥ (2)2,;x x x R ∀∈> (3)2,80.Q x x ∃∈-=答案:真 假 假.解析:【知识点】特称命题和全称命题的真假.【解题过程】解不等式和解方程.点拨:运用全称和特称命题的定义以及不等式和方程的解法.例2 已知函数2()25f x x x =-+是否存在实数m ,使不等式()0m f x +>对任意R x ∈恒成立?答案:存在 (4,)m ∈-+∞.解析:【知识点】全称命题和函数最值.【解题过程】原题等价于2(1)4m x >--- 对任意的R x ∈恒成立,只需4m >-. 思路:()0m f x +>恒成立只需要max [()]m f x >-.同类训练 已知函数2()2 5.f x x x =-+若存在实数x ,使不等式()0m f x ->成立,求实数m 的取值范围.答案:(4,)m ∈+∞.解析:【知识点】特称命题和函数最值.【解题过程】原题等价于存在R x ∈,使得2(1)+4m x >-,只需4m >. 点拨“”()0m f x ->恒成立只需要min ()m f x >.例3 存在π[0,]2x ∈,使得22sin 20x a ->,则实数a 的取值范围是________.答案:(a ∈.解析:【知识点】特称命题. 【解题过程】2π2sin 2,[0,]2a x x <∈有解,只需要2max π(2sin 2),[0,]2a x x <∈,所以22,(a a <∈.点拨:存在性问题就是有解性问题.同类训练 若存在0R x ∈,使20020ax x a ++<,则实数a 的取值范围是________.答案:(-∞,1) .解析:【知识点】特称命题.【解题过程】当a ≤0时,取x 0=-1,得ax 20+2x 0+a =2a -2≤-2<0. 当a >0时,Δ=4-4a 2>0,即0<a <1.综上得,a <1.点拨:存在性问题就是有解性问题.3.课堂总结知识梳理1.全称量词和特称量词的含义;2.全称命题和特称命题真假的判断.重难点归纳1. 熟练掌握用数学符号表示含有全称量词和特称量词的命题;2. 对全称命题和特称命题真假判断时要注意任意性和存在性的区分.三、课后作业基础型、自主突破1.下列命题中的假命题是( )A .(0,)lg 0x x ∃∈+∞=,B .x ∃∈R , 1tan =xC .20x x ∀∈>R ,D .30x x ∀∈>R ,答案:C解析:【知识点】全称命题、特称命题.【解题过程】对于A ,由于lg 1=0,因此A 正确;对于B ,由于tan 14π=,因此B 正确; 对于C ,由于02=0,因此C 不正确;对于D ,由于30x >恒成立,因此D 正确.综上所述,选C .点拨:基本初等函数的简单性质.2.已知命题:20p x x ∃∈->R ,,命题:q x x ∀∈<R ,则下列说法中正确的是( )A .p q ∨是命题B .命题p q ∧是真命题C .()p q ∧⌝是真命题D .()p q ∨⌝是真命题答案:C解析:【知识点】含有逻辑联结词的命题的真假判断.【解题过程】显然命题p 为真命题;对命题q ,当14x =1124x =>=,故为假命题,q ⌝为真命题.所以C 正确. 点拨:含有逻辑联结词的命题的真假判断.3.已知命题p :“存在x ∈R ,使1420x x m +++=”,若“非p ”是假命题,则实数m的取值范围是_________.答案:(0)-∞,解析:【知识点】根据命题求参数的范围.【解题过程】“非p ”是假命题,则p 为真命题;所以原命题等价于方程1420x x m +++=有解,则m 的取值范围即为函数1(42)x x y +=-+的值域,利用换元法可求得其值域为(0)-∞,. 故实数m 的取值范围是(0)-∞,. 点拨:分离参数求最值.4.已知p :∃x ∈R ,mx 2+1≤0;q :∀x ∈R ,x 2+mx+1>0.若“p 或q ”为假命题,则实数m 的取值范围为________.答案:m ≥2解析:【知识点】根据命题求参数的范围.【解题过程】依题意,知p 、q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,方程x 2+mx+1=0的判别式Δ=m 2-4≥0,即m ≤-2或m ≥2.由p 、q 均为假命题,得022m m m ≥⎧⎨≤-≥⎩或,即m ≥2. 点拨:“p 或q ”为假命题,则p 、q 中至少一个为假命题.5.命题2:10p x R ax ax ∀∈++≥,,若p ⌝是真命题,则实数a 的取值范围是 _______.答案:04a a <>或解析:【知识点】全称命题及特称命题, 不等式恒成立问题.【解题过程】当0a =时,不等式等价于错误!未找到引用源。
高二数学(人教版选修)教案:《全称量词与存在量词》

§1.4.1 全称量词与存在量词【学情分析】:1、 本节内容主要是通过丰富的实例,使学生了解生活和数学中经常使用的两类量词(全称量词和存在量词)的含义, 会判断含有一个量词的全称或特称命题的真假,会正确写出他们的否定形式,为我们从量的形式和范围上认识和解决问题提供了新的思路和方法;2.全称量词 :日常生活和数学中所用的“一切的”,“所有的”,“每一个”,“任意的”,“凡”,“都”等词可统称为全称量词,记作x ∀、y ∀等;3.存在量词:日常生活和数学中所用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,记作x ∃,y ∃等;4.含有全称量词的命题称为全称命题,含有存在量词的命题称为存在性称命题; 全称命题的格式:“对M 中的所有x ,p(x)”的命题,记为:,()x M p x ∀∈存在性命题的格式:“存在集合M 中的元素x 0,q(x 0)”的命题,记为: ∃x 0∈M ,p ( x 0)5.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义,能识别全称命题与特称命题.6.培养学生用所学知识解决综合数学问题的能力。
【教学目标】:(1)知识目标:通过生活和数学中的丰富实例,理解全称量词与存在量词的意义; (2)过程与方法目标:能准确地利用全称量词与存在量词叙述数学内容; (3)情感与能力目标:培养学生用所学知识解决综合数学问题的能力.【教学重点】:理解全称量词与存在量词的意义;【教学难点】:全称命题和特称命题真假的判定.课后练习1.判断下列全称命题的真假,其中真命题为( )A .所有奇数都是质数B .2,11x R x ∀∈+≥ C .对每个无理数x ,则x 2也是无理数 D .每个函数都有反函数 2.将“x 2+y 2≥2xy ”改写成全称命题,下列说法正确的是( )A .,x y R ∀∈,都有222x y xy +≥ B .,x y R ∃∈,都有222x y xy +≥ C .0,0x y ∀>>,都有222x y xy +≥ D .0,0x y ∃<<,都有222x y xy +≤ 3.判断下列命题的真假,其中为真命题的是A .2,10x R x ∀∈+= B .2,10x R x ∃∈+= C .,sin tan x R x x ∀∈< D .,sin tan x R x x ∃∈<4.下列命题中的假命题是( )A .存在实数α和β,使cos(α+β)=cos αcos β+sin αsin βB .不存在无穷多个α和β,使cos(α+β)=cos αcos β+sin αsin βC .对任意α和β,使cos(α+β)=cos αcos β-sin αsin βD .不存在这样的α和β,使cos(α+β) ≠cos αcos β-sin αsin β 5.下列全称命题中真命题的个数是( ) ①末位是0的整数,可以被2整除;②角平分线上的点到这个角的两边的距离相等; ③正四面体中两侧面的夹角相等;A .1B .2C .3D .4 6.下列存在性命题中假命题的个数是( )①有的实数是无限不循环小数; ②有些三角形不是等腰三角形; ③有的菱形是正方形;A .0B .1C .2D .3 参考答案:1.B 2.A 3.D 4.B 5.C 6.A§1.4.2 全称量词与存在量词【学情分析】:(1)通过探究数学中的一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律;(2)在探究的过程中,应引导学生根据全称量词和存在量词的含义,用简洁自然的语言表述含有一个量词的命题进行否定;(3)通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定。
2019-2020年高中数学《全称量词与存在量词》教案1 新人教A版选修2-1

2019-2020年高中数学《全称量词与存在量词》教案1 新人教A版选修2-1(一)教学目标1.知识与技能目标(1)通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.(2)了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断其命题的真假性.2.过程与方法目标使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.3.情感态度价值观通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.(二)教学重点与难点重点:理解全称量词与存在量词的意义难点: 全称命题和特称命题真假的判定.(三)教学过程1.思考、分析下列语句是命题吗?假如是命题你能判断它的真假吗?(1)2x+1是整数;(2) x>3;(3) 如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书;(6)所有有中国国籍的人都是黄种人;(7)对所有的x∈R, x>3;(8)对任意一个x∈Z,2x+1是整数。
1.推理、判断(让学生自己表述)(1)、(2)不能判断真假,不是命题。
(3)、(4)是命题且是真命题。
(5)-(8)如果是假,我们只要举出一个反例就行。
注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。
因为这些命题的反例涉及到“存在量词”“特称命题”“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人.命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x=2), x<3.(至少有一个x∈R, x≤3)命题(8)是真命题。
人教版高中数学选修2-1第一章4全称量词与存在量词(共14张PPT)教育课件

完全达标教学
2. 已知命题 p:∀x∈[1,2],x2-a≥0; 命题 q:∃x0∈R,x20+2ax0+2-a=0. (1)若命题“p∧q”是真命题,求实数 a 的取值范围; (2)若命题“p∨q”为真命题且“p∧q”为假命题, 求 a 的取值范围.
、
有些 、 有的 .
符号表示 特称命题
含有
∃ 存在量词
的命题
形式
“存在M中的一个x0,使p(x0)成立”,可用符号
记为 “∃x0∈M;p(x0)”
.
否定
xM,p(x)
3.如何判定全称命题和特称命题的真假? 对全称命题,若要判定为真命题,需对每一个x都验 证使p(x)成立; 若要判定为假命题,只需举一个反例.
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。
最新人教版高中数学选修2-1第一章《全称量词、存在量词》教学设计

最新人教版高中数学选修2-1第一章《全称量词、存在量词》教学设计教学设计1.4.1全称量词 1.4.2存在量词整体设计教材分析全称量词与存在量词是《课程标准》新增加的内容,旨在使学生认识这两类在现实生活中广泛使用的量词,会判断含有一个量词的全称命题或特称命题的真假,从而为我们从量的形式和范围上认识和解决问题提供了新的思路和方法.课时分配1课时教学目标知识与技能通过生活和数学中的实例,理解全称量词与存在量词的意义,能准确地利用全称量词与存在量词叙述数学内容.过程与方法通过生活和数学中的丰富实例,让学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.情感、态度与价值观在学习新知的过程中,培养学生的辨析能力以及培养他们的良好的思维品质.重点难点教学重点:理解全称量词与存在量词的意义.教学难点:全称命题和特称命题真假的判定.教学过程引入新课在日常生活和学习中,我们经常遇到这样的语句:(1)2x+1是整数;(2) x>3;(3) 如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)所有有中国国籍的人都是黄种人;(6)对所有的x∈R, x>3;(7)对任意一个x∈Z,2x+1是整数.提出问题:上述语句是命题吗?假如是命题,你能判断它的真假吗?活动设计:学生先独立思考,形成自己的初步结论,再通过学生之间的讨论形成最后答案.教师可以参与学生的讨论.对于(5)(6),最好是引导学生将反例用命题的形式写出来,因为这些命题的反例涉及“全称命题”的否定形式.活动成果:(1)(2)不能判断真假,不是命题,(3)~(7)是命题.其中(3)(4)(7)是真命题,(5)(6)是假命题.设计意图:通过学生对上述问题的思考,复习回顾命题的定义,并运用已学知识对命题的真假做出判断.探究新知提出问题1:请同学们思考一下,命题(3)~(7)有哪些共同特征?活动设计:留给学生两分钟的思考讨论时间,学生自由发言.活动成果:(5)~(7)命题中都含有“所有的”“任意”等表示全体的量词,命题(3)中隐含有量词,即任意两个全等的三角形,其对应边相等.命题(4)也含有隐含的量词,即平行于同一条直线的任意两条直线互相平行.设计意图:通过学生对5个命题的对比思考,寻找其共同点,使学生对全称量词有一个初步认识.提出问题2:问题1中的量词的含义是什么?含有这些量词的命题如何用符号语言表述?活动设计:第一个小问题学生可以通过独立思考或小组交流解决,第二个小问题可以在教师的指导下通过阅读课本的相关章节找到问题的解决方法. 最后教师引导学生形成规范的概念.活动成果:命题(3)~(7)都用到“所有的”“任意一个”这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“ ”表示,含有全称量词的命题,叫做全称命题.命题(3)~(7)都是全称命题.通常将含有变量x的语句用p(x),q(x),r(x)…表示,变量x的取值范围用M表示. 那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:x∈M, p(x),读作“对任意x属于M,有p(x)成立”.设计意图:通过提出问题,进一步探究答案,最后师生共同形成规范的全称量词及全称命题的定义,让学生感受从感性到理性的认识过程,体会符号语言准确、严密、简明、抽象的特点.提出问题3:为什么说(5)(6)是假命题?说出你的理由.活动设计:学生自由发言.活动成果:命题(5)是假命题,因为存在一个(个别、部分)有中国国籍,但不是黄种人的人.于是可得命题1:存在一个(个别、部分)有中国国籍的人不是黄种人.命题(6)是假命题,因为存在一个(个别、某些)实数(如x=2), x≤3,也可以说至少有一个x∈R, x≤3.于是可得命题2:存在一个(个别、某些)实数x(如x=2),使x≤3(或至少有一个x∈R, x≤3).设计意图:通过问题的回答,形成命题1、2,引出存在量词的概念,同时为下一课时《含有一个量词的命题的否定》做准备.提出问题4:观察上面得出的新命题1、2,它们有什么共同特征?它们与全称命题有什么区别?活动设计:学生自由发言.活动成果:这些命题用到了“存在一个”“至少有一个”这样的词语,在逻辑中,表示整体的一部分的词通常叫做存在量词,用符号“ ”表示.含有存在量词的命题叫做特称命题.命题1、命题2都是特称命题.特称命题“存在M中的元素x0,使p(x0)成立”可以用符号简记为:x0∈M,p(x0).读作“存在M中的元素x0, 使p(x0)成立”.全称量词相当于日常语言中“凡”“所有”“一切”“任意一个”等;存在量词相当于日常语言中“存在一个”“有一个”“有些”“至少有一个”“至多有一个”等.设计意图:类比教学可以使学生对全称量词与存在量词的定义有全面而深刻的认识,提升学生通过联想类比的方法去认识发现新知的能力.理解新知提出问题:判断下列命题是全称命题还是特称命题:(1) 指数函数都是单调函数;(2)至少有一个整数,它既能被2整除,又能被5整除;(3) x∈{|x x是有理数},x2是有理数;(4) x∈{|x x∈Z},log2x>0.活动设计:学生独立思考后自由发言.活动结果:全称命题有:(1)(3);特称命题有:(2)(4).设计意图:让学生知道,辨析一个命题是全称命题还是特称命题的关键是看命题中含有的量词,当不含量词时,则注意理解命题含义的实质.运用新知1判断下列命题中哪些为全称命题?哪些为特称命题?并判断其真假.(1)任何一条直线都有斜率;(2)有一个实数α,使得tanα无意义;(3)所有圆的圆心到其切线的距离都等于半径;(4)凡圆内接四边形,其内对角互补.思路分析:通过观察分析命题中所含量词是全称量词还是特称量词来判定命题是全称命题还是特称命题,然后在正确理解题意的基础上,根据已学数学知识判断命题的真假.解:(1)为全称命题,且是假命题,因为倾斜角是π2的直线斜率不存在. (2)为特称命题,且是真命题,当α=π2时,tanα无意义. (3)(4)为全称命题,且都是真命题. 证明略.点评:要判断一个特称命题为真,只要在给定的集合中找到一个元素x ,使命题p(x)为真;要判断一个特称命题为假,必须对在给定集合中的每一个元素x ,使命题p(x)为假.要判断一个全称命题为真,必须对在给定集合中的每一个元素x ,使命题p(x)为真;但要判断一个全称命题为假,只要在给定的集合中找到一个元素x ,使命题p(x)为假. 即全称命题与特称命题之间可以相互转化,它们之间并不是对立的关系.2判断下列命题是全称命题还是特称命题:(1)负数的平方是正数;(2)有的实数是无限不循环小数;(3)有些三角形不是等腰三角形;(4)每个二次函数的图象都与x 轴相交.思路分析:根据全称命题与特称命题的定义,逐个进行判断.解:(2)(3)中分别含有存在量词“有的”和“有些”,因此是特称命题; (1)的含义是“任意负数的平方是正数”,因此是全称命题;(4)中含有全称量词“每个”,因此是全称命题.点评:判断一个命题是全称命题还是特称命题的关键是看命题中含有的量词是全称量词还是存在量词,当不含量词时,则注意理解命题含义的实质.1.下列全称命题中是真命题...的为( ) A .所有奇数都是质数B .x ∈R ,x 2+1≥1C .若x 是无理数,则x 2也是无理数D .x ∈R ,x +1x≥2 2.将“x 2+y 2≥2xy ”改写成全称命题,下列说法正确的是( )A .x ,y ∈R ,都有x 2+y 2≥2xy B .x ,y ∈R ,都有x 2+y 2≥2xyC .x>0,y>0,都有x 2+y 2≥2xyD .x<0,y<0,都有x 2+y 2≤2xy答案:1.解:A 是假命题.比如实数1是奇数,但1既不是质数也不是合数. B 是真命题.证明:对x ∈R ,x 2≥0,∴x 2+1≥0+1=1.C 是假命题.比如x =2是无理数,但x 2=(2)2=2是有理数.D 是假命题.比如当x =0时,该式无意义.因此,选B.2.解:不等式“x 2+y 2≥2xy ”的含意为“对于任意的实数x ,y ,恒有x 2+y 2≥2xy ”.因此应该选A.变练演编1.对x ∈R +,x 2-ax +1>0恒成立,则a 的取值范围是________. 2.是否存在a ∈R ,使得x 2-ax +1>0恒成立?答案:1.解:∵x ∈R +,由x 2-ax +1>0可得a<="" +,x="" ,因为="">≥2,∴只需 a<2即可.2.解:二次函数y =x 2-ax +1的图象开口向上,因此只要函数图象与x 轴没有公共点,不等式x 2-ax +1>0恒成立.由Δ=a 2-4<0,得-2<a<2,因此只需-2<a0恒成立.</a<2,因此只需-2<a设计意图:进一步增强学生对符号语言、自然语言、图形语言的互译能力,加深学生对全称命题和特称命题的理解.1.下列特称命题中真命题的个数是()① x∈R,x≤0;②至少有一个整数,它既不是合数,也不是质数;③ x∈{|x x是无理数},x2是无理数.A.0 B.1 C.2 D. 32.下列全称命题中假命题...的个数是()①2x+1是整数(x∈R);②对所有的x∈R,x>3;③对任意一个x∈Z,2x2+1为奇数.A.0 B.1 C.2 D.33.下列命题为特称命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行线D.存在一个实数不小于34.“若a⊥α,则直线a垂直于平面α内的任意一条直线”是() A.全称命题B.特称命题C.不是命题D.假命题答案:1.D 2.C 3.D 4.A课堂小结知识收获:1.全称量词与存在量词的意义.2.全称命题和特称命题真假的判定方法.方法收获:归纳方法、类比方法.思维收获:类比思想、转化与化归的思想.布置作业课本习题1.4 A组第1、2题.补充练习基础练习1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少有一个为0。
高中数学人教A版选修(2-1)1.4 教学设计 《全称量词》(人教)

《全称量词》本课教学全称量词。
学生之前已经学过简单的逻辑联结词,本课则是在简单的逻辑联结词的基础上引入全称量词。
全课的内容分成两大部分:先介绍全称量词的含义,再介绍特称命题。
【知识与能力目标】1.通过生活和数学中的丰富实例理解全称量词的含义,熟悉常见的全称量词。
2.了解含有量词的全称命题的含义,并能用数学符号表示含有量词的命题及判定命题的真假性。
【过程与方法目标】使学生体会从具体到一般的认知过程,培养学生抽象能力、概括能力。
【情感态度价值观目标】1、学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题。
2、培养学生抽象概括能力和逻辑思维能力。
3、在教师的指导下进行交流探索,能用联系的观点认识问题,对数学学科方法有所认识,能对数学学科产生兴趣。
【教学重点】理解全称量词的含义【教学难点】全称命题的真假的判断多媒体课件一、新课导入(课件2-3页)二、新课讲授(课件4-8页)(1)本课目标谈话:先来看一下这节课的目标。
(显示课件第4页)(2)知识提炼谈话:首先我们来认识一下全称量词和全称命题。
(显示课件第5页)(3)要点探究①问题探究一:全称命题1.理解全称命题时应关注(1)全称命题就是陈述某集合中所有元素都具有某种性质的命题,常见的全称量词还有“一切”“每一个”等,相应的词语是“都”.(2)有些命题省去了全称量词,但仍是全称命题,如“有理数是实数”,就是“所有的有理数都是实数”.②问题探究二:怎样判断一个全称命题的真假要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一个x0,使得p(x0)不成立即可.三、典例展示(课件9-10页)谈话:让我们一起来判断下列全称命题的真假。
(显示课件第9-10页)四、课堂检测(课件11-14页)1.判一判(正确的打“√”,错误的打“×”)(1)“有些”“某个”“有的”等短语不是存在量词.( )(2)全称量词的含义是“任意性”,存在量词的含义是“存在性”.( )(3)全称命题一定含有全称量词,特称命题一定含有存在量词.( )2.做一做(请把正确的答案写在横线上)(1)命题“有些长方形是正方形”含有的量词是,该量词是量词(填“全称”或“存在”).(2)“负数没有对数”是命题(填“全称”或“特称”).(3)全称命题“∀x∈R,x2>0”是命题(填“真”或“假”).略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计本章复习教学目标知识与技能了解命题的逆命题、否命题与逆否命题,理解充分条件、必要条件与充要条件的意义,会分析四种命题间的相互关系,通过数学实例,了解逻辑联接词“或”“且”“非”的含义;理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.过程与方法通过本章的学习,体会逻辑用语在数学表述和论证及实际生活中的运用,引导学生在使用常用逻辑用语的过程中,掌握逻辑用语的用法,纠正出现的错误,体会运用常用逻辑用语表述数学内容的准确性和简洁性,避免对逻辑用语的机械记忆和抽象表示.培养学生由具体到抽象的思维方法,发展理性思维能力.情感、态度与价值观通过本章的学习,提高学生理性分析,逻辑推理的能力;体会数学的严谨性,提高思维的深刻性和批判性,感受对立统一的思想,培养良好的思维品质.重点难点教学重点:(1)理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;(2)理解充分条件,必要条件及充要条件的意义;(3)学会用定义解题,理解数形结合、分类讨论、等价转换等思想方法.教学难点:(1)理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;(2)理解充分条件,必要条件及充要条件的意义;(3)学会用定义解题,理解数形结合、分类讨论及等价变换等思想方法.教学过程形成网络1.本章的知识结构图2.本章基本知识点(1)命题:用语言、符号或式子表达的,可以______叫做命题,其中判断为真的语句叫做______,判断为假的语句叫做______.(2)四种命题的形式及其关系:①四种命题:若原命题为“若p,则q”,则其逆命题为______;否命题是______;逆否命题是______.②四种命题之间的关系:(3)充分条件、必要条件与充要条件:①充分条件与必要条件:一般地,“若p,则q”为______,是指由p通过推理可以得出q.这时,我们就说,______,记作______,并且说______的充分条件,______的必要条件.②充要条件:一般地,如果既有______,又有______,就记作p q.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的______条件.概括地说,如果p q,那么______互为充要条件.(4)逻辑联接词①命题中的______、______、______叫做逻辑联接词.②命题“p∧q、p∨q、p(或q)”真假判断.(5)全称量词与存在量词①全称量词:短语“所有的”“任意一个”在逻辑中通常叫做______,并用符号“ ”表示.含有全称量词的命题,叫做______.②存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做______,并用符号“ ”表示.含有存在量词的命题,叫做______.(6)含有一个量词的命题的否定①全称命题p:x∈M,p(x),它的否定p:______.②存在命题p:x0∈M,p(x0),它的否定p:______.提出问题:1.请同学们独立完成知识填空.2.在完成知识填空的同时,回想一下本章有哪些基本题型,解决这些基本题型的方法和步骤是什么?活动设计:学生独立完成基本知识填空,然后让几位同学口答填空答案,教师借助多媒体投影出知识填空的答案,适当地规范学生的表述;通过回忆旧知识,并思考、讨论回答问题.学情预测:学生在前面几节学习的基础上,能够顺利地完成基本知识填空,但在准确性、规范表达上会存在着一定的差距.题型和方法的总结更是五花八门.活动结果:知识填空答案:(1)判断真假的陈述句真命题假命题(2)①若q,则p若p,则q若q,则p(3)①真命题由p可以推出q p q p是q q是p②p q q p充要p与q(4)①或且非(5)①全称量词全称命题②存在量词特称命题(6)①x0∈M,p(x0)②x∈M,p(x)设计意图:全面系统地梳理基础知识,帮助学生巩固基础,加深对概念、公式、定理的理解,虽然题型和方法总结得不到位,教师利用下一环节“典型示例”和同学们一块儿总结一下本章的重点题型和方法.典型示例类型一:命题的关系及真假的判断1写出命题“当c>0时,若a>b,则ac>bc”的逆命题、否命题与逆否命题,并分别判断它们的真假.思路分析:写成“若p,则q”的形式,再分别写出原命题的逆命题、否命题、逆否命题,然后逐一判断真假.解:逆命题:当c>0时,若ac>bc,则a>b,是真命题;否命题:当c>0时,若a≤b,则ac≤bc,是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b,是真命题.点评:对于命题真假的判定,关键是分清命题的条件和结论,只有将条件和结论分清,再结合所涉及的知识才能正确地判断命题的真假.巩固练习1.对于命题“正方形的四个内角相等”,下面判断正确的是()A.所给命题为假B.它的逆否命题为真C.它的逆命题为真D.它的否命题为真2.“若x≠a,则x2-(a+b)x+ab≠0”的否命题()A.若x≠a,则x2-(a+b)x+ab=0B.若x=a,则x2-(a+b)x+ab≠0C.若x=a,则x2-(a+b)x+ab=0D .以上都不对 答案:1.B 2.C类型二:充分条件与必要条件的判定 2指出下列各组命题中,p 是q 的什么条件?(1)p :a +b =2; q :直线x +y =0与圆(x -a)2+(y -b)2=2相切; (2)p :|x|=x ;q: x 2+x ≥0;(3)设l ,m 均为直线,α为平面,其中l α,m α ,p :l ∥α;q :l ∥m ; (4) 设α∈(-π2,π2),β∈(-π2,π2);p: α<β;q :tanα<tanβ.思路分析:利用定义,逐一判断即可. 解:(1)p 是q 的充要条件; (2)p 是q 的充分不必要条件; (3)p 是q 的必要不充分条件; (4)p 是q 的充要条件.点评:注意p 与q 之间关系的方向性,充分条件与必要条件正好相反,不要混淆.巩固练习设a ,b ∈R ,已知命题p :a =b ;命题q :(a +b 2)2≤a 2+b 22,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 答案:B类型三:充要条件的证明3求证:直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件是17a +4b =11.思路分析:从必要性着手,分充分性和必要性两方面证明.解:(必要性)由⎩⎪⎨⎪⎧2x -2y -3=0,3x -5y +1=0, 得交点P(174,114).∵直线l 过点P , ∴ a ×174-114+b =0.∴ 17a +4b =11.(充分性):设a ,b 满足17a +4b =11,∴ b =11-17a 4.代入直线l 的方程:ax -y +11-17a4=0, 整理得:a(x -174)-(y -114)=0.此方程表明,直线恒过两直线y -114=0,x -174=0的交点(174,114),而此点为l 1与l 2的交点. ∴充分性得证. ∴综上所述,命题为真.点评:关于充要条件的证明,一般有两种方式,一种是利用“ ”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性.类型四:用“或、且、非”连接简单命题,并判断真假4已知命题p : x ∈R ,使tanx =1,命题q :x 2-3x +2<0的解集是{x|1<x<2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④思路分析:首先判断每个简单命题的真假,然后依照真值表逐个判断每个复合命题的真假.解:命题p :x ∈R ,使tanx =1是真命题,命题q :x 2-3x +2<0的解集是{x|1<x<2}是真命题,由真值表可知,命题“p ∧q ”是真命题,命题“p ∧q ”是假命题,命题“p ∨q ”是真命题, 命题“p ∨q ”是假命题,即四个结论均正确,应选D.点评:本题的关键是判断每个简单命题的真假.巩固练习如果命题“(p 或q)”为假命题,则( ) A .p 、q 均为真命题 B .p 、q 均为假命题C .p 、q 中至少有一个为真命题D .p 、q 中至多有一个为真命题 答案:C类型五:全称、特称命题的真假及全称、特称命题的否定5写出下列命题的否定,判断它们否定的真假.(1)无论x为何实数,sin2x+cos2x=1;(2)不等式x2+x+1≤0有实数解.思路分析:否定量词,否定判断词,写出命题的否定,然后判断命题的真假.解:(1)存在x0 为实数,sin2x0+cos2x0≠1.是假命题.(2) x∈R,都有不等式x2+x+1>0成立.是真命题.点评:只否定全称量词和存在量词,或只否定判断词,会因为否定不全面或否定词不准确而致错.巩固练习命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R, 2x>0答案:D拓展实例1用反证法证明:已知x、y∈R,x+y≥2,则x、y中至少有一个大于1.思路分析:因原命题与逆否命题是等价命题,可以考虑证明它的逆否命题为真命题,从而达到证明原命题为真命题的目的.当然也可选用反证法.证明:(法一)若设x<1且y<1,则由不等式同向相加的性质得到:x+y<2,这表明,原命题的逆否命题为真命题,从而原命题也为真命题,∴若x、y∈R,x+y≥2, 则x、y中至少有一个大于1成立.(法二)假设x<1且y<1,由不等式同向相加的性质得到x+y<2;与已知x+y≥2矛盾,∴假设不成立.∴x、y中至少有一个大于1.点评:反证法的理论依据是:欲证“若p,则q”为真,先证“若p,则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p,则非q”为假时,“若p,则q”一定为真.2若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件.思路分析:利用“”“”符号分析各命题之间的关系.解:由D C B A ,∴DA ,D 是A 的充分条件.点评:符号“”“”具有传递性,不过前者是单方向的,后者是双方向的.变练演编设集合M ={x|0<x ≤3},N ={x|x 2-(2a +1)x +a(a +1)≤0},若“x ∈M ”是“x ∈N ”成立的必要不充分条件,求a 的取值范围.思路分析:将“x ∈M ”是“x ∈N ”成立的必要不充分条件,转化为集合之间的关系即N M.解:由x 2-(2a +1)x +a(a +1)≤0,解得a ≤x ≤a +1, ∴N ={x|a ≤x ≤a +1},由于N M ,∴⎩⎪⎨⎪⎧a>0,a +1≤3.解得0<a ≤2. 所以a 的取值范围为{a|0<a ≤2}.点评:在涉及求字母参数的取值范围的充要条件问题中,常常要利用集合的包含、相等关系来考虑.提出问题:设集合M ={x|0<x ≤3},N ={x|x 2-(2a +1)x +a(a +1)≤0},若“x ∈M ”是“x ∈N ”成立的______条件,求a 的取值范围.活动设计:引导学生适当改变题目的条件和结论,进行一题多变,学生自己设计题目进行研究,将所有发现的结果一一列举,熟练充要条件的判断方法.活动结果:(1)充分不必要;a ∈ ; (2)必要;{a|0<a ≤2}; (3)充要;a ∈.设计意图:通过本题产生对充要条件一个认识上的升华,完成对充分条件、必要条件、充要条件的再认识.达标检测1.命题“方程|x|=1的解是x =±1”中,使用逻辑联结词的情况是( ) A .使用了逻辑联结词“或” B .使用了逻辑联结词“且” C .使用了逻辑联结词“非”D.没有使用逻辑联结词2.已知条件p:k=3,条件q:直线y=kx+2与圆x2+y2=1相切,则p是q的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.命题“若a>b, 则2a>2b”的否命题为______.4.命题p:x∈R,f(x)≥m.则命题p的否定p是______.答案:1.A 2.A 3.若a≤b,则2a≤2b 4. x0∈R,f(x0)<m课堂小结1.知识收获:(1)命题的概念;(2)四种命题的形式及其关系;(3)充分条件、必要条件与充要条件;(4)逻辑联结词;(5)全称量词与存在量词;(6)含有一个量词的命题的否定.2.方法收获:(1)命题的关系及真假的判断;(2)充分条件与必要条件的判定;(3)充要条件的证明;(4)用“或、且、非”连接简单命题,并判断真假;(5)全称特、称命题的真假及全称、特称命题的否定.3.思维收获:体会数学的严谨性,提高思维的深刻性和批判性,养成严谨缜密的思维习惯.布置作业课本复习参考题:A组第5题、第6题.补充练习1.在下列关于直线l、m与平面α、β的命题中,为真命题的是()A.若l β且α⊥β,则l⊥αB.若l⊥β且α∥β,则l⊥αC.若l⊥β且α⊥β,则l∥αD.若α∩β=m且l∥m,则l∥α2.下列命题中不正确的是()A.a,b∈R,a n=an+b,有{a n}是等差数列B.a,b∈R,a n=an2+bn,使{a n}是等差数列C.a,b,c∈R,S n=an2+bn+c,有{a n}是等差数列D.a,b,c∈R,S n=an2+bn+c,使{a n}是等差数列3.以下判断正确的是()A.若p是真命题,则“p且q”一定是真命题B.命题“p且q”是真命题,则命题p一定是真命题C.命题“p且q”是假命题时,命题p一定是假命题D.命题p是假命题时,命题“p且q”不一定是假命题4.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.设p:大于90°的角叫钝角,q:三角形三边的垂直平分线交于一点,则p、q的复合命题“p或q”“p且q”“非q”中,是真命题的有______.答案:1.B 2.C 3.B 4.B 5.p或q设计说明设计思想通过基础知识填空,帮助学生回顾基本概念、定理和相关结论,通过典型示例总结本章的基本题型和方法;通过练习和作业加深对概念的理解和应用概念的熟练性.设计意图由于本章概念多、理论性较强,通过基础知识填空,帮助学生准确记忆相关概念,并形成本章的知识网络;通过典型示例教学既要总结题型和方法,又要熟练相关题型的解题步骤和准确规范的表述;教学中不要急于求成,而应在后续的教学中经常借助这些概念表达、阐述和分析.设计特点从学生的认知基础出发结合具体的题型和方法,在加深概念理解的同时,熟练相关概念的应用,同时在应用新知的过程中,将所学的知识条理化,使自己的认知结构更趋合理.备课资料1已知集合A ={x|x 2-3x +2=0},B ={x|x 2-mx +2=0},若A 是B 的必要不充分条件,求实数m 的范围.思路分析:化简条件得A ={1,2},由于A 是B 的必要不充分条件,即B A ,只需根据集合B 中含有的元素个数进行分类讨论即可.解:当B = 时,Δ=m 2-8<0,∴ -22<m<2 2.当B ={1}或{2}时,⎩⎪⎨⎪⎧Δ=0,1-m +2=0或4-2m +2=0,m 无解; 综上所述,m 的取值范围是{m|-22<m<22}.点评:全面地挖掘题中隐藏条件是解题过程中需考虑的一个重要方面,如本题当B ={1}或{2}时,不能遗漏Δ=0;即对于分类讨论要做到不重不漏.2已知a>0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对 x ∈R 恒成立,若p 且q 为假,p 或q 为真,求a 的取值范围.思路分析:要判断含有逻辑联结词的复合命题的真假,首先要先确定构成复合命题的简单命题的真假,即求出此时简单命题成立的条件;其次求出含逻辑联结词的复合命题成立的条件;注意p ∧q 为假且p ∨q 为真,等价于p ,q 中一真一假.解:∵y =a x 在R 上单调递增,∴a>1.又不等式ax 2-ax +1>0对 x ∈R 恒成立, ∴Δ<0,a>0.即a 2-4a<0.解得0<a<4.而命题p 且q 为假,p 或q 为真,那么p ,q 中有且只有一个为真,一个为假.(1)若p 真q 假,则a ≥4,(2)若q 真p 假,则0<a ≤1.所以a 的取值范围是(0,1]∪[4,+∞).点评:本题也可先求出每个命题为真时,相应的a 的取值范围,再根据p ,q 之间的关系确定a 的取值范围.(设计者:赵海彬)。