刘庆昌遗传学复习资料
遗传学(刘庆昌第二版) 近亲繁殖与杂种优势 答案

《遗传学(第二版)》(刘庆昌主编)部分习题解答四川农业大学农学院生物技术系 杨先泉 第九章 近亲繁殖和杂种优势(p203)3. 假设有3对独立遗传的异质基因,自交5代后群体中3对基因杂合(个体)的比例是多少?3对基因中2对基因杂合、1对基因纯合(个体)的比例是多少?3对基因均纯合(个体)的比例是多少?[提示] 根据孟德尔遗传规律,1对基因杂合体自交r 代,后代群体中纯合体的比例为112r ⎛⎞−⎜⎟⎝⎠,杂合的比例为12r ⎛⎞⎜⎟⎝⎠;n 对独立遗传基因杂合体自交后代中,各种基因型类型及比例符合二项分布:11122n r r ⎡⎤⎛⎞⎛⎞−+⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎣⎦。
[答案] 1对基因自交5代,纯合体的比例为3132,杂合体的比例为132; 由于3对(n=3)基因独立遗传,因此自交5代,x 对基因纯合(3-x 对基因杂合)的比例为:()33!311!3!3232x x x x −⎛⎞⎛⎞××⎜⎟⎜⎟×−⎝⎠⎝⎠。
3对基因杂合(x=0)的比例为:3.05×10-51对基因纯合,2对基因杂合(x =1)的比例为:2.84×10-33对基因纯合(x =3)的比例为:0.9099. A 、B 、C 、D 是4个高粱自交系,其中A 和D 是姊妹自交系,B 和C 是姊妹自交系。
四个自交系可配成6个单交种,为了使双杂种的杂种优势最强,你将选哪两个单交种进行杂交,为什么?[答案] 影响杂种优势最主要的因素是双亲间基因型差异,双亲间基因型差异越大,杂种的杂合程度越高,杂种优势越强;同时,亲本的纯合度越高,杂种群体的整齐度越高,杂种优势最明显。
单交种A ×D 与单交种B ×C 均由姊妹自交系产生,具有较高的纯合度;同时两个单交种间的遗传差异最大;因此双交种(A ×D)×(B ×C)的杂种优势最强。
遗传课后题补充答案完整版

遗传课后题补充答案完整版刘庆昌版《遗传学》增刊刘庆昌版《遗传学》增刊生物学1301荣誉制作总编辑侯帅李兵泽光工作人员李泽光、、刘新禄、徐泽谦、宋新宇、侯帅冰(排名第一)如何证明DNA是大多数生物的遗传物质?证明了DNA是生物体的主要遗传物质。
可以设计两个实验来直接证明DNA是生物体的主要遗传物质:(1)肺炎球菌的定向转化试验:毒性Sⅲ(65℃杀死→小鼠存活→无细菌无毒Rⅱ→小鼠存活→Rⅱ毒性Sⅲ繁殖→小鼠死亡→Sⅲ型Rⅱ毒性Sⅲ繁殖(65℃) →小鼠死亡→Sⅲ繁殖。
将IIIS细菌的DNA提取物与IIR细菌混合,在体外培养条件下,成功地将少数IIR细菌定向转化为IIIS细菌提取物不受蛋白酶、多糖酶和核糖核酸酶的影响,但只能被脱氧核糖核酸酶破坏。
因此,可以确定引起转化的物质是DNA (2)噬菌体的感染和繁殖试验大肠杆菌中的T2噬菌体的DNA不仅可以利用大肠杆菌合成的材料复制其自身的DNA,还可以利用大肠杆菌合成的材料合成其蛋白壳和蛋白尾,从而形成一个完整的新生噬菌体。
32P和35S分别标记T2噬菌体的DNA和蛋白质因为磷是脱氧核糖核酸的一个组成部分,而不是蛋白质。
硫是蛋白质的一种成分,但不是脱氧核糖核酸。
然后用标记的T2噬菌体(32P或35S)感染大肠杆菌。
10分钟后,用搅拌器振掉附着在细胞外部的噬菌体外壳。
人们发现,在第一种情况下,基本上所有的放射性都是在细菌中发现的,而没有被倾倒和转移给后代。
在第二种情况下,放射性活度主要在倾倒的贝壳中发现,细菌的放射性活度很低,不能传给后代。
2.DNA双螺旋结构及其特征简介(1)两条多核苷酸链呈右旋螺旋形式,并围绕同一轴以一定的空间距离相互平行,像一个扭曲的梯子。
(2)两条多核苷酸链是反平行的也就是说,一个磷酸二酯键链在5-3’方向,另一个在3’-5’方向,这两个方向正好相反。
也就是说,一条链反向于另一条链,这叫做反平行。
(3)每个长链的内侧是一个扁平的盘状碱基,一方面通过氢键与脱氧核糖连接,另一方面与互补碱基连接,并像梯级一样一个接一个堆叠。
刘庆昌遗传学复习资料

遗传学复习资料第一章绪论一、遗传学研究方向:遗传学是研究生物遗传和变异的科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
*遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
*变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
二、为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的,没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。
遗传和变异这对矛盾不断地运动,经过自然选择,才形成各色的物种。
同时经过人工选择,才育成适合人类需要的不同品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大因素。
第二章遗传的细胞学基础一、真核细胞的结构与功能:质膜:细胞表面的一层单位膜,特称为质膜。
真核细胞除了具有质膜、核膜外,发达的细胞内膜形成了许多功能区隔。
由膜围成的各种细胞器,如核膜、内质网、高尔基体、线粒体、叶绿体、溶酶体等,在结构上形成了一个连续的体系,称为内膜系统。
内膜系统的作用:1.使细胞内表面积增加了数十倍,各种生化反应能够有条不紊地进行;2.细胞代谢能力也比原核细胞大为提高。
细胞核:细胞核是细胞内最重要的细胞器,核表面是由双层膜构成的核被膜,核内包含有由DNA和蛋白质构成的染色体。
细胞质:存在于质膜与核被膜之间的原生质称为细胞质,细胞之中具有可辨认形态和能够完成特定功能的结构叫做细胞器。
除细胞器外,细胞质的其余部分称为细胞质基质或胞质溶胶,其体积约占细胞质的一半。
细胞质基质并不是均一的溶胶结构,其中还含有由微管、微丝和中间纤维组成的细胞骨架结构。
细胞质基质的功能:1)具有较大的缓冲容量,为细胞内各类生化反应的正常进行提供了相对稳定的离子环境。
2)许多代谢过程是在细胞基质中完成的,如①蛋白质的合成、②mRNA的合成、③脂肪酸合成、④糖酵解、⑤磷酸戊糖途径、⑥糖原代谢、⑦信号转导。
刘庆昌遗传学期末考试试题

刘庆昌遗传学期末考试试题一、选择题(每题2分,共20分)1. 遗传学中,哪个定律描述了基因在染色体上的线性排列?A. 孟德尔第一定律B. 孟德尔第二定律C. 连锁与基因重组定律D. 独立分配定律2. 以下哪个不是基因突变的类型?A. 点突变B. 插入突变C. 缺失突变D. 染色体突变3. 基因型为AaBb的个体在自交时,其后代的基因型组合数是多少?A. 2B. 4C. 6D. 94. 以下哪个是多基因性状的特点?A. 遗传力高B. 遗传力低C. 受环境影响小D. 受环境影响大5. 人类遗传病中,哪种遗传方式是由X染色体上的基因控制的?A. 常染色体显性遗传B. 常染色体隐性遗传C. X染色体显性遗传D. X染色体隐性遗传二、填空题(每空2分,共20分)6. 孟德尔的遗传定律包括______定律、______定律和______定律。
7. 基因型为Aa的个体在显性纯合子AABB的背景下,其表现型为______。
8. 染色体结构变异包括______、______、______和______。
9. 遗传病的预防措施包括______、______和______。
10. 基因表达调控的三个主要阶段是______、______和______。
三、简答题(每题10分,共30分)11. 简述遗传连锁与基因重组的概念及其在遗传学研究中的意义。
12. 解释什么是基因多态性,并举例说明其在人类遗传病研究中的应用。
13. 描述人类遗传病的分类,并简述每种类型的遗传特点。
四、计算题(每题15分,共30分)14. 已知一对夫妇的基因型分别为AaBb和AaBb,计算他们后代中出现AABB基因型的概率。
15. 假设有一个基因座有三种等位基因A、a和a',其中A的频率为0.6,a的频率为0.3,a'的频率为0.1。
计算这个基因座的杂合度。
五、论述题(共30分)16. 论述基因编辑技术在医学和农业领域的应用前景及其可能带来的伦理问题。
刘庆昌 遗传物质的分子基础 答案

刘庆昌遗传物质的分子基础答案
刘庆昌遗传物质的分子基础答案
《遗传学(第二版)》(刘庆昌主编)部分习题解答
第二章遗传物质的分子基础(p58)
8. 如果DNA 的一条链上(A+G)/(T+C)=0.6,那么互补链上的同一个比率是多少?
[答案]:其互补链上的(A+G)/(T+C)为1/0.6=1.7。
10. 有几种不同的mRNA 可以编码氨基酸序列met-leu-his-gly ?
[答案]:根据遗传密码字典,有1种密码子编码met 、6种密码子编码leu 、2种密码子编码组氨酸、
4种密码子编码gly ;因此有1×6×2×4=48不同的mRNA 可以编码该氨基酸序列。
分别为:
AUG CUU
[提示]:有的同学把起始密码子和终止密码子也考虑进去,尤其是终止密码子。
个人认为也不应该算
错,说明你考虑问题更深一层;如果再深一层考虑题述本来就是一个片段,而不是一个完整的基因,所以可以不考虑。
CAG CAC GGU GGC GGA GGG
四川农业大学农学院生物技术系杨先泉。
(整理)刘庆昌普通遗传学答案-

遗传学课后习题及答案(刘庆昌第二版)第一章遗传的细胞学基础(32页)1.中期染色体的外部形态包括哪些部分? 染色体的形态有哪些类型?着丝点、染色体臂、主缢痕、随体。
中间着丝粒染色体、近中着丝粒染色体、近端着丝粒染色体、顶端着丝粒染色体。
2.简述有丝分裂和减数分裂的主要区别。
⑴减数分裂前期有同源染色体配对(联会);⑵减数分裂遗传物质交换(非姐妹染色单体片段交换);⑶减数分裂中期后染色体独立分离,而有丝分裂则着丝点裂开后均衡分向两极;⑷减数分裂完成后染色体数减半;⑸分裂中期着丝点在赤道板上的排列有差异:减数分裂中同源染色体的着丝点分别排列于赤道板两侧,而有丝分裂时则整齐地排列在赤道板上。
3. 简述真核生物染色体结构染色质的基本结构单位是核小体。
核小体是由组蛋白核心和盘绕其上的DNA构成,是一个八聚体。
DNA包装成染色体需要经过三级压缩,其具体过程是:1)首先组蛋白组成盘装八聚体,DNA缠绕其上,成为核小体颗粒,两个颗粒之间经过DNA连接,形成外径10nm的纤维状串珠,称为核小体串珠纤维,是为染色体一级结构。
2)核小体串珠纤维在酶的作用下形成每圈6个核小体,外径30nm的螺旋结构。
是为染色体二级结构3)螺旋结构再次螺旋化,形成超螺旋结构,此为三级结构4)超螺线管(或者说微带),形成绊环,即线性的螺线管形成的放射状环。
绊环再非组蛋白上缠绕即形成了显微镜下可见的染色体结构。
4.某物种细胞染色体数为2n=24,分别指出下列各细胞分裂时期中的有关数据:(1)有丝分裂后期染色体的着丝点数;48(2)减数分裂后期I染色体着丝点数;24(3)减数分裂中期I的染色体数;24(4)减数分裂末期1I的染色体数。
125.果蝇体细胞染色体数为2n=8,假设在减数分裂时有一对同源染色体不分离,被拉向同一极,那么:(1)二分子的每个细胞中有多少条染色单体?(2)若在减数分裂第二次分裂时所有的姊妹染色单体都分开,则产生四个配子中各有多少条染色体?(3)用n表示一个完整的单倍染色体组,应怎样表示每个配子的染色体数?(1)一个子细胞有10条染色单体,另一个子细胞中有6条染色单体(2)两个配子中有5条染色体,另两个配子中有3条染色体。
遗传课后题补充答案完整版

刘庆昌版《遗传学》答案补充生科1301 荣誉出品主编侯帅兵李泽光参编李泽光岳巍刘新露徐泽千宋新宇侯帅兵(排名不分先后)主审刘洋第二章遗传物质的分子基础1.怎样证明DNA是绝大多数生物的遗传物质?证明DNA是生物的主要遗传物质,可设计两种实验进行直接证明DNA是生物的主要遗传物质:(1)肺炎双球菌定向转化试验:有毒SⅢ型(65℃杀死)→小鼠成活→无细菌无毒RⅡ型→小鼠成活→重现RⅡ型有毒SⅢ型→小鼠死亡→重现SⅢ型RⅡ型有毒SⅢ型(65℃)→小鼠→死亡→重现SⅢ型将IIIS型细菌的DNA提取物与IIR型细菌混合在一起,在离体培养的条件下,也成功地使少数IIR型细菌定向转化为IIIS型细菌。
该提取物不受蛋白酶、多糖酶和核糖核酸酶的影响,而只能为DNA酶所破坏。
所以可确认导致转化的物质是DNA。
(2)噬菌体的侵染与繁殖试验T2噬菌体的DNA在大肠杆菌内,不仅能够利用大肠杆菌合成DNA的材料来复制自己的DNA,而且能够利用大肠肝菌合成蛋白质的材料,来合成其蛋白质外壳和尾部,因而形成完整的新生的噬菌体。
32P和35S分别标记T2噬菌体的DNA与蛋白质。
因为P是DNA的组分,但不见于蛋白质;而S是蛋白质的组分,但不见于DNA。
然后用标记的T2噬菌体(32P或35S)分别感染大肠杆菌,经10分钟后,用搅拌器甩掉附着于细胞外面的噬菌体外壳。
发现在第一种情况下,基本上全部放射活性见于细菌内而不被甩掉并可传递给子代。
在第二种情况下,放射性活性大部分见于被甩掉的外壳中,细菌内只有较低的放射性活性,且不能传递给子代。
2.简述DNA双螺旋结构及其特点。
(1)两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,象一个扭曲起来的梯子。
(2)两条多核苷酸链走向为反向平行(antiparallel)。
即一条链磷酸二脂键为5-3’方向,而另一条为3’-5’方向,二者刚好相反。
亦即一条链对另一条链是颠倒过来的,这称为反向平行。
刘庆昌遗传学复习资料

第一章绪论遗传学(Genetics)是研究生物遗传和变异的科学,是生命科学最重要的分支之一遗传与变异是生物界最普通、最基本的两个特征。
遗传(heredity):指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各种特性不变;变异(variation):指生物在亲代与子代之间,以及在子代与子代之间表现出一定差异的现象。
遗传代表的是性状的稳定性,是相对的;变异代表的是性状的不稳定性,是绝对的。
遗传和变异是生物进化和物种形成的内在因素。
遗传、变异和选择是生物进化和新品种选育的三大因素。
生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传) ,变异逐代积累导致物种演变、产生新物种。
动、植物和微生物新品种选育(育种)实际上是一个人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。
生物所表现出的性状变异分为:可遗传(heritable)变异和不可遗传(non-heritable)。
变异考察生物遗传与变异应该在给定环境条件下进行。
达尔文:泛生假说(hypothesis of pangensis)达尔文在解释生物进化时也对生物的遗传、变异机制进行了假设,并提出了泛生假说,认为:遗传物质是存在于生物器官中的“泛子/泛生粒”;遗传就是泛子在生物世代间传递和表现达尔文也承认获得性状遗传的一些观点,认为生物性状变异都能够传递给后代。
孟德尔:遗传因子假说遗传因子假说认为:生物性状受细胞内遗传因子(hereditary factor)控制。
遗传因子在生物世代间传递遵循分离和独立分配两个基本规律。
这两个遗传基本规律是近现代遗传学最主要的、不可动摇的基础。
生物进化理论的基础,遗传学研究生物在少数几个世代繁育过程中表现出来的遗传、变异现象与规律,生物进化研究生物在长期历史过程中的遗传与变异规律及发展方向。
遗传学研究的任务在于:阐明生物遗传和变异的现象及其表现的规律;探索遗传和变异的原因及物质基础,揭示其内在的规律;从而进一步指导动物、植物、微生物的育种实践,防止遗传疾病,提高医学水平,造福人类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论遗传学(Genetics)是研究生物遗传和变异的科学,是生命科学最重要的分支之一遗传与变异是生物界最普通、最基本的两个特征。
遗传(heredity):指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各种特性不变;变异(variation):指生物在亲代与子代之间,以及在子代与子代之间表现出一定差异的现象。
遗传代表的是性状的稳定性,是相对的;变异代表的是性状的不稳定性,是绝对的。
遗传和变异是生物进化和物种形成的内在因素。
遗传、变异和选择是生物进化和新品种选育的三大因素。
生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传) ,变异逐代积累导致物种演变、产生新物种。
动、植物和微生物新品种选育(育种)实际上是一个人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。
生物所表现出的性状变异分为:可遗传(heritable)变异和不可遗传(non-heritable)。
变异考察生物遗传与变异应该在给定环境条件下进行。
达尔文:泛生假说(hypothesis of pangensis)达尔文在解释生物进化时也对生物的遗传、变异机制进行了假设,并提出了泛生假说,认为:遗传物质是存在于生物器官中的“泛子/泛生粒”;遗传就是泛子在生物世代间传递和表现达尔文也承认获得性状遗传的一些观点,认为生物性状变异都能够传递给后代。
孟德尔:遗传因子假说遗传因子假说认为:生物性状受细胞内遗传因子(hereditary factor)控制。
遗传因子在生物世代间传递遵循分离和独立分配两个基本规律。
这两个遗传基本规律是近现代遗传学最主要的、不可动摇的基础。
生物进化理论的基础,遗传学研究生物在少数几个世代繁育过程中表现出来的遗传、变异现象与规律,生物进化研究生物在长期历史过程中的遗传与变异规律及发展方向。
遗传学研究的任务在于:阐明生物遗传和变异的现象及其表现的规律;探索遗传和变异的原因及物质基础,揭示其内在的规律;从而进一步指导动物、植物、微生物的育种实践,防止遗传疾病,提高医学水平,造福人类。
第二章遗传的细胞学基础第三节细胞分裂与细胞周期细胞分裂方式包括无丝分裂、有丝分裂和减数分裂。
无丝分裂(amitosis);有丝分裂(mitosis):体细胞的分裂过程。
减数分裂(meiosis):性细胞的分裂过程。
一、细胞分裂周期(cell cycle)与有丝分裂(一)细胞周期细胞周期—是细胞分裂增殖周期,从一次有丝分裂结束至下一次有丝分裂结束之间的期限。
包括分裂新间期和有丝分裂期。
细胞周期中包括2个时期(间期和分裂期)、2次分裂(细胞核分裂和细胞质分裂)。
分裂间期(也称生长期):1)合成前期(G1,gap1 phase):为DNA合成作准备。
时间占分裂周期的1/2。
不同细胞的G1期差异大,动物细胞几小时-几天。
2)合成期(S,synthesis phase):合成DNA。
时间占分裂周期的1/4。
6-9小时。
3)合成后期(G2,gap2 phase):时间较短。
3-5小时。
有丝分裂期:M期,1小时左右。
(二)有丝分裂1、前期:染色体明显缩短变粗,每个染色体由两个染色单体组成,纺锤丝出现,核膜、核仁逐渐消失。
2、中期:染色体的着丝点整齐排列在赤道板,染色体缩短到固定状态,适宜染色体形态和数目的考察。
但持续时间很短。
3、后期:着丝点分裂为二,各染色单体由纺锤丝牵引向两极移动。
4、末期:核膜、核仁出现,纺锤丝消失,形成两个子细胞。
有丝分裂的意义:1.保证了物种的连续性和稳定性2.维持个体的正常生长和发育。
有丝分裂的特殊形式:核内有丝分裂:多倍染色体是核内染色体复制并分裂,而核和细胞并不分裂,结果加倍的染色体都留在一个细胞核里的分裂方式。
二、减数分裂(一)精卵细胞的生成1、增殖期精原细胞、卵原细胞经有丝分裂繁殖,增加细胞个数。
2、生长期精原细胞、卵原细胞经过生长期增大体积,形成初级精卵母细胞。
3、分裂期1)减数分裂Ⅰ:一个初级精母细胞分裂为两个次级精母细胞;一个初级卵母细胞形成一个次级卵母细胞和一个很小的第一极体。
2)减数分裂Ⅱ:两个次级精母细胞分裂为四个精细胞;一个次级卵母细胞形成一个卵细胞和一个第二极体,第一极体分裂成两个第二极体。
也可能不分裂。
4、变态期精细胞经过形态改变而成精子,卵细胞没有变态期。
减数分裂(成熟分裂)—是性母细胞成熟时,配子形成过程中发生的一次DNA复制、两次细胞分裂,结果染色体数减少一半的分裂过程。
是一种特殊形式的分裂过程。
(一)减数第一分裂(I)1、前期Ⅰ:又分成五期1)细线期:染色体呈细线状,看不清一条染色体由两条染色单体组成。
2)偶线期:同源染色体联会。
联会——减数分裂过程中同源染色体的配对。
二价体——联会的一对同源染色体。
3)粗线期:看清一条染色体由两条染色单体组成,可见两条染色单体间有交叉现象。
4)双线期:各个联会的二价体出现分离,但仍被一、二个以至几个交叉联结在一起。
这种现象是非姐妹染色单体之间某些片段发生交换的结果。
也就是说先有交换而后才有交叉。
5)终变期:染色体明显缩短变粗,可见交叉向二价体的两端移动,并且逐渐接近于末端。
此过程为交叉端化。
四合体均匀分散在核内,是鉴定细胞染色体数目最佳时期之一。
2、中期Ⅰ:核膜、核仁逐渐消失,纺锤丝出现。
二价体分散在赤道板的两侧。
染色体缩短到固定状态,适宜染色体形态和数目的考察。
中期Ⅰ是鉴定染色体数目的最好时期。
3、后期Ⅰ:各个二价体各自分开,二价体的同源染色体分别移向两极,染色体数目减半。
4、末期Ⅰ:核膜、核仁出现,纺锤丝消失,形成两个子细胞。
5、中间期:末期Ⅰ后的一个短暂间歇期,相当于有丝分裂的间期,但DNA不复制。
(二)减数第二分裂1、前期Ⅱ:核膜、核仁消失,纺锤丝出现。
2、中期Ⅱ:染色体的着丝点整齐排列在赤道板。
3、后期Ⅱ:着丝点分裂为二,各染色单体由纺锤丝牵引向两极移动。
4、末期Ⅱ:核膜、核仁出现,纺锤丝消失,形成四个子细胞。
(三)减数分裂的遗传学意义1、减数分裂中,子细胞的染色体数目是母细胞的一半,精卵结合后染色体数目又合半为一,这就保证了物种上下代染色体数目的恒定。
2、同源染色体的随机取向分离、交叉和互换由为变异提供条件。
3、同源染色体的分离是分离定律的基础。
4、二价体内成员赤道板处的随机取向是自由组合定律的基础。
5、同一染色体上的基因连在一起遗传以及非姐妹染色单体之间的交叉互换是连锁互换定律的基础。
三、有丝分裂和减数分裂的比较第三章孟德尔遗传3.1 分离定律●性状(character):是指生物体所表现的形态特征和生理生化特性的总称。
主要由遗传基础决定,其具体表现还与环境条件有关。
●单位性状(unit character):是指将生物体所表现的总体性状区分成的每一个具体性状。
如花色、种子形状、植株高度等。
●相对性状(contrasting character):是指同一单位性状在不同个体间所表现出来的相对差异。
如红花和白花、种子的圆形和皱形等。
显性性状(dominant character)—为等位基因中显性基因所决定的性状,在上一代表现出来的现状。
隐性性状(recessive character)—等位基因中隐性基因所决定的性状,只有在隐性基因纯合时才得以表现。
上一代未表现出来的形状。
纯系(pure line):经多代自交或长期近交(动物)所获得的高度自交系。
亲本世代(parental generation, P):杂交时的双亲世代。
正反交(reciprocal cross):第二个杂交与第一个杂交的双亲相同只是性别互换。
1.一对相对性状的杂交实验豌豆(Garden pea)、菜豆、玉米、山柳菊选择豌豆作为研究材料。
选择豌豆作为研究材料的理由:1、豌豆具有稳定的易于区分的性状;2、严格的自花授粉且闭花受精;3、豌豆豆荚成熟后籽粒都留在豆荚内,便于各种类型籽粒的准确计数;4、花大,杂交容易。
①杂种F1仅表现亲本之一的性状。
他将F1表现出来的亲本性状称为显性性状;未表现出来的亲本性状称为隐性性状。
②F2群体中两个亲本性状都得到表现,即显性性状和隐性性状同时得到表现,这种现象称为性状分离。
③在F2群体中,显性性状和隐性性状的分离比接近3:1○豌豆的红花和白花杂交试验P 红花(♀)×白花(♂)↓F1红花↓ÄF2红花白花株数705 224比例 3.15 : 1理论值 3 : 1分离定律的内容:一对基因在杂合状态下互不沾染,保持其独立性,在配子形成时,又按原样分离到不同的配子中去。
通常情况下,配子分离比是1:1,F2代基因型分离比是1:2:1,F2表型分离比是3:1。
分离现象的假设●生物的遗传性状是由遗传因子(hereditary factor或hereditary determinant)决定的。
●每株植物的每一种特性都分别由一对遗传因子控制。
●遗传因子在体细胞中是成对存在的,在配子中则是成单的,配子只含有成对的遗传因子中的一个。
●配子的结合是随机的。
在合子中的遗传因子一个来自父本性细胞,一个来自母本性细胞。
●控制显性性状的遗传因子与控制隐性性状的遗传因子是同一种遗传因子的两种形式。
只要有一个控制显性性状的遗传因子,植株就会表现显性性状,只有两个遗传因子都是控制隐性性状的,植株才会表现隐性性状。
分离定律的验证方法:个体水平(F1测交法、F2自交法)配子水平(F1花粉鉴定法)分离规律的意义与应用1)是遗传学中性状遗传的最基本的规律,在理论上说明了生物界由于杂交的分离而出现变异的普遍性。
2)从本质上说明控制性状的遗传物质是以基因存在的。
基因在体细胞中成双,在配子中成单,具有高度的独立性。
3)在配子的形成过程(减数分裂)中,成对的基因在杂种细胞中彼此互不干扰,独立分离,并通过基因重组在子代中继续表现各自的作用4)杂种通过自交将产生性状分离,同时导致基因纯合。
纯合亲本杂交→杂种自交→性状分离选择→纯合一致的品种(必须重视表现型和基因型间的联系和区别,在遗传研究和杂交育种中要严格选择材料)。
亲本要纯,鉴定F1去除假杂种,F2才会分离:如果F1假杂种,→F2不分离;如果父、母本不纯,→F1分离。
5)通过性状遗传研究,可以预期后代分离的类型和频率,进行有计划种植,以提高育种效果,加速育种进程。
如水稻抗稻瘟病基因抗(显性)×感(隐性)F1抗F2抗性分离有些抗病株在F3还会分离。
6)良种生产中要防止天然杂交而发生分离退化,做到去杂去劣及适当隔离繁殖。
孟德尔遗传分析的相关名词○基因(gene):是指位于染色体上,具有特定核苷酸序列的DNA片段,是存储遗传信息的功能单位。
○基因型(genotype)和表现型(phenotype):基因型是指个体或细胞的基因组合,是生物的内在遗传组成,如决定圆形种子性状的基因型为RR 和Rr,而决定皱形种子性状只能是rr;表现型是指生物体所表现的性状(形态),如白花和红花性状。