2018-2019学年七年级数学下册知识点练习题

合集下载

最新人教版部编版七年级数学下册全册 课后同步练习题 专项讲解

最新人教版部编版七年级数学下册全册 课后同步练习题 专项讲解

第五章相交线与平行线5.1 相交线5.1.1 相交线基础题知识点1 邻补角有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.邻补角互补.如图,则∠AOC与∠BOC互为邻补角,且∠AOC+∠BOC=180°.1.(2017·河池)如图,点O在直线AB上.若∠BOC=60°,则∠AOC的大小是(C)A.60° B.90° C.120° D.150°2.如图,直线AB和CD相交于点O,则∠AOC的邻补角是∠AOD和∠BOC.3.如图,直线AB和CD相交于点O,OE平分∠BOD.若∠BOE=30°,则∠AOD=120°.知识点2 对顶角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.对顶角相等.如图,直线AB和CD相交于点O.则∠AOC的对顶角是∠BOD;∠AOD的对顶角是∠BOC,且相等的角有:∠AOC=∠BOD,∠AOD=∠BOC. 4.(2018·遵义桐梓县期末)下列图形中,∠1与∠2是对顶角的是(C)5.如图所示,直线AB 和CD 相交于点O.若∠COB =140°,则∠1,∠2的度数分别为(C)A .140°,40°B .40°,150°C .40°,140°D .150°,40°6.(2018·黔西南期中)如图是对顶角量角器,用它测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a ,b 相交于点O , 所以∠1+∠3=180°(邻补角互补), ∠1=∠2(对顶角相等).8.如图,直线AB ,CD 相交于点O ,∠AOC =60°,∠1=40°,则∠2=20°,∠AOE =140°.9.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.解:因为OA 平分∠EOC ,∠EOC =70°, 所以∠AOC =12∠EOC=35°.所以∠BOD =∠AOC =35°.易错点1 对对顶角性质理解不透彻而判断失误10.下列说法正确的有(B)①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个 B.2个 C.3个 D.4个易错点2 未给出图形,考虑不周全致错11.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=40或80.中档题12.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于(C)A.90° B.120° C.180° D.360°13.(2019·黔东南期末)如图,直线AB,CD相交于点O,OE平分∠BOD.若∠AOD=110°,则∠COE的度数为(B)A.135° B.145° C.155° D.125°14.(教材P3练习变式)如图,两条直线l1,l2相交于点O.(1)若∠α=x°,则它的邻补角的度数为(180-x)°,对顶角的度数为x°;(2)当∠α逐渐增大时,它的邻补角逐渐减小,它的对顶角逐渐增大.15.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD相交于点O,∠AOE=∠BOE,OB平分∠DOF.若∠DOE=50°,求∠DOF的度数.解:因为∠AOE =∠BOE ,且∠AOE +∠BOE =180°, 所以∠AOE =∠BOE =90°. 因为∠DOE =50°,所以∠DOB =∠BOE -∠DOE =40°. 因为OB 平分∠DOF , 所以∠DOF =2∠DOB =80°.18.如图,l 1,l 2,l 3相交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x °,则∠3=8x °. 由∠1+∠2+∠3=180°,得 10x =180.解得x =18. 所以∠1=∠2=18°. 所以∠4=∠1+∠2=36°. 综合题 19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数; (2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数; (3)依次类推,n 条直线相交,最少有1个交点,最多有n (n -1)2个交点,对顶角有n(n -1)对,邻补角有2n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对. (2)图略,对顶角有12对,邻补角有24对.5.1.2 垂线基础题知识点1 认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.如图,直线AB,CD相交于点O.(1)若∠AOC=90°,则AB与CD的位置关系是垂直;(2)若AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.1.如图,OA⊥OB,若∠1=55°,则∠2的度数是(A)A.35° B.40° C.45° D.60°2.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是(D)知识点3 垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个6.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出(A)A.1条 B.2条 C.3条 D.4条7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间,线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.(2018·遵义期中)如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM,理由是垂线段最短.知识点4 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如图,点P到直线l的距离是线段PB的长度.9.(2018·黔南期末)下列图形中,线段PQ的长表示点P到直线MN的距离的是(A)A B C D10.如图,BC⊥AC,CB=8 cm,AC=6 cm,AB=10 cm,那么点B到AC的距离是8cm,点A到BC的距离是6cm,C 到AB的距离是4.8cm.易错点未给出图形,考虑不周全而致错11.(2018·黔西南期末)在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD.当∠AOC=30°时,∠BOD的度数(D)A.60° B.90° C.120° D.60°或120°中档题12.(教材P9习题T12变式)已知直线AB,CB,l在同一平面内.若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是(C)13.如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是(C)A.互为对顶角 B.互补 C.互余 D.相等14.如图,三角形ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是(A)A.2.5 B.3 C.4 D.515.(2018·黔西南期中)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有(D)A.2条 B.3条 C.4条 D.5条16.(2018·河南)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.17.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.解:(1)因为∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, 所以∠AOC =70°,∠AOD =110°. 所以∠BOD =∠AOC =70°, ∠BOC =∠AOD =110°. 又因为OE 平分∠BOD ,所以∠BOE =∠DOE =12∠BOD =35°.所以∠COE =∠BOC +∠BOE =110°+35°=145°. (2)因为OF ⊥OE ,所以∠FOE =90°.所以∠FOD =∠FOE -∠DOE =90°-35°=55°. 所以∠COF =180°-∠FOD =180°-55°=125°.5.1.3 同位角、内错角、同旁内角基础题知识点1 认识同位角、内错角、同旁内角如图所示,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2018·衢州)如图,直线a,b被直线c所截,那么∠1的同位角是(C)A.∠2 B.∠3 C.∠4 D.∠52.如图,以下说法正确的是(C)A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角3.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.知识点2 “三线八角”之间的关系4.如图所示,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有(C)A.1对 B.2对 C.3对 D.4对易错点忽视截线导致找错位置角5.下面四个图形中,∠1和∠2是同位角的是(D)A.②③④ B.①②③C.①②③④ D.①②④中档题6.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示(B)A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角7.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.8.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角.(2)∠1和∠7是同位角.(3)∠3和∠4是内错角.(4)∠4和∠6是同旁内角.(5)∠5和∠7是内错角.5.2 平行线及其判定5.2.1 平行线基础题知识点1 认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是(D)A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内,两条直线的位置关系有(A)A.两种:平行和相交B.两种:平行和垂直C.三种:平行、垂直和相交D.两种:相交和垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2 平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行;(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.(2018·黔南期末)如图,在直线a的同侧有P,Q,R三点,若PQ∥a,QR∥a,则P,Q,R三点是(填“是”或“不是”)在同一条直线上,理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD(平行于同一条直线的两条直线平行).中档题9.下列说法中,正确的有(A)①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A .1个B .2个C .3个D .4个10.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:CD ∥MN ,GH ∥PN .11.如图所示,直线AB ,CD 是一条河的两岸,并且AB ∥CD ,点E 为直线AB ,CD 外一点,现想过点E 作河岸CD 的平行线,只需过点E 作AB 的平行线即可,其理由是平行于同一条直线的两条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交. 13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A 1B 1∥AB ,AA 1⊥AB ,A 1D 1⊥C 1D 1,AD ∥BC ;(2)AB 与B 1C 1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图所示,在∠AOB 内有一点P. (1)过点P 画l 1∥OA ; (2)过点P 画l 2∥OB ;(3)用量角器量一量l 1与l 2相交的角与∠O 的大小有怎样的关系.解:(1)(2)如图所示.(3)l 1与l 2的夹角有两个:∠1,∠2. 量得∠1=∠O ,∠2+∠O =180°, 所以l 1与l 2的夹角与∠O 相等或互补.15.如图,射线OA ∥CD ,射线OB ∥CD ,∠AOC =13∠AOB ,求∠AOC 的度数.解:因为OA ∥CD ,OB ∥CD ,所以A ,O ,B 在同一条直线上. 所以∠AOB =180°.所以∠AOC =13∠AOB =13×180°=60°.综合题16.利用直尺画图:(1)利用图1中的网格,过P 点画直线AB 的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD ∥AB ,PQ ⊥AB. (2)如图所示,答案不唯一.5.2.2 平行线的判定基础题平行线的判定方法有:(1)定义:在同一平面内,两条不相交的直线互相平行;(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)同一平面内,垂直于同一直线的两条直线互相平行.如图,直线AB,CD被直线EF所截.(1)∵∠1=∠2,或∠5=∠7,或∠3=∠6,或∠4=∠8,∴AB∥CD(同位角相等,两直线平行);(2)∵∠4=∠2,或∠5=∠6,∴AB∥CD(内错角相等,两直线平行);(3)∵∠4+∠6=180°,或∠5+∠2=180°,∴AB∥CD(同旁内角互补,两直线平行).(4)∵AB⊥EF,CD⊥EF,∴AB∥CD(同一平面内,垂直于同一直线的两条直线互相平行).知识点1 同位角相等,两直线平行1.(2019·河池)如图,∠1=120°,要使a∥b,则∠2的大小是(D)A.60° B.80° C.100° D.120°2.(2017·德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.3.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有AB∥CD,EF∥CG.知识点2 内错角相等,两直线平行4.如图,能判定EB∥AC的条件是(D)A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE5.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).知识点3 同旁内角互补,两直线平行6.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是(C)A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°7.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?合格(填“合格”“不合格”).8.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.易错点不能准确识别截线与被截线,从而误判两直线平行9.(教材P36复习题T8(1)变式)如图,下列能判定AB∥CD的条件有(C)①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个 B.2个 C.3个 D.4个中档题10.如图,在下列条件中,能判断AD∥BC的是(A)A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD11.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c12.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为∠A+∠ABC =180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(任意添加一个符合题意的条件即可)13.如图,已知AB⊥BC,BC⊥CD,∠1=∠2,试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠ABC=∠BCD=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(内错角相等,两直线平行).14.(教材P36复习题T6变式)如图,AB⊥AC,∠1与∠B互余.(1)AD与BC平行吗?为什么?(2)若∠B=∠D,则AB与CD平行吗?为什么?解:(1)AD∥BC.理由如下:∵AB⊥AC,∴∠BAC=90°.∵∠1与∠B互余,∴∠1+∠B=90°.∴∠1+∠BAC+∠B=180°,即∠B+∠BAD=180°.∴AD∥BC.(2)AB∥CD.理由如下:由(1)可知∠B+∠BAD=180°.∵∠B=∠D,∴∠D+∠BAD=180°.∴AB∥CD.15.已知,如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).综合题16.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD(垂直于同一条直线的两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指(D)A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.下列各图中,∠1与∠2是对顶角的是(C)3.如图,直线AB,CD被EF所截,下列说法正确的有(C)①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个 B.2个 C.3个 D.4个5.下列说法错误的是(C)A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A作直线l的垂线,这样的垂线只有一条5.如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD的度数是(A)A.20° B.30° C.40° D.50°6.下列说法错误的是(A)A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它和另一条也相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是(A)A.点B到AC的距离是线段BCB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.如图,下列条件中能判定直线l1∥l2的是(C)A.∠1=∠2 B.∠1=∠5C.∠1+∠3=180° D.∠3=∠5二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图所示,请你填写一个适当的条件:答案不唯一,如:∠FAD=∠FBC,使AD∥BC.14.如图所示,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO交于点O,过点P作PC⊥AO于点C,PD⊥BO于点D,画出图形.解:如图,作∠ACP=90°,作∠PDB=90°,则直线PC,PD即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,试说明:AB∥CD.解:∵OF平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l1,l2,l3被直线l所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l1∥l2∥l3.理由:∵∠1=∠β=75°,∠α=105°,∴∠α+∠1=180°.∴l1∥l2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l2∥l3(内错角相等,两直线平行).∴l1∥l2∥l3(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).19.(8分)如图,AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF的度数.解:∵AB,CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行;②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行;③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行;④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行;⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质基础题知识点1 平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.如图,直线AB,CD被直线EF所截.∵AB∥CD,∴∠1=∠2,或∠5=∠7,或∠3=∠6,或∠4=∠8(两直线平行,同位角相等);∠4=∠2,或∠5=∠6(两直线平行,内错角相等);∠4+∠6=180°,或∠5+∠2=180°(两直线平行,同旁内角互补).1.(2019·百色)如图,已知a∥b,∠1=58°,则∠2的大小是(C)A.122° B.85° C.58° D.32°2.(2017·六盘水)如图,梯形ABCD中,AB∥CD,∠D=(B)A.120° B.135° C.145° D.155°3.(2018·铜仁)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是(B)A.30° B.60° C.120° D.61°4.(2019·新疆)如图,AB∥CD,∠A=50°,则∠1的度数是(C)A .40°B .50°C .130°D .150°5.(2018·黔西南)如图,已知AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠DEC =(B)A .30°B .60°C .90°D .120° 6.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°.求∠C 的度数.解:∵EF ∥BC ,∴∠BAF +∠B =180°(两直线平行,同旁内角互补). ∵∠B =80°,∴∠BAF =100°. ∵AC 平分∠BAF , ∴∠CAF =12∠BAF =50°.∵EF ∥BC ,∴∠C =∠CAF =50°(两直线平行,内错角相等).知识点2 平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB ∥CD ,∠EAB =45°,则∠FDC 的度数是(B)A .30°B .45°C .60°D .75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的大小是(C)A.76° B.86° C.104° D.114°9.(教材P19例1变式)如图,某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底边AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.易错点误用平行线的性质10.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是(D)A.60° B.120°C.60°或120° D.不能确定中档题11.(2018·枣庄)已知直线m∥n,将一块含30°角的直角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为(D)A.20° B.30° C.45° D.50°12.(2019·遵义)如图,∠1+∠2=180°,∠3=104°,则∠4的度数是(B)A.74° B.76° C.84° D.86°13.(2018·遵义桐梓县期末)如图,小瑶从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,则∠ABC的度数是(C)A.80° B.90° C.100° D.95°14.(2018·遵义桐梓县期末)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB =65°,则∠AED′等于(A)A.50° B.55° C.60° D.65°15.(2019·黔东南期末)如图,AD,BE相交于点C,AB∥ED,∠A=∠DCF.若∠B=50°,∠D=20°,则∠DCB的度数为(C)A.20° B.50° C.70° D.90°16.(2019·武汉)如图,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,试说明:∠E=∠F.解:∵∠A=∠1,∴AE∥BF.∴∠E=∠2.∵CE∥DF,∴∠2=∠F.∴∠E=∠F.17.如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°(两直线平行,内错角相等).又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°(两直线平行,同旁内角互补).∴∠DCF=50°.∴∠BCD=∠BCF-∠DCF=70°-50°=20°.综合题18.(2018·黔西南兴义市期中)如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,探索直线BD,GE,AH之间的位置关系.解:∵∠1=∠2,∴AH∥GE.∴∠FAH=∠GFA=40°.∴∠FAQ=∠FAH+∠HAQ=40°+15°=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°.∴∠HAC=∠QAC+∠HAQ=55°+15°=70°.∴∠HAC=∠ACB.∴BD∥AH.∴BD∥GE∥AH.小专题(一) 平行线中的拐点问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°.∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.(2019·陕西)如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为(C)A.52° B.54° C.64° D.69°2.(2019·天门)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是(D)A.20° B.25° C.30° D.35°3.(2019·大连)如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.(2019·安顺)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是(C)A.35° B.45° C.55° D.65°6.(2017·遵义)把一块等腰直角三角尺和直尺按如图所示方式放置,若∠1=30°,则∠2的度数为(D)A.45° B.30° C.20° D.15°类型3 折叠问题中求角度7.(2019·扬州)将一个矩形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.(教材P25习题T15变式)如图,∠AOB的两边OA,OB均为平面反光镜,在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行.已知∠OQP=∠AQR,∠AOB=40°,则∠QPB的度数是(B)A.60° B.80° C.100° D.120°10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.5.3.2 命题、定理、证明基础题知识点1 命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·遵义期中)下列语句中,不是命题的是(D)A.两点确定一条直线 B.垂线段最短C.同位角相等 D.作∠A的平分线2.(2018·黔西南兴义市月考)下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④一个数能被2整除,则它也能被4整除;⑤直角都相等.A.①④⑤ B.①②④C.①②⑤ D.②③④⑤3.命题“两直线平行,内错角相等”的题设是两条平行线被第三条直线所截,结论是内错角相等.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2 真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.5.下列命题中,是真命题的是(B)A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是(A)A.若|x|=3,则x=3B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种。

华师大版2018-2019七年级数学下册期末综合复习能力提升练习2(附答案详解)

华师大版2018-2019七年级数学下册期末综合复习能力提升练习2(附答案详解)

华师大版2018-2019七年级数学下册期末综合复习能力提升练习2(附答案详解) 1.1.若a +3=0,则a 的值是( )A .-3B .13- C .13D .3 2.x=5是方程x-2a=l 的解,则a 的值是( )A .-lB .1C .2D .33.在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是( ) A . B . C . D . 4.不等式x <2在数轴上表示正确的是( )A .(A )B .(B )C .(C )D .(D )5.下列方程中,属于一元一次方程的是( ) (A) (B)2x+3y=0 (C)x=-1 (D)6.一个多边形截去一个角(截线不过顶点)之后,所形成的一个新多边形的内角和是2340°,那么原多边形的边数是( )A .13B .14C .15D .167.关于x 的方程2a ﹣3x=6的解是非负数,那么a 满足的条件是( )A .a >3B .a ≤3C .a <3D .a ≥38.若ma mb =,那么下列等式不一定成立的是( )A .22ma mb +=+B .a b =C .ma mb -=-D .66ma mb -=- 9.下列图形中,轴对称图形有( )A .1个B .2个C .3个D .4个10.下列等式:①3﹣2=1;②x 2﹣x=5;③3x ﹣4y=7;④;⑤x+0.1=5.2中,一元一次方程的个数为( )A .1 B .2 C .3 D .411.不等式组()1{ 1237x x x ≥-->的整数解的和为_____.12.若x 2+bx +c =(x +5)(x -3),则点P(b ,c)关于y 轴对称点的坐标是________. 13.三角形内角和定理:_____.14.如果x-7<-5,那么x__________;如果-02x >,那么x__________15.用含有x 或y 的式子表示y 或x :(1)已知x +y =5,则y = ;(2)已知x -2y =1,则y = ;(3)已知x +2(y -3)=5,则x = ;(4)已知2(3y -7)=5x -4,则x = .16.若,则比较大小:________. 18.将线段AB 平移1cm ,得到线段A′B′,则点A 到点A′的距离是________cm . 19.如图,直线a ∥b,∠1=85°,∠2=35°,则∠3为________.20.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种袋装粗粮每袋含有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A 、B 、C 三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A 种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=×100%)21.解不等式组: ()2214,{ 132x x x x --≤-+>。

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。

2018-2019学年人教版七年级下册数学课时同步练习卷:8.2二元一次方程组的解法

2018-2019学年人教版七年级下册数学课时同步练习卷:8.2二元一次方程组的解法

8.2二元一次方程组的解法一、填空题1.已知方程2x+3y-8=0,用含x 的式子表示y 为 y=-23x+83 ,用含y 的式子表示x 为 x=-32y+4 .2.方程组{x +y =10,2x +y =16的解是 {x =6y =4 3.若方程组{x +4=y,2x -y =2a中的x 是y 的2倍,则a= -6 . 4.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是 25. 已知{x =2,y =1是关于x ,y 的二元一次方程组{ax +by =7,ax -by =1的一组解,则a+b= 5 . 6. 若a-3b=2,3a-b=6,则b-a 的值为 -2 .7. 已知x ,y 满足方程组{x -2y =5,x +2y =−3,则x 2-4y 2的值为 -15 . 8.以关于x ,y 的方程2x+5y=-9和5x-6y=33的解为坐标的点P (x ,y )在第 四 象限.9.如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足a ≠b 10.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,则该组男生有 18 人,女生有 12 人.二、选择题11.二元一次方程组的解是( B )A. B. C. D.12.已知2x+3y=6,用含有y 的式子表示x ,得(A)A .x=3-32yB .y=2-23xC .x=3-3yD .y=2-2x 13.用加减消元法解二元一次方程组时,下列步骤可以消去未知数x 的是(D )A.①×4+②×3B.①×2+②×5C.①×5+②×2D.①×5-②×214.用代入法解二元一次方程组{4x +5y =3,3x -y =7时,比较简便的变形是(D) A .x=3−5y 4B .y=3−4x 5C .x=y+73D .y=3x-715.方程组消去y 后所得的方程是( A )A.3x -4x +10=8B.3x -4x +5=8C.3x -4x -5=8D.3x -4x -10=816.在解方程组{3x +2y =2 ①,2x +2y =−1 ②中,①-②所得的方程是(C) A .x=1B .5x=-1C .x=3D .5x=3 17.由方程组可得出x 与y 的关系是( A )A. B. C. D.18.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是(D)A.1B.-1C.0D.219. 如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足(B) A.a=1,c=1 B.a ≠bC.a=b=1,c ≠1D.a=1,c ≠120.若方程组{3x +y =1+3a,x +3y =1−a的解满足x-y=-2,则a 的值为(A) A .-1B .1C .-2D .不能确定 三、解答题21.用代入法解方程组:(1){x -3y =2,y =x.解:方程组的解为{x =−1,y =−1.(2){4x +3y =5,x -2y =4.解:方程组的解为{x =2,y =−1.22.如果{x =3,y =−2是方程组{ax +by =1,ax -by =5的解,求a 2019-2b 2018的值. 解:方程组ax+by=1, ①ax-by=5,② ①+②,得2ax=6,①-②,得2by=-4,把x=3,y=-2分别代入,得a=1,b=1.当a=1,b=1时,a 2019-2b 2018=12019-2×12018=-1.23.利用加减消元法解方程组{3x +4y =16 ①,5x -6y =14 ②,答案略24.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.解:设甲种车每辆一次运土x 立方米,乙种车每辆一次运土y 立方米.由题意得{5x +2y =64,3x +y =36,解得{x =8,y =12. 答:甲种车每辆一次运土8立方米,乙种车每辆一次运土12立方米.25.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,问中、小型汽车各有多少辆?解:设中型汽车有x 辆,小型汽车有y 辆.根据题意,得{x +y =50,12x +8y =480,解得{x =20,y =30. 答:中型汽车有20辆,小型汽车有30辆.26.先阅读材料,然后解方程组.材料:解方程组{x -y =1,①4(x -y)-y =5,②把①代入②,得4×1-y=5,解得y=-1.把y=-1代入①,得x=0.所以方程组的解为{x =0,y =−1.这种方法被称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{x -3y -8=0,2x -6y+57+2y =9. 解:方程组的解为{x =17,y =3.27.对于任意的有理数a ,b ,c ,d ,我们规定:|a b c d|=ad-bc ,根据这一规定,解答下列问题:若x ,y 同时满足|x (-y)(-6)5|=13,|34(-y)x |=4,求|x (-y)3-2|的值. 解:根据题意,得{5x -6y =13,3x +4y =4,解得x=2,y=-12.∴|x (-y)3-2|=|2123-2|=-2×2-3×12=-112. 28.已知方程组{x -y =5,ax +3y =b -1.分别求:(1)有无数多个解时a ,b 的值;(2)有唯一解时a ,b 的值;(3)无解时a ,b 的值.解:x-y=5, ①ax+3y=b-1, ②由①得x=y+5.③ 将③代入②,得a (y+5)+3y=b-1,即(a+3)y=-5a+b-1.(1)当{a +3=0,-5a +b -1=0,即{a =−3,b =−14时,原方程组转化为{x -y =5,x -y =5,那么满足x-y=5的x ,y 的值有无数对,即当a=-3,b=-14时,原方程组有无数多个解.(2)当a ≠-3时,y 有唯一解y=-5a+b -1a+3,即当a ≠-3,b 为任意实数时,原方程组有唯一解.(3)当{a +3=0,-5a +b -1≠0即{a =−3,b ≠−14时,原方程组转化为{x -y =5,x -y ≠5,因为这两个方程互相矛盾,所以方程组无解,即当a=-3,b ≠-14时,原方程组无解.。

2018-2019学年鲁教版(五四制)七年级下册数学第七章检测试题含答案

2018-2019学年鲁教版(五四制)七年级下册数学第七章检测试题含答案

第七章 检测试题(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程组中,属于二元一次方程组的是( D ) (A) (B)(C)(D)解析:选项A 中有三个未知数,选项B,C 中含有未知数的项的最高次数是2,因此只有D 符合二元一次方程组的概念.故选D. 2.利用消元法解方程组下列做法正确的是( D )(A)要消去y,可以将①×5+②×2 (B)要消去x,可以将①×3+②×(-5) (C)要消去y,可以将①×5+②×3 (D)要消去x,可以将①×(-5)+②×2解析:要消去y,可以将①×3+②×5或①×(-3)-②×5, 要消去x,可以将①×5-②×2或①×(-5)+②×2, 只有选项D 正确.故选D.3.(2017博山一模)已知关于x,y 的方程x 2m-n-2+4y m+n+1=6是二元一次方程,则m,n 的值为( B )(A)m=-1,n=1 (B)m=1,n=-1 (C)m=,n=- (D)m=-,n= 解析:根据题意,得解得故选B.4.已知一个两位数的十位数字与个位数字的和是7.如果这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是( C ) (A)34 (B)25 (C)16 (D)61解析:设这个两位数的十位数字为x,个位数字为y,根据题意得解得所以这个两位数是16,故选C.5.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )(A)(B)(C) (D)解析:把l1与l2的交点坐标(2,3)代入选项中的每个方程组,只有C项合适.故选C.6.若方程组的解是则方程组的解是( A )(A) (B)(C)(D)解析:由题意可知,当x+2=a,y-1=b时,两方程组对应系数一样,其解相同,即此时有x+2=8.3,y-1=1.2,解得x=6.3,y=2.2.故选A.7.如图,周长为34 cm的长方形ABCD被分成7个相同的长方形,则长方形ABCD 的面积为( D )(A)49 cm2 (B)74 cm2(C)68 cm2 (D)70 cm2解析:设小长方形的长为x cm,宽为y cm,则解得所以长方形ABCD的面积为(5×2)×(5+2)=70 (cm2).故选D.8.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m长的彩绳截成2 m或1 m长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( C )(A)1 (B)2 (C)3 (D)4解析:设截成2 m长的彩绳x根,1 m长的彩绳y根,根据题意,得2x+y=5.显然,x,y均为非负整数,符合题意的解为因此,共有三种不同的截法.二、填空题(每小题4分,共24分)9.若关于x,y的方程mx+ny=8的两组解是和则m+n= 0 .解析:将和代入方程mx+ny=8,得解得所以m+n=0.10.方程组的解是.解析:直接把x+2y=2代入第一个方程即可先求得x的值.11.图中的□、△符号分别代表一个数字,且满足以下两个等式:□+□+△=5,□-△-△-△=6,则□代表的数字是 3 ,△代表的数字是-1 .解析:设□=x,△=y,由题意,得解得所以□代表的数字是3,△代表的数字是-1.12.方程组的解是.解析:任意两个方程相加即可求得一个未知数的值.13.二元一次方程组==x+2的解是.解析:由题意得由①+②得3x=5(x+2),解得x=-5,将x=-5代入①解得y=-1,所以14.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.解析:设安排x人缝制衣袖,y人缝制衣身,z人缝制衣领,则列方程组解得故应该安排120名工人缝制衣袖.三、解答题(共44分)15.(8分)解下列方程组:(1)(2)解:(1)方程①可化简为3x-2y=8.③②+③,得6x=18,所以x=3.把x=3代入②,解得y=.所以原方程组的解为(2)由题意,得3x+5(x+y)=3y+4(x+y),即y=2x.把y=2x代入第一个方程,得3x+15x=36,解得x=2.所以y=4.所以原方程组的解为16.(6分)已知关于x,y的方程组与的解相同,求a,b 的值.解:根据题意,得方程组①+②,得2x=4,解得x=2.把x=2代入①得y=-1.把代入得解得17.(7分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?解:(1)若某月用水量为18立方米,则应交水费45元.(2)设函数表达式为y=kx+b(x>18),因为直线y=kx+b过点(18,45),(28,75),所以解得所以y=3x-9(x>18).由81元>45元,得用水量超过18立方米,所以当y=81时,3x-9=81,解得x=30.答:这个月用水量为30立方米.18.(7分)在解方程组时,由于粗心,甲看错了方程组中的a,而得解为乙看错了方程组中的b,而得解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.解:(1)将x=-3,y=-1代入ax+5y=15,解得a=-,即甲把a看成了-.将x=5,y=4代入4x-by=-2,解得b=,即乙把b看成了.(2)将x=-3,y=-1代入4x-by=-2,解得b=10.将x=5,y=4代入ax+5y=15,解得a=-1.所以原方程组为解得19.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.解:(1)因为(1,b)在直线y=x+1上,所以当x=1时,b=1+1=2.(2)(3)直线y=nx+m也经过点P.理由如下:因为点P(1,2)在直线y=mx+n上,所以m+n=2,所以2=n×1+m,这说明直线y=nx+m 也经过点P.20.(8分)(2018济南)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每名学生只能参加其中一项馆,则能节省票款多少元.解:设参观历史博物馆的有x人,参观民俗展览馆的有y人,根据题意得解得所有人都参观历史博物馆,所需票款为10×150=1 500(元),则可省下票款为2 000-1 500=500元.答:参观历史博物馆的人数为100人,参观民俗展览馆的人数为50人;若所有人都参观历史博物馆,则可节省票款500元.附加题(共20分)21.(10分)为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察,发现它们可以根据人的身长调求出这个关系式;(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77 cm,凳子的高度为43.5 cm,请你判断它们是否配套,说明理由.解:(1)把x=37时y=70,x=40时y=74.8,分别代入y=kx+b,得解得所以桌高y与凳高x满足的关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4≠77,所以它们不配套.22.(10分)已知某电脑公司有A型,B型,C型三种型号的电脑,其价格分别为A型每台6 000元,B型每台4 000元,C型每台2 500元,某中学计划将100 500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.解:(1)设购买A型电脑x台,B型电脑y台,根据题意,得解得显然不合题意,舍去.(2)设购买A型电脑a台,C型电脑b台,根据题意,得解得(3)设购买B型电脑m台,C型电脑n台,根据题意,得解得综上可知,共有两种方案可供选择:购买A型电脑3台,C型电脑33台,或购买B 型电脑7台,C型电脑29台.。

人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试

人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试

人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2019·江苏初一月考)在以下现象中:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动,属于平移的是()A.①,②B.①,③C.②,③D.②,④【答案】D【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移;②打气筒打气时,活塞的运动属于平移;③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移,故选D.2.(2019·重庆市忠县拔山中学校初一期中)下列语句不是命题的是()A.熊猫没有翅膀B.点到直线的距离C.若|a|=|b| ,则a=b D.小明是七年级二班的学生【答案】B【解析】熊猫没有翅膀、若|a|=|b|,则a=b和小明是七年级(2)班的学生都是命题,而点到直线的距离为一个名称,它不是命题.故选B.3.(2019·浙江初一期中)如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.【答案】D【解析】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.4.(2019·邓州市张村乡中学初一期末)下面给出的结论中,说法正确的有()①最大的负整数是﹣1;②在同一个平面内,经过一个已知点只能画一条直线和已知直线垂直;③当a≤0时,|a|=﹣a;④若a2=9,则a一定等于3;⑤邻补角的两条角平分线构成一个直角;⑥同旁内角相等,两直线平行.A.2个B.3个C.4个D.5个【答案】C【解析】①最大的负整数是﹣1,正确;②在同一个平面内,经过一个已知点只能画一条直线和已知直线垂直,正确;③当a≤0时,|a|=﹣a,正确;④若a2=9,则a=±3,错误;⑤邻补角的两条角平分线构成一个直角,正确;⑥同旁内角互补,两直线平行,错误.故选C.5.(2019·嵊州市谷来镇中学初二期中)在下列命题中,为真命题的是()A.两个锐角的和是锐角B.相等的角是对顶角C.同旁内角互补D.同角的补角相等【答案】D【解析】解:A、错误.两个锐角的和可能是锐角或直角或钝角;B、错误.相等的角不一定是对顶角;C、错误,两直线平行时同旁内角互补;D、正确.故选:D.6.(2019·河北初三期中)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D..【答案】D【解析】解:A.可以通过轴对称变换得到;B.不能通过平移变换得到;C. 可以通过旋转得到;D. 可以通过平移变换得到,故选:D.7.(2019·上海市江宁学校初一期中)一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°【答案】A【解析】如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.故选A.8.(2019·重庆市两江育才中学校初二开学考试)如图,已知直角△ABC中,∠B=90°,AB=8,BC=6,把斜边AC 分成n段,以每段为对角线作小长方形,则所有这些小长方形的周长的和是()A.14B.28C.14nD.28n【答案】B【解析】∵∠B=90°,AB=8,BC=6,且斜边AC平均分成n段,∴小矩形的长为ABn=8n,宽为BCn=6n,∴一个小矩形的周长为:2(86n n)=28n,∴这些小矩形的面积和是n•28n=28.故选:B.9.(2019·浙江初二期中)能说明命题“若|a|=|b|,则a=b”是假命题的反例为()A.a=2,b=-2B.a=1,b=0C.a=1,b=1D.a=-3,b= 1 3【答案】A【解析】解:若a,b互为相反数,则|a|=|b|,a≠b,命题“若|a|=|b|,则a=b”是假命题,则a ,b 互为相反数即可, a=2,b=-2时,a ,b 互为相反数,故答案为A.10.(2019·呼伦贝尔市海拉尔区铁路第三中学初一期末)将一副三角板按如图放置,则下列结论中,正确的有( ) ①∠1=∠3;②如果∠2=30°则有AC ∥DE ;③如果∠2=30°,则有BC ∥AD ;④如果∠2=30°,必有∠4=∠CA .①②③B .①②④C .③④D .①②③④【答案】B【解析】 解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C =45°,∴BC 与AD 不平行,③错误;∵∠2=30°∴AC ∥DE ,∴∠4=∠C ,④正确.故选:B .11.(2019·浙江初二期中)能说明命题“若22a b =,则a b =”是假命题的一个反例可以是( )A .2,2a b ==-B .2,3a b ==C .2,2a b =-=-D .2,3a b =-=-【答案】A【解析】若22a b =,则a=b”是假命题的一个反例可以是a=2,b=-2.故选A.12.(2019·昆明市呈贡区实验学校初二期末)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是( )A .28︒B .34︒C .46︒D .56︒【答案】B【解析】解:如图,延长DC 交AE 于F ,//AB CD Q ,87BAE ∠=︒,87CFE ∴∠=︒,又121DCE ∠=︒Q ,1218734E DCE CFE ∴∠=∠-∠=︒-︒=︒,故选:B .13.(2017·内蒙古初一期末)如图,将半径为2cm 的半圆水平向左平移2cm ,则半圆所扫过的面积(阴影部分)为( ).A .2cm πB .24cmC .2ππ⎛⎫- ⎪⎝⎭ cm 2D .2ππ⎛⎫+ ⎪⎝⎭cm 2【答案】B【解析】 根据图形可知阴影面积为:2×2=4;故选B.14.(2019·浙江初二月考)某校八年级四个班的代表队准备举行篮球赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“802班得冠军,804班得第三”;乙说:“801班得第四,803班得亚军”;丙说:“803班得第三,804班得冠军”赛后得知,三人都只猜对了一半,则得冠军的是( )A .801班B .802班C .803班D .804班【答案】B【解析】解:假设甲说的“802班得冠军”是正确的,那么丙说的“804班得冠军”是错误的,“803班得第三”就是正确的,那么乙说的“803班得亚军”是错误的,“801班得第四”是正确的,这样三人都猜对了一半,且没矛盾.故猜测是正确的.故选:B.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2018·浙江初二期中)把命题“在一个三角形中,等角对等边”改写成“如果……那么……”的形式为.【答案】如果在一个三角形中有两个角相等,那么这两个角所对的边也相等【解析】因为条件是:在同一个三角形中有两个角相等,结论为:这两个角所对的边也相等.所以改写后为:如果在同一个三角形中有两个角相等,那么这两个角所对的边也相等.16.(2019·上海尚德实验学校初一月考)如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF 的周长为_____cm.【答案】20【解析】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.17.(2019·山东初二期末)如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.134【答案】0【解析】如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.18.(2018·辽宁初二期末)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC 沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是___.【答案】301.【解析】∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=12 BC,∴B′O=12AB,CO=12AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案是301.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2019·全国初二课时练习)下列句子中哪些是命题?(1)动物需要水;(2)玫瑰花是动物;(3)美丽的天空;(4)相等的角是对顶角;(5)负数都小于0;(6)你的作业做完了吗?【答案】(1)(2)(4)(5)是命题【解析】根据命题的定义(1)(2)(4)(5)都对一件事情做出了判断,因此属于命题,(3)“美丽的天空”不是判断语句,因此不是命题,(6)是疑问句,因此不是命题。

2018-2019学年七年级下学期期末考试数学试卷含答案解析

2018-2019学年七年级下学期期末考试数学试卷含答案解析
19、计算(5 分)0.04 3 27 1 4
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解二元一次方程组(答案与全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解二元一次方程组(答案与全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解二元一次方程组知识网络重难突破知识点一消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。

这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。

代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

基本思路:未知数由多变少。

代入消元法解二元一次方程组的一般步骤:1.变:将其中一个方程变形,使一个未知数用含有另一个的未知数的代数式表示。

2.代:用这个代数式代替另一个方程中的相应未知数,得到一元一次方程。

3.解:解一元一次方程4.求:把求得的未知数的值带入代数式或原方程组中的任意一个方程中,求得另一个未知数的值。

5.写:写出方程组的解。

6.验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。

加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

加减消元法解二元一次方程组的一般步骤:1.变形:将两个方程中其中一个未知数的系数化为相同(或互为相反数)。

2.加减:通过相减(或相加)消去这个未知数,得到一个一元一次方程。

3.求解:解这个一元一次方程,得到一个未知数的值。

4.回代:将求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数的值。

5.写解:写出方程组的解。

6.检验:将方程组的解带入到原方程组中的每个方程中,若各方程均成立,则这对数值就是原方程组的解,负责解题有误。

整体消元法:根据方程组各系数的特点,可将方程组中的一个方程或方程的一部分看成一个整体,带入另一个方程中,从而达到消去其中一个未知数的目的,并求得方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平方根》
1、下列命题中,正确的个数有( )
①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.
A.1个
B.2个
C.3个
D.4个
2、一个自然数的算术平方根是x,则下一个自然数的算术平方( )
B. C. D.x+1
2,y,那么xy等于( )
3、设x
A.3
B.-3
C.9
D.-9
4、(-3)2的平方根是( )
A.3
B.-3
C.±3
D.±9
5、x是16的算术平方根,那么x的算术平方根是( )
A.4
B.2
C.
D.±4
6、有一块正方形玻璃重6.75千克,已知此种玻璃板每平方厘米重1.2克,求这块玻璃板的边长.
7、某农场有一块长30米,宽20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?(精确到0.1米)
答案:
1.B
2.C
3.C
4.C
5.B
6.75厘米
×30×20,x2=300,x≈17.3.
7.能,设鱼池的边长为x米,则x2=1
2
1、36的算术平方根是______,36的算术平方根是_____.
2、如果a2=3,那么a=______.
,那么a=_______.
3、一个正方体的表面积是78,则这个正方体的棱长是_______.
4、算术平方根等于它本身的数是_______.
5=_______,
6________.
7、求满足下列各式的非负数x的值:
(1)169x2=100 (2)x2-3=0
8、求下列各式的值:
(1)
9,求2x+5的算术平方根.
10、已知a b-1是400
答案:
1.±6,6
a=9
4.0
5.6,-7,±5,│a│
6.5
;(2)x
7.(1)x=±10
13
8.(1)-0.1;(2)11;(3)0.42
9.x=2,2x+5的平方根±3
10.a=13,b=21。

相关文档
最新文档