2015年朝阳二模理科

合集下载

2015年北京中考数学二模各区29题汇总(含答案)

2015年北京中考数学二模各区29题汇总(含答案)

2015北京中考数学二模各区29题(含答案)昌平29. 在平面直角坐标系xOy 中,给出如下定义:形如()()2y a x m a x m =-+-与()()2y a x m a x m =---的两个二次函数的图象叫做“兄弟抛物线”. (1)试写出一对兄弟抛物线的解析式 与 ; (2)判断二次函数2y x x =-与232y x x =-+的图象是否为兄弟抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对兄弟抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对兄弟抛物线的解析式.备用图朝阳29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON .(1)求该二次函数的表达式;(2)若点P 的坐标是(-6,3),求△OPN 的面积; (3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.丰台29.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2. (1)分别判断函数1y x=-(0x <)和23y x =-(2x <) 是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.怀柔29. 阅读理解:学习了三角形全等的判定方法:“SAS ”,“ASA ”,“AAS ”,“SSS ”和直角三角形全等的判定方法“HL ”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA ”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D . 初步探究:如图1,已知AC=DF, ∠A =∠D ,过C 作CH ⊥射线AM 于点H ,对△ABC 的CB 边进行分类,可分为“CB<CH ,CB=CH ,CH<CB<CA ,”三种情况进行探究.深入探究: 第一种情况,当BC<CH 时,不能构成△ABC 和△DEF .第二种情况,(1)如图2,当BC=CH 时,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D ,根据 ,可以知道Rt △ABC ≌Rt △DEF .HNANA第三种情况,(2)当CH<BC<CA 时,△ABC 和△DEF 不一定全等.请你用尺规在图1的两个图形中分别补全△ABC 和△DEF,使△DEF 和△ABC 不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH 时,才一定能使△ABC ≌△DEF . 除了上述三种情况外,BC 边还可以满足什么条件,也一定能使△ABC ≌△DEF ?写出结论,并利用备用图证明.石景山29.对于平面直角坐标系xOy 中的点(),P m n ,定义一种变换:作点(),P m n 关于y 轴对称的点'P ,再将'P 向左平移()0k k >个单位得到点'k P ,'k P 叫做对点(),P m n 的k 阶“ℜ”变换.(1)求()3,2P 的3阶“ℜ”变换后3'P 的坐标;(2)若直线33y x =-与x 轴,y 轴分别交于,A B 两点,点A 的2阶“ℜ”变换后得到点C ,求过,,A B C 三点的抛物线M 的解析式; (3)在(2)的条件下,抛物线M 的对称轴与x 轴交于D ,若在抛物线M 对称轴上存在一点E ,使得以,,E D B 为顶点的三角形是等腰三角形,求点E 的坐标.房山29.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有_______条.A . 1 B. 2 C. 3 D. 无数 (2)如图2,已知抛物线L 3:2284y x x =-+与y 轴交于点C ,点C 关于该抛物线对称轴的对称点为D ,请求出以点D 为顶点的L 3的“友好”抛物线L 4的表达式;(3)若抛物线21()y a x m n =-+的“友好”抛物线的解析式为22()y a x h k =-+,请直接写出1a 与2a 的关系式为 .ANH图2图1平谷29.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O . (1)“距离坐标”为(1,0)点有 个;(2)如图2,若点M 在过点O 且与直线CD 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD =120°.请画出图形,并直接写出p ,q 的关系式; (3)如图3,点M 的“距离坐标”为(1,且∠AOB =30°,求OM 的长.顺义29.如图,在平面直角坐标系xOy 中,抛物线223y x bx c =-++与x 轴交于A ,B 两点,其中B (6,0),与y 轴交于点C (0,8),点P 是x 轴上方的抛物线上一动点(不与点C 重合). (1)求抛物线的表达式;(2)过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为'E ,若点'E 落在y 轴上(不与点C 重合),请判断以P ,C ,E ,'E 为顶点的四边形的形状, 并说明理由; (3)在(2)的条件下直接写出点P 的坐标.图1O D C B A 图2 图3备用图西城29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形.(1)如图1,已知点(0,A ,(3,0)B ,以原点O 为圆心的⊙O 半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.东城29.定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这个封闭图形的等分线。

2015高考全国卷2 理综(含答案)--高清版

2015高考全国卷2 理综(含答案)--高清版

2015年普通高等学校招生全国统一考试(全国卷2)理科综合能力测试(卷面分值:300分;考试时间:150分钟)(考试地区:贵州甘肃青海西藏黑龙江吉林宁夏内蒙古新疆云南)注意事项:1.答题前,现将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无线;再猜告知、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 Na 23 AI 27 P 31 S 32 CL 35.5 Ca 40 Fe 56 Zn 65 Br 80第I卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的1、将三组生理状态相通的某种植物幼根分别培养在含有相同培养液的密闭培养瓶下,一段时间后,测定根吸收某一矿质元素离子的量。

培养条件及实验结果见下表:下列分析正确的是A.有氧条件有利于该植物幼根对该离子的吸收B.该植物幼根对该离子的吸收与温度的变化无关C.氮气环境中该植物幼根细胞吸收该离子不消耗ATPD.与空气相比,氮气环境有利于该植物幼根对该离子的吸收2、端粒酶由RNA和蛋白质组成,该酶能结合到端粒子上,以自身的RNA为模板合成端粒子DNA的一条链。

下列叙述正确的是A.大肠杆菌拟核的DNA中含有端粒B.端粒酶中的蛋白质为RNA聚合酶C.正常人细胞的每条染色体两端都含有端粒DNAD.正常体细胞的端粒DNA随细胞分裂次数增加而变长3.下列过程中不属于胞吐作用的是A.浆细胞分泌抗体到细胞外的作用B. mRNA从细胞核到细胞质的过程C.分泌蛋白从胰腺的腺泡细胞到胞外的过程D.突触小泡中的神经递质释放到突触间隙的过程4.下列有关生态系统的叙述,错误..的是A.生态系统的组成成分中含有非生物成分B.生态系统相对稳定时无能量输入和散失C.生态系统持续相对稳定离不开信息传递D.负反馈调节有利于生态系统保持相对稳定5.下列与病原体有关的叙述,正确的是A.抗体可以进入细胞消灭寄生在其中的结核杆菌B.抗体抵抗病毒的机制与溶菌酶杀灭细菌的机制相同C. Rous肉瘤病毒不是致瘤因子,与人的细胞癌变无关D.人感染HIV后的症状与体内该病毒浓度和T细胞数量有关6.下列关于人类猫叫综合征的叙述,正确的是A.该病是由于特定的染色体片段缺失造成的B.该病是由于特定染色体的数目增加造成的C.该病是由于染色体组数目成倍增加选成的D.该病是由于染色体中增加某一片段引起的7.食品千操剂应无毒、无味、无腐蚀性及环境友好。

2015年高考全国卷2理科数学试题解析

2015年高考全国卷2理科数学试题解析

f (log2 12) 2log2121 2log2 6 6 ,故 f (2) f (log212) 9 .
(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的 比值为
1
(A)
8
【答案】D
1
(B)
7
1
(C)
6
1
(D)
5
【解析】由三视图得,在正方体 ABCD A1B1C1D1 中,截去四面体 A A1B1D1 ,如图所示,,设正方
)
(A)21
(B)42
(C)63 (D)84
【答案】B
(5)设函数
f
(x)

12x1lo, xg2(12,
x), x
1,
,
f
(2)

f
(log 2 12)

(
)
(A)3 (B)6
(C)9 (D)12
【答案】C
【 解 析 】 由 已 知 得 f (2) 1 log 2 4 3 , 又 log2 12 1 , 所 以
1
【答案】
2
【解析】因为向量
a

b

a

2b
平行,所以
a

b

(k a

2b),则
k, 1 2k, 所以


1 2

x y 1 0, (14)若 x,y 满足约束条件 x 2 y 0, ,则 z x y 的最大值为____________.
(B)8
(C)4 6
(D)10
【答案】C

2015年朝阳区高三二模英语试题及答案

2015年朝阳区高三二模英语试题及答案

北京市朝阳区高三年级第二次综合练习英语试卷2015.5(考试时间120分钟满分150分)第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话或独白。

每段对话或独白后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听完每段对话或独白后,你将有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话或独白你将听一遍。

1. How does the woman usually keep in touch with her friends?A. By letter.B. By telephone.C. By email.2. What does the woman want the man to do?A. To play games.B. To read a book.C. To work all the time.3. What does the man advise the woman to do?A. To go and ask the staffB. To get a new bus schedule.C. To read the notice on the window.4. What’s the probable relationship between the two speakers?A. Boss and secretary.B. Doctor and patient.C. Interviewer and interviewee.5. Which hat does the woman want to buy?A B C第二节(共10小题;每小题1.5分,共15分)听下面4段对话或独白。

每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有5秒钟的时间阅读每小题。

听完后,每小题将给出5秒钟的作答时间。

高考理综试题及答案 2015年高考全国2卷理综物理部分试题及答案

高考理综试题及答案 2015年高考全国2卷理综物理部分试题及答案

高考理综试题及答案2015年高考全国2卷理综物理部分试题及答案导读:就爱阅读网友为您分享以下“2015年高考全国2卷理综物理部分试题及答案”的资讯,希望对您有所帮助,感谢您对的支持!2015年高考全国卷2理综试题(物理部分)一、选择题(本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)14.如图,两平行的带电属板水平放置,若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动 C.向左下方做匀加速运动15.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上,当金属框绕ab边以ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc 已知bc边的长度为l,下列判断正确的是( )A.Ua&gt;Uc,金属框中无电流B.Ub&gt;Uc,金属框中电流方向沿abca.C.Ubc=?121Bl?,金属框中无电流D.Ubc=Bl2?,金属框中电流方向沿acba 2216.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行,已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为 1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A.西偏北方向,1.9×103m/sB.东偏南方向,1.9×103m/sC.西偏北方向,2.7×103m/sD.东偏南方向,2.7×103m/s17.汽车在平直公路上行驶,。

2015年高考数学全国卷二理科(完美版)

2015年高考数学全国卷二理科(完美版)

2015年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B= (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}2.若a 为实数且(2+ai )(a -2i )=-4i ,则a =(A )-1 (B )0 (C )1 (D )23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是(A )逐年比较,2008年减少二氧化硫排放量的效果最显著 (B )2007年我国治理二氧化硫排放显现(C )2006年以来我国二氧化硫年排放量呈减少趋势 (D )2006年以来我国二氧化硫年排放量与年份正相关 4.等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 = (A )21 (B )42 (C )63 (D )845.设函数f (x )=⎩⎨⎧≥++-1,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =(A )3 (B )6 (C )9 (D )126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则 截去部分体积与剩余部分体积的与剩余部分体积的比值为(A )81 (B )71 (C )61(D )517.过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10 8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》 中的“更相减损术”。

执行该程序框图,若输入a,b 分别为14,18, 则输出的a= (A )0 (B )2 (C )4 (D )149.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体 积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与 DA 运动,∠BOP=x 。

2015年北京海淀高三二模理综试题及答案

2015年北京海淀高三二模理综试题及答案

2015年北京海淀高三二模理综试题及答案海淀区高三年级第二学期期末练习理科综合能力测试物理 2015.5本试卷共14页,共300分。

考试时长150分钟。

考生务必将答案写在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题 共120分)本部分共20小题,每小题6分,共120分,在每小题列出的四个选项中,选出最符合题目要求的一项。

13.下列说法中正确的是A .仅利用氧气的摩尔质量和氧气的密度这两个已知量,便可计算出阿伏加德罗常数B .气体压强的大小只与气体的温度有关C .固体很难被压缩是因为其内部的分子之间存在斥力作用D .只要物体与外界不发生热量交换,其内能就一定保持不变14.下列说法中正确的是A .爱因斯坦根据对阴极射线的观察提出了原子的核式结构模型B .γ射线比α射线的贯穿本领强C .四个核子聚变为一个氦核的过程释放的核能等于氦核质量与c 2的乘积D .温度升高时铀238的半衰期会变小15.下列说法中正确的是A .光波是电磁波B .干涉现象说明光具有粒子性C .光电效应现象说明光具有波动性D .光的偏振现象说明光是纵波16.如图所示为模拟街头变压器通过降压给用户供电的示意图,变压器输入的交流电压可视为不变。

变压器输出的低压交流电通过输电线输送给用户。

定值电阻R 0表示输电线的电阻,变阻器R 表示用户用电器的总电阻。

若变压器为理想变压器,电表为理想电表,则在变阻器的滑片P 向上移动的过程中A .V 2示数变小B .V 1示数变大C .A 2示数变大D .A 1示数变小A 1A 2V 2V 1R~R 0 P17.公元1543年,哥白尼临终前在病榻上为其毕生致力的著作《天体运行论》印出的第一本书签上了自己的姓名。

这部书预示了地心宇宙论的终结。

哥白尼提出行星绕太阳做匀速圆周运动,其运动的示意图如图所示。

假设行星只受到太阳的引力,按照哥白尼上述的观点。

下列说法中正确的是A .太阳对各行星的引力相同B .土星绕太阳运动的向心加速度比火星绕太阳运动的向心加速度小C .水星绕太阳运动的周期大于一年D .木星绕太阳运动的线速度比地球绕太阳运动的线速度大18.如图甲所示,细线下悬挂一个除去了柱塞的注射器,注射器可在竖直面内摆动,且在摆动过程中能持续向下流出一细束墨水。

2015年北京市朝阳区和西城区高三二模数学理试题及答案(word版)

2015年北京市朝阳区和西城区高三二模数学理试题及答案(word版)

北京市朝阳区理科数学2015学年度第二学期高三综合练习2015.5第一部分(选择题共40 分)一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,集合,则=().B.C.D.2.执行如图所示的程序框图,则输出的n的值是().A.7 B.10 C.66 D.1663.设为虚数单位,,“复数是纯虚数”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.已知平面上三点A,B,C,满足,则=().A.48 B.-48 C.100 D.-1005.已知函数,若对任意的实数x,总有,则的最小值是().A.2 B.4 C.D.26.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P.若,则双曲线的渐近线方程为().7.已知函数,若对任意,都有成立,则实数m的取值范围是().8.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为().第Ⅱ卷(非选择题共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分.9.展开式中含项的系数是__________.10.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是__________.11.如图,已知圆B的半径为5,直线AMN与直线ADC为圆B的两条割线,且割线AMN过圆心B.若AM=2,,则AD=__________.12.某四棱锥的三视图如图所示,则该四棱锥的侧面积为__________.13.已知点在函数的图像上,则数列的通项公式为__________;设O为坐标原点,点,则,中,面积的最大值是__________.14.设集合,集合A中所有元素的个数为__________;集合A 中满足条件“”的元素个数为__________.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共13分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.如图,在直角梯形ABCD中,.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面平面ABCD.(Ⅰ)求证:;(Ⅱ)求直线BD和平面BCE所成角的正弦值;(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线平面MNH,求MH的长.18.(本小题共13分)已知点M为椭圆的右顶点,点A,B是椭圆C上不同的两点(均异于点M),且满足直线MA与直线MB斜率之积为14.(Ⅰ)求椭圆C的离心率及焦点坐标;(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.19.(本小题共14分)已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围;(Ⅲ)若函数有两个不同的极值点,,求证:.20.(本小题共13分)已知数列,是正整数1,2,3,,n的一个全排列.若对每个都有或3,则称为H数列.(Ⅰ)写出满足的所有H数列;(Ⅱ)写出一个满足的数列的通项公式;(Ⅲ)在H数列中,记.若数列是公差为d的等差数列,求证:或.参考答案及评分标准高三数学(理科)一、选择题:题号(1)(2)(3)(4)(5)(6)(7)(8)答案 A B B C A C D B二、填空题:题号(9)(10)(11)(12)(13)(14)答案三、解答题:15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.16.(本小题共13 分)解:(Ⅰ)由题意可得:题 A B C答卷数180 300 230抽出的答卷数 3 5 2应分别从题的答卷中抽出份,份.(Ⅱ)记事件:被抽出的三种答卷中分别再任取出份,这份答卷中恰有份得优,可知只能题答案为优,依题意.(Ⅲ)由题意可知,题答案得优的概率为,显然被抽出的题的答案中得优的份数的可能取值为,且.;;;;;.随机变量的分布列为:所以.17.(本小题共14分)证明:(Ⅰ)由已知得,.因为平面平面,且平面平面,所以平面,由于平面,所以.(Ⅱ)由(1)知平面所以,.由已知,所以两两垂直.以为原点建立空间直角坐标系(如图).因为,则,,,,所以,,设平面的一个法向量.所以,即.令,则.设直线与平面所成角为,因为,所以.所以直线和平面所成角的正弦值为.(Ⅲ)在为原点的空间直角坐标系中,,,,,.设,即.,则,,.若平面,则.即..解得.则,.18.(本小题共13分)解:(Ⅰ)椭圆的方程可化为,则,,.故离心率为,焦点坐标为,.(Ⅱ)由题意,直线的斜率存在,可设直线的方程为,,,则,.由得.判别式.所以,,因为直线与直线的斜率之积为,所以,所以.化简得,所以,化简得,即或.当时,直线方程为,过定点.代入判别式大于零中,解得.当时,直线的方程为,过定点,不符合题意.故直线过定点.19.(本小题共14分)解:(Ⅰ)当时,,.由,解得,.当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的单调增区间为,单调减区间为.(Ⅱ)依题意即求使函数在上不为单调函数的的取值范围.,设,则,.因为在上为增函数.当,即当时,函数在上有且只有一个零点,设为,当时,,即,为减函数;当时,,即,为增函数,满足在上不为单调函数.当时,,,所以在上成立(因在上为增函数),所以在上成立,即在上为增函数,不合题意.同理时,可判断在为减函数,不合题意.综上.(Ⅲ).因为函数有两个不同的零点,即有两个不同的零点,即方程的判别式,解得.由,解得,.此时,.随着变化,和的变化情况如下:+ +极大值极小值所以是的极大值点,是的极小值点,所以是极大值,是极小值所以因为,所以,所以.20.(本小题共13分)解:(Ⅰ)满足条件的数列有两个:.(Ⅱ)由(1)知数列满足,把各项分别加后,所得各数依次排在后,因为,所得数列显然满足或,,即得数列.其中,.如此下去即可得到一个满足的数列为:(其中)(写出此通项也可以(其中))(Ⅲ)由题意知,,且.有解:①,,,则,这与是矛盾的.②时,与①类似可得不成立.③时,,则不可能成立.④时,若或,则或.若或,则,类似于③可知不成立.④时,若同号,则,由上面的讨论可知不可能;若或,则或;⑤时,若异号,则,不行;若同号,则,同样由前面的讨论可知与矛盾.综上,只能为或,且(2)中的数列是的情形,将(2)中的数列倒过来就是,所以为或.北京市西城区2015 年高三二模试卷数学(理科)2015.5本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1 至2 页,第Ⅱ卷3 至6 页,共150 分.考试时长120 分钟.考生务必将答案答在答题纸上,在试卷上作答无效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区2015学年度第二学期高三综合练习
数学(理科)
2015.5
第一部分(选择题共40 分)
一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)
1.已知集合,集合,则=().
B. C. D.
2.执行如图所示的程序框图,则输出的n的值是().
A.7 B.10 C.66 D.166
3.设为虚数单位,,“复数是纯虚数”是“”的().
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
4.已知平面上三点A,B,C,满足,则
= ().
A.48 B.-48 C.100 D.-100
5.已知函数,若对任意的实数x,总有,则的最小值是().
A.2 B.4 C. D.2
6.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P.若,则双曲线的渐近线方程为().
7.已知函数,若对任意,都有
成立,则实数m的取值范围是().
8.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为().
第Ⅱ卷(非选择题共110 分)
二、填空题:本小题共6 小题,每小题5 分,共30 分.
9.展开式中含项的系数是__________.
10.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是__________.
11.如图,已知圆B的半径为5,直线AMN与直线ADC为圆B的两条割线,且割线AMN过圆心B.若AM=2,,则AD=__________.
12.某四棱锥的三视图如图所示,则该四棱锥的侧面积为__________.
13.已知点在函数的图像上,则数列的通项公式为__________;设O为坐标原点,点,则
,中,面积的最大值是__________.
14.设集合,集合A中所有元素的个数为__________;集合A 中满足条件“”的元素个数为
__________.
三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.
15.(本小题共13分)
在梯形ABCD中,
(Ⅰ)求AC的长;
(Ⅱ)求梯形ABCD的高.
16.(本小题共13分)
某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:
(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,
C题作答的答卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及
其数学期望EX.
如图,在直角梯形ABCD中,.直角梯
形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面平面ABCD.(Ⅰ)求证:;
(Ⅱ)求直线BD和平面BCE所成角的正弦值;
(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线平面MNH,求MH的长.
18.(本小题共13分)
已知点M为椭圆的右顶点,点A,B是椭圆C上不同的两点(均异于
点M),且满足直线MA与直线MB斜率之积为1
4

(Ⅰ)求椭圆C的离心率及焦点坐标;
(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.
已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围;
(Ⅲ)若函数有两个不同的极值点,,求证:.
20.(本小题共13分)
已知数列,是正整数1,2,3,,n的一个全排
列.若对每个都有或3,则称为H数列.
(Ⅰ)写出满足的所有H数列;
(Ⅱ)写出一个满足的数列的通项公式;
(Ⅲ)在H数列中,记.若数列是公差为d的等差数列,求证:或.
参考答案及评分标准
高三数学(理科)
一、选择题:
题号(1)(2)(3)(4)(5)(6)(7)(8)答案 A B B C A C D B
二、填空题:
题号(9)(10)(11)(12)(13)(14)
答案
三、解答题:
15.(本小题共13 分)
解:(Ⅰ)在中,因为,所以.由正弦定理得:
,即.
(Ⅱ)在中,由余弦定理得:,
整理得,解得(舍负).
过点作于,则为梯形的高.
因为,,所以.
在直角中,.
即梯形的高为.
16.(本小题共13 分)
解:(Ⅰ)由题意可得:
题 A B C
答卷数180 300 230 抽出的答卷数 3 5 2
应分别从题的答卷中抽出份,份.
(Ⅱ)记事件:被抽出的三种答卷中分别再任取出份,这份答卷中恰有份得优,可知只能题答案为优,依题意.(Ⅲ)由题意可知,题答案得优的概率为,显然被抽出的题的答案中得优的份数的可能取值为,且.
;;
;;
;.
随机变量的分布列为:
所以.
17.(本小题共14分)
证明:(Ⅰ)由已知得,

因为平面平面,
且平面平面,
所以平面,
由于平面,所以.
(Ⅱ)由(1)知平面
所以,.
由已知,
所以两两垂直.
以为原点建立空间直角坐标系(如图).
因为,
则,,,,
所以,,
设平面的一个法向量.
所以,即.
令,则.
设直线与平面所成角为,
因为,
所以.
所以直线和平面所成角的正弦值为.
(Ⅲ)在为原点的空间直角坐标系中,
,,,,.
设,
即.
,则,
,.
若平面,则.
即.
.解得.
则,.
18.(本小题共13分)
解:(Ⅰ)椭圆的方程可化为,则,,.
故离心率为,焦点坐标为,.
(Ⅱ)由题意,直线的斜率存在,可设直线的方程为,,
,则,.
由得.
判别式.
所以,,
因为直线与直线的斜率之积为,
所以,
所以.
化简得,
所以,
化简得,即或.
当时,直线方程为,过定点.
代入判别式大于零中,解得.
当时,直线的方程为,过定点,不符合题意.
故直线过定点.
19.(本小题共14分)
解:(Ⅰ)当时,,.
由,解得,.
当时,,单调递增;
当时,,单调递减;
当时,,单调递增.
所以的单调增区间为,
单调减区间为.
(Ⅱ)依题意即求使函数在上不为单调函数的的取值范围.,设,则,.
因为在上为增函数.
当,即当时,函数在上有且只有一个零点,设为,
当时,,即,为减函数;
当时,,即,为增函数,满足在上不为单调函数.当时,,,所以在上成立(因在上为增函数),所以在上成立,即在上为增函数,不合题意.
同理时,可判断在为减函数,不合题意.
综上.
(Ⅲ).
因为函数有两个不同的零点,即有两个不同的零点,即方程
的判别式,解得.
由,解得,.
此时,.
随着变化,和的变化情况如下:
+ +
极大值极小值
所以是的极大值点,是的极小值点,所以是极大值,
是极小值所以
因为,所以,
所以.
20.(本小题共13分)
解:(Ⅰ)满足条件的数列有两个:.
(Ⅱ)由(1)知数列满足,把各项分别加后,所得各数依次排
在后,因为,所得数列显然满足或,
,即得数列.其中,
.如此下去即可得到一个满足的数列为:
(其中)
(写出此通项也可以(其中))
(Ⅲ)由题意知,,且.
有解:
①,,,则,这与
是矛盾的.
②时,与①类似可得不成立.
③时,,则不可能成立.
④时,
若或,则或.
若或,则,类似于③可知不成立.
④时,
若同号,则,由上面的讨论可知不可能;
若或,则或;
⑤时,
若异号,则,不行;
若同号,则,同样由前面的讨论可知与矛盾.
综上,只能为或,且(2)中的数列是的情形,将(2)中
的数列倒过来就是,所以为或.。

相关文档
最新文档