2018年10月人教版九年级数学上册第一次月考模拟试卷(含答案)
辽宁省朝阳市喀左二中九年级数学上学期第一次月考试卷(含解析) 新人教版-新人教版初中九年级全册数学试

2016-2017学年某某市某某市喀左二中九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填符合要求的选项字母代号.)1.下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=33.下列一元二次方程中,没有实数根的方程是()A.x2﹣3x+1=0 B.x2+2x﹣1=0 C.x2﹣2x+1=0 D.x2+2x+3=04.解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法 B.配方法C.公式法D.因式分解法5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值X围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠16.函数y=﹣2(x﹣3)2+6的顶点坐标是()A.(﹣3,6)B.(3,﹣6)C.(3,6) D.(6,3)7.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2 B.4 C.4或﹣2 D.4或38.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点9.若A(﹣2,y1),B(﹣1,y2),C(﹣3,y3)为二次函数y=ax2(a<0)的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2 D.y1<y3<y210.如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2﹣1 B.y=(x+1)2+1 C.y=(x﹣1)2+1 D.y=(x﹣1)2﹣1二、填空题(本大题共10小题,每小题3分,共30分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分)11.把函数y=2x2的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是.12.方程(2x+5)2=0的解是.13.若二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为.14.在一次同学聚会上,见面时两两握手一次,共握手28次,设共有x名同学参加聚会,则所列方程为,x=.15.二次函数y=ax2(a>0)对称轴是.16.函数y=(x﹣1)2+3的最小值为.17.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m=.18.以(2,3)为顶点且开口向下的二次函数的解析式为(写出一个即可).19.对于二次函数y=ax2(a≠0),当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为.20.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.三、解答题(共60分)21.用适当的方法解下列一元二次方程(1)(3x+2)2=25(2)4x2﹣12x+9=0(3)(2x+1)2=3(2x+1)(4)2x2﹣3x+2=0.22.阅读题:通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=﹣,x1x2=这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1、x2,且x12+x22=1,求:k的值是多少?23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?24.阅读下面的例题,X例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.25.如图,已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和点B(3,﹣9).(1)求该二次函数的表达式;(2)用配方法求该抛物线的对称轴及顶点坐标;(3)点C(m,m)与点D均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值;(4)在(3)的条件下,试问在该抛物线的对称轴上是否存在一点P,使PC+PB的值最小,若存在求出点P的坐标;若不存在,请说明理由.2016-2017学年某某市某某市喀左二中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填符合要求的选项字母代号.)1.下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.(4)二次项系数不为0.【解答】解:A、3(x+1)2=2(x+1)化简得3x2+4x﹣4=0,是一元二次方程,故正确;B、方程不是整式方程,故错误;C、若a=0,则就不是一元二次方程,故错误;D、是一元一次方程,故错误.故选:A.【点评】判断一个方程是否是一元二次方程:首先要看是否是整式方程;然后看化简后是否是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=3【考点】解一元二次方程-因式分解法;因式分解-十字相乘法等;解一元一次方程.【专题】计算题.【分析】分解因式得到x(x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:C.【点评】本题主要考查对解一元二次方程,解一元一次方程,因式分解等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.3.下列一元二次方程中,没有实数根的方程是()A.x2﹣3x+1=0 B.x2+2x﹣1=0 C.x2﹣2x+1=0 D.x2+2x+3=0【考点】根的判别式.【分析】根据根的判别式△=b2﹣4ac,逐一分析四个选项中方程根的判别式的符号,由此即可得出结论.【解答】解:A、△=b2﹣4ac=9﹣4=5>0,∴方程x2﹣3x+1=0有两个不相等的实数根;B、△=b2﹣4ac=4+4=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根;C、△=b2﹣4ac=4﹣4=0,∴方程x2﹣2x+1=0有两个相等的实数根;D、△=b2﹣4ac=4﹣12=﹣8<0,∴方程x2+2x+3=0没有实数根.故选D.【点评】本题考查了根的判别式,熟练掌握当△=b2﹣4ac<0时方程没有实数根是解题的关键.4.解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法 B.配方法C.公式法D.因式分解法【考点】解一元二次方程-因式分解法.【分析】移项后提公因式,即可得出选项.【解答】解:(5x﹣1)2=3(5x﹣1)(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,即用了因式分解法,故选D.【点评】本题考查了对解一元二次方程的解法的应用.5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值X围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题;压轴题.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的X围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.6.函数y=﹣2(x﹣3)2+6的顶点坐标是()A.(﹣3,6)B.(3,﹣6)C.(3,6) D.(6,3)【考点】二次函数的性质.【分析】根据二次函数的性质直接求解.【解答】解:二次函数y=﹣2(x﹣3)2+6的顶点坐标是(3,6).故选C.【点评】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.7.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2 B.4 C.4或﹣2 D.4或3【考点】二次函数的定义.【分析】根据二次函数的定义得到a2﹣2a﹣6=2,由抛物线的开口方向得到a>0,由此可以求得a 的值.【解答】解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得 a=4.故选:B.【点评】本题考查了二次函数的定义.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.8.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【考点】二次函数的性质.【分析】抛物线y=ax2(a≠0)是最简单二次函数形式.顶点是原点,对称轴是y轴,a>0时,开口向上,a<0时,开口向下;开口大小与|a|有关.【解答】解:A、二次函数y=3x2图象开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,正确;B、二次函数y=﹣6x2中开口向下,顶点(0,0),故当x=0时,y有最大值0,正确;C、|a|越大,图象开口越小,|a|越小图象开口越大,错误;D、抛物线y=ax2的顶点就是坐标原点,正确.故选C.【点评】此题考查了二次函数的性质:增减性(单调性),最值,开口大小以及顶点坐标.9.若A(﹣2,y1),B(﹣1,y2),C(﹣3,y3)为二次函数y=ax2(a<0)的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2 D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【分析】由a<0可得出:当x<0时,y随x的增大而增大.再结合﹣3<﹣2<﹣1即可得出结论.【解答】解:∵二次函数y=ax2中a<0,∴当x<0时,y随x的增大而增大,∵﹣3<﹣2<﹣1,∴y3<y1<y2.故选C.【点评】本题考查了二次函数的性质,根据二次函数的性质找出函数的单调区间是解题的关键.10.如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2﹣1 B.y=(x+1)2+1 C.y=(x﹣1)2+1 D.y=(x﹣1)2﹣1【考点】二次函数图象与几何变换.【专题】压轴题.【分析】首先根据A点所在位置设出A点坐标为(m,m)再根据AO=,利用勾股定理求出m的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.【解答】解:∵A在直线y=x上,∴设A(m,m),∵OA=,∴m2+m2=()2,解得:m=±1(m=﹣1舍去),m=1,∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.【点评】此题主要考查了二次函数图象的几何变换,关键是求出A点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(本大题共10小题,每小题3分,共30分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分)11.把函数y=2x2的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是y=2(x﹣3)2﹣2 .【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律.【解答】解:y=2x2的图象向右平移3个单位,再向下平移2个单位,得y=2(x﹣3)2﹣2.故填得到的二次函数解析式是y=2(x﹣3)2﹣2.【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.12.方程(2x+5)2=0的解是x1=x2=﹣.【考点】解一元二次方程-直接开平方法.【分析】直接开平方解方程得出答案.【解答】解:∵(2x+5)2=0,∴2x+5=0,解得:x1=x2=﹣.故答案为:x1=x2=﹣.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.13.若二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为 2 .【考点】二次函数图象上点的坐标特征;二次函数的定义.【分析】本题中已知了二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m﹣2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,即m≠0,∴m=2.故答案是:2.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的定义.此题属于易错题,学生们往往忽略二次项系数不为零的条件.14.在一次同学聚会上,见面时两两握手一次,共握手28次,设共有x名同学参加聚会,则所列方程为x(x﹣1)=28×2 ,x= 8 .【考点】由实际问题抽象出一元二次方程.【专题】应用题.【分析】每个学生都要和他自己以外的学生握手一次,但两个学生之间只握手一次,所以等量关系为:学生数×(学生数﹣1)=总握手次数×2,把相关数值代入即可求解.【解答】解:参加此会的学生为x名,每个学生都要握手(x﹣1)次,∴可列方程为x(x﹣1)=28×2,解得x1=8,x2=﹣7(不合题意,舍去).∴x=8.故答案为:x(x﹣1)=28×2;8.【点评】本题考查用一元二次方程解决握手次数问题,得到总次数的等量关系是解决本题的关键.15.二次函数y=ax2(a>0)对称轴是y轴.【考点】二次函数的性质.【分析】由二次函数解析式可直接确定其对称轴.【解答】解:∵y=ax2,∴二次函数是以y轴为对称轴的抛物线,故答案为:y轴.【点评】本题主要考查二次函数的性质,掌握二次函数的对称轴是解题的关键,注意不同形式的表达式所对应的对称轴.16.函数y=(x﹣1)2+3的最小值为 3 .【考点】二次函数的最值.【专题】常规题型.【分析】根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.【解答】解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故答案为:3.【点评】本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m=.【考点】一元二次方程的定义.【分析】由一元二次方程的定义回答即可.【解答】解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1且m﹣≠0.解得m=.故答案为:.【点评】本题主要考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键.18.以(2,3)为顶点且开口向下的二次函数的解析式为y=﹣(x﹣2)2+3 (写出一个即可).【考点】二次函数的性质.【专题】开放型.【分析】根据题意抛物线的顶点坐标是(2,3),故设出抛物线的顶点式方程y=a(x﹣2)2+3,再有开口向下可知a<0,故可取a=﹣1,即得结果.【解答】解:∵抛物线的顶点坐标为(2,3)∴可设抛物线的解析式为y=a(x﹣2)2+3,又∵抛物线的开口向下,∴a<0,故可取a=﹣1,∴抛物线的解析式为y=﹣(x﹣2)2+3.故答案为:y=﹣(x﹣2)2+3.【点评】此题考查了二次函数的解析式的求法,关键是要由顶点坐标正确设出抛物线的解析式.理解开口向下的含义.19.对于二次函数y=ax2(a≠0),当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为0 .【考点】二次函数图象上点的坐标特征.【分析】判断出二次函数图象对称轴为y轴,再根据二次函数的性质判断出x1,x2关于y轴对称,然后解答即可.【解答】解:二次函数y=ax2的对称轴为y轴,∵x取x1,x2(x1≠x2)时,函数值相等,∴x1,x2关于y轴对称,∴x1+x2=0,∴当x取x1+x2时,函数值为0.故答案为:0.【点评】本题考查了二次函数的性质,熟记性质并判断出x1,x2关于y轴对称是解题的关键.20.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为18 .【考点】二次函数的性质;等边三角形的性质.【专题】压轴题.【分析】根据抛物线解析式求出对称轴为x=3,再根据抛物线的对称性求出AB的长度,然后根据等边三角形三条边都相等列式求解即可.【解答】解:∵抛物线y=a(x﹣3)2+k的对称轴为x=3,且AB∥x轴,∴AB=2×3=6,∴等边△ABC的周长=3×6=18.故答案为:18.【点评】本题考查了二次函数的性质,等边三角形的周长计算,熟练掌握抛物线的对称轴与两个对称点之间的关系是解题的关键.三、解答题(共60分)21.用适当的方法解下列一元二次方程(1)(3x+2)2=25(2)4x2﹣12x+9=0(3)(2x+1)2=3(2x+1)(4)2x2﹣3x+2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)利用直接开方法求出x的值即可;(2)把方程左边化为完全平方公式的形式,求出x的值即可;(3)把方程左边化两个因式积的形式,求出x的值即可;(4)求出△的值即可得出结论.【解答】解:(1)方程两边直接开方得,3x+2=±5,故x1=1,x2=﹣;(2)原方程可化为(2x﹣3)2=0,故2x﹣3=0,解得x=;(3)原方程可化为(2x+1)(2x﹣2)=0,故2x+1=0或2x﹣2=0,解得x1=﹣,x2=1;(4)∵△=9﹣16=﹣7<0,∴此方程无解.【点评】本题考查的是利用因式分解法解一元二次方程,在解答此类题目时要注意完全平方公式的灵活应用.22.(10分)(2016秋•喀左县校级月考)阅读题:通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=﹣,x1x2=这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1、x2,且x12+x22=1,求:k的值是多少?【考点】根与系数的关系;根的判别式.【分析】根据韦达定理可得x1+x2=﹣k,x1x2=1,将其代入到x12+x22=1,即(x1+x2)2﹣2x1x2=1,解关于k的方程可得k的值,再代回方程检验可得.【解答】解:∵方程x2+kx+k+1=0的两实数根分别为x1、x2,∴x1+x2=﹣k,x1x2=k+1,∵x12+x22=1,即(x1+x2)2﹣2x1x2=1,∴k2﹣2(k+1)=1,解得:k=﹣1或k=3,当k=﹣1时,方程为x2﹣x=0,解得:x=0或x=1;当k=3时,方程为x2+3x+4=0,方程无解,∴k=﹣1.【点评】本题主要考查一元二次方程根与系数的关系,熟练掌握韦达定理是解题的关键.23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)需先算出从2013年到2015年,每年盈利的年增长率,然后根据2013年的盈利,算出2014年的利润;(2)相等关系是:2016年盈利=2015年盈利×(1+每年盈利的年增长率).【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160,解得x1=0.2,x2=﹣2.2(不合题意,舍去),则1500(1+x)=1500(1+0.2)=1800.答:该公司2014年盈利1800万元.(2)2160×(1+0.2)=2592(万元).答:预计2016年盈利2592万元.【点评】本题的关键是需求出从2013年到2015年,每年盈利的年增长率.等量关系为:2013年盈利×(1+年增长率)2=2015.24.阅读下面的例题,X例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.【考点】解一元二次方程-因式分解法.【专题】阅读型.【分析】分为两种情况:(1)当x≥1时,原方程化为x2﹣x=0,(2)当x<1时,原方程化为x2+x ﹣2=0,求出方程的解即可.【解答】解:x2﹣|x﹣1|﹣1=0,(1)当x≥1时,原方程化为x2﹣x=0,解得:x1=1,x2=0(不合题意,舍去).(2)当x<1时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).故原方程的根是x1=1,x2=﹣2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确去掉绝对值符号.25.如图,已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和点B(3,﹣9).(1)求该二次函数的表达式;(2)用配方法求该抛物线的对称轴及顶点坐标;(3)点C(m,m)与点D均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值;(4)在(3)的条件下,试问在该抛物线的对称轴上是否存在一点P,使PC+PB的值最小,若存在求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由条件可知点A和点B的坐标,代入解析式可得到关于a和c的二元一次方程组,解得a和c,可写出二次函数解析式;(2)利用对称轴为x=﹣,顶点坐标为(﹣,)计算出其顶点坐标即可;(3)把点的坐标代入可求得m的值.(4)存在.如图,由(2)可知C(6,6),作点B关于对称轴的对称点B′(1,﹣9),连接CB′与对称轴的交点即为所求的点P.求出直线CB′的解析式即可解决问题.【解答】解:(1)将A(﹣1,﹣1),B(3,﹣9)代入,得,∴a=1,c=﹣6,∴y=x2﹣4x﹣6;(2)∵﹣=﹣=2,==﹣10,∴对称轴:直线x=2,顶点坐标:(2,﹣10);(3)∵点P(m,m)在函数图象上,∴m2﹣4m﹣6=m,∴m=6或﹣1.∵m>0,∴m=6.(3)存在.如图,由(2)可知C(6,6),作点B关于对称轴的对称点B′(1,﹣9),连接CB′与对称轴的交点即为所求的点P.设直线CB′的解析式为y=kx+b,把A、B代入得到,解得,∴直线CB′的解析式为y=3x﹣12,∴P(2,﹣6).∴当点P坐标为(2,﹣6)时,PB+PC最小.【点评】本题考查二次函数综合题、一次函数、待定系数法、最短问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决最值问题,属于中考压轴题.。
人教版数学九年级上册《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试【考试时间:90分钟满分:120分】一.选择题(共12小题)1.(2020春•南岸区校级月考)如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=()A.36°B.44°C.54°D.72°2.(2020•清江浦区)如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°3.(2020•斗门区)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.8 4.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°5.(2020•通辽)如图,P A,PB分别与⊙O相切于A,B两点,∠P=72°,则∠C=()A.108°B.72°C.54°D.36°6.(2020•三明)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC的长度为()A.3B.4C.4√2D.4√3 7.(2020•南充模拟)如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A .9B .10C .12D .158.若正六边形的边长为8cm ,则它的边心距为( )A .8cmB .6cmC .4√3cmD .2√3cm9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是( )A .36πB .60πC .96πD .100π10.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π11.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3cmB .2cmC .1cmD .4cm12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r,母线长为R,正方形的边长为a,则用r表示a为()A.a=2+√22r B.a=5+2√22r C.a=2+5√22r D.a=(1+5√22r)二.填空题(共7小题)13.(2020•铁岭)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.14.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是AB̂的中点,且CD=10m,则这段弯路所在圆的半径为m.15.如图,AB为⊙O的直径,△P AB的边P A,PB与⊙O的交点分别为C、D.若AĈ=CD̂=DB̂,则∠P的大小为度.16.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.17.(2020•碑林区校级四模)如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为.18.(2020春•南岸区校级月考)如图,在正方形ABCD中,AB=2,分别以B、C为圆心,以AB的长为半径作弧,则阴影部分的面积为.19.(2020•娄底)如图,四边形ABDC中,AB=AC=3,BD=CD=2,则将它以AD为轴旋转180°后所得分别以AB、BD为母线的上下两个圆锥的侧面积之比为.三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.22.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.23.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.24.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.25.(2020•承德)如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优̂,使点B在点O右下方,且∠AOB=30°,在优弧AB̂上任取一点P,过点P作直弧AB线OB的垂线,交数轴于点Q,设Q在数轴上对应的数为x,连接OP.̂上一段AP̂的长为10π,求∠AOP的度数及x的值;(1)若优弧AB̂所在圆的位置关系.(2)求x的最小值,并指出此时直线PQ与AB答案与解析一.选择题(共12小题)1.(2020春•南岸区)如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=()A.36°B.44°C.54°D.72°【答案】C【解析】∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠D=36°,∴∠ABC=90°﹣36°=54°,故选:C.【小贴士】圆周角定理,直角三角形的性质等知识,属于中考常考题型.【考点】圆周角定理.2.(2020•清江浦区)如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°【答案】D【解析】如图,∵A、B、C是⊙O上的三个点,∠AOB=58°,∴∠BCA=12∠AOB=29°,故选:D.【小贴士】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,基础题.【考点】圆周角定理.3.(2020•斗门区)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.8【考点】勾股定理;垂径定理.【答案】B【分析】根据CE=2,DE=8,得出直径CD=10,从而得出半径为5,在直角三角形OBE 中,由勾股定理得BE.【解析】∵CE=2,DE=8,∴CD=10,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,BE=√OB2−OE2=√52−32=4,故选:B.【小贴士】勾股定理以及垂径定理,是基础.4.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°【考点】切线的性质.【答案】B【解析】∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB=180°−∠O2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.【小贴士】切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•通辽)如图,P A,PB分别与⊙O相切于A,B两点,∠P=72°,则∠C=()A.108°B.72°C.54°D.36°【考点】圆周角定理和切线的性质.【答案】C【解析】连接OA、OB,∵P A,PB分别为⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠P AO=90°,∠PBO=90°,∴∠AOB=360°﹣∠P AO﹣∠PBO﹣∠P=360°﹣90°﹣90°﹣72°=108°,由圆周角定理得,∠C=12∠AOB=54°,故选:C.【小贴士】的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(2020•三明)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC的长度为()A.3B.4C.4√2D.4√3【考点】三角形的外接圆与外心.【答案】B【解析】连接CD,∵AD是⊙O的直径,∴∠ACD=90°,又∵∠B=∠D=30°,∴AC=12AD=4,故选:B.7.(2020•南充模拟)如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.15【考点】正多边形和圆.【答案】C【解析】如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BCO=∠AOC﹣∠AOB=30°,由题意30°=360°n,∴n=12,8.若正六边形的边长为8cm,则它的边心距为()A.8cm B.6cm C.4√3cm D.2√3cm 【考点】正多边形和圆.【答案】C【解析】如图所示,连接OA,OB,过O作OD⊥AB于D,则OA=OB,OD⊥AB,AD=BD=12AB=12×8=4cm,∵此六边形是正六边形,∴∠AOB=360°6=60°,∴∠AOD=12∠AOB=12×60°=30°,∴OD=AD•cot∠AOD=4×√3=4√3cm.故选:C.9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是()A.36πB.60πC.96πD.100π【考点】圆锥的计算.【答案】B【解析】底面周长是:2×6π=12π,则圆锥的侧面积是:12×12π×10=60π.故选:B .10.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π【考点】弧长的计算.【答案】D【解析】∵∠AOC :∠AOD :∠DOB =2:7:11,∠AOD +∠DOB =180°,∴∠AOD =77+11×180°=70°,∠DOB =110°,∠COA =20°,∴∠COD =∠COA +∠AOD =90°,∵OD =OC ,CD =4,∴2OD 2=42,∴OD =2√2,∴CD ̂的长是nπr 180=90π×2√2180=√2π,故选:D .【小贴士】解直角三角形和弧长公式,能求出半径OD 的长是解此题的关键,注意:圆心角是n °,半径是r 的弧的长度是nπr 180.11.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3cmB .2cmC .1cmD .4cm【考点】圆锥的计算.【答案】C【分析】利用扇形的面积公式可得圆锥的母线长,进而可求得圆锥的弧长,除以2π即为圆锥的底面半径.【解析】设圆锥的母线长为R ,120π×R 2360=3π,解得R =3cm , ∴圆锥的侧面展开图的弧长=120π×3180=2πcm , ∴圆锥的底面半径=2π÷2π=1cm ,故选:C .【小贴士】用到的知识点为:圆锥的侧面展开图的面积=nπR 2360;圆锥的侧面展开图的弧长=nπR 180;圆锥的侧面展开图的弧长等于底面周长.12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r ,母线长为R ,正方形的边长为a ,则用r 表示a 为( )A.a=2+√22r B.a=5+2√22r C.a=2+5√22r D.a=(1+5√22r)【考点】弧长的计算.【答案】C【分析】利用底面周长=展开图的弧长求出半径比,再根据过小圆的圆心作垂线,垂直于正方形的边,就构成等腰直角三角形,从图中关系可知,直角三角形的斜边是r+R,直角边a﹣r,根据勾股定理计算.【解析】利用底面周长=展开图的弧长可得;2πr=90πR180,得出R=4r,利用勾股定理解得a=2+5√22r.故选:C.【小贴士】的关键是利用底面周长=展开图的弧长求得r与R的关系,然后由勾股定理求得a与r之间的关系.二.填空题(共7小题)13.(2020•铁岭)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=8cm.【考点】勾股定理和垂径定理.【答案】8【解析】∵CD⊥OB,∴CE=DE=12CD=4,在Rt△OCE中,OE=√52−42=3,∴AE=AO+OE=5+3=8(cm).14.(2019秋•昌平区期末)如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是AB̂的中点,且CD=10m,则这段弯路所在圆的半径为25 m.【考点】垂径定理的应用.【答案】25【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解析】∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.15.(2019•长春)如图,AB为⊙O的直径,△P AB的边P A,PB与⊙O的交点分别为C、D.若AĈ=CD̂=DB̂,则∠P的大小为60度.【考点】圆心角、弧、弦的关系.【答案】60【解析】连接OC、OD,̂=CD̂=DB̂,∵AC∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,OB=OD,∴△AOC和△BOD都是等边三角形,∴∠A=60°,∠B=60°,∴∠P=60°,故答案为:60.【小贴士】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.16.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是√41−52.【考点】垂径定理和三角形的外接圆与外心.【解析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=5√2 2,∴OA=5√22,OF=BF=52,∴DF=BD﹣BF=3 2,∴OG=32,GD=52,在Rt△AGO中,AG=√OA2−OG2=√412,∴GE=√41 2,∴DE=GE﹣GD=√41−52.17.(2020•碑林区校级四模)如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为3+√3.【考点】正多边形和圆.【答案】3+√3.【分析】根据正六边形的性质和直角三角形的性质即可得到结论.【解析】∵正六边形ABCDEF中,AB=BC=CD=1,∠B=∠BCD=120°,∴∠ACB=∠BAC=30°,∴∠ACD=90°,∵∠CDA=∠EDA=60°,∴∠CAD=30°,∴AD=2CD=2,AC=√3CD=√3,∴△ACD的周长=AD+AC+CD=3+√3,18.(2020春•南岸区校级月考)如图,在正方形ABCD中,AB=2,分别以B、C为圆心,以AB的长为半径作弧,则阴影部分的面积为2√3−23π.【考点】扇形面积的计算.【答案】2√3−23π.【分析】连接BE 、CE ,得出等边三角形EBC ,求出∠DCE =30°,∠EBC =60°,分别求出扇形EBC 、扇形DCE 和△EBC 的面积,再求出答案即可.【解析】∵在正方形ABCD 中,AB =2,分别以B 、C 为圆心,以AB 的长为半径作弧, ∴∠DCB =90°,BC =AB =2,弧对应的半径是2,如图,连接BE 、CE ,∵BC =CE =BE =2,∴△BEC 是等边三角形,∴∠EBC =∠ECB =60°,∴∠DCE =30°,S 弓形=S 扇形EBC ﹣S △EBC =60π×22360−12×2×√3=23π−√3, ∴阴影部分的面积S =2(S 扇形DCE ﹣S 弓形)=2×[30π×22360−(23π−√3)]=2√3−23π.19.(2020•娄底)如图,四边形ABDC 中,AB =AC =3,BD =CD =2,则将它以AD 为轴旋转180°后所得分别以AB 、BD 为母线的上下两个圆锥的侧面积之比为 3:2 .【考点】圆锥的计算.【答案】3:2,【分析】根据两个圆锥的底面圆相同,设底面圆的周长为l ,根据圆锥的侧面积公式可得上面圆锥的侧面积为:12l •AB ,下面圆锥的侧面积为:12l •BD ,即可得出答案. 【解析】∵两个圆锥的底面圆相同,∴可设底面圆的周长为l ,∴上面圆锥的侧面积为:12l •AB ,下面圆锥的侧面积为:12l •BD ,∵AB =AC =3,BD =CD =2,∴S 上:S 下=3:2,三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,AB 为⊙O 的直径,点C 在⊙O 上,AD 平分∠CAB ,AD 与BC 交于点F ,过点D 作DE ⊥AB 于点E .(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.【考点】圆周角定理.【分析】(1)如图①中,延长DE交⊙O于G,连接AG.想办法证明DE=EG,BC=DG即可.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.首先证明BF=BO,利用相似三角形的性质证明AC=2FR=2CF,由tan∠F AR=tan∠F AC=12,设SO=t,AS=2t,SF=SO=t,利用勾股定理求出t即可解决问题.【解析】(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴BD̂=BĜ,DE=EG,∵AD平分∠CAB,∴CD̂=BD̂,∴BĈ=DĜ,∴BC=DG=2DE.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴FBAB =FRAC=12,∴tan∠F AR=tan∠F AC=1 2,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=2√5 5,∴AF=3t=6√55,设CF=m,则AC=2m,则有5m2=36 5,∵m>0,∴m=6 5,∴AC=2m=12 5.【小贴士】解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【考点】等腰三角形的判定与性质;圆周角定理.【解析】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴AF=EF.22.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.【考点】圆周角定理和切线的判定与性质.【解析】(1)连接OE,AE,∵AE=DE,OA=OE,∴∠DAE=∠DEA,∠OAE=∠OEA,∵AC是⊙O的切线,∴∠BAC=90°,∴∠DAE+∠OAE=∠DEA+∠OEA=90°,∵OE是⊙O的半径,∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠AEB=90°,∵∠C+∠CAE=∠CAE+∠BAE=90°,∴∠C=∠BAE,∴AE2=CE•BE,∴AE2=1×3,∴AE=√3,在Rt△ACE中,∴tan∠ACE=AECE=√3,∴∠ACE=60°.23.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.【解析】(1)证明:在⊙O中,∵∠BAC与∠CPB是BĈ对的圆周角,∠ABC与∠APC是AĈ所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.24.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.【考点】正多边形和圆.【解析】(1)∵六边形ABCDEF 是正六边形,∴∠F AB =(6−2)×1806=120°; (2)证明:连接OA 、OB ,∵OA =OB ,∴∠OAB =∠OBA ,∵∠F AB =∠CBA ,∴∠OAG =∠OBH ,在△AOG 和△BOH 中,{AG =BH ∠OAG =∠OBH OA =OB,∴△AOG ≌△BOH (SAS )∴OG =OH .25.(2020•承德)如图,点A 在数轴上对应的数为20,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在点O 右下方,且∠AOB =30°,在优弧AB ̂上任取一点P ,过点P 作直线OB 的垂线,交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为10π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线PQ 与AB̂所在圆的位置关系.【考点】实数与数轴和圆周角定理和弧长的计算.【解析】(1)如图1,由n⋅π×20180=10π,解得n=90°,∴∠POQ=90°,∴∠AOP=180°﹣∠POQ=90°,∵PQ⊥OB,∴∠PQO=60°,∴tan∠PQO=OPOQ=√3,∴OQ=20√3 3∴x=−20√3 3;(2)如备用图,当直线PQ与AB̂所在圆的位置关系相切时,x有最小值,则∠QPO=90°,∵∠POQ=∠AOB=30°,OP=20,∴OQ=2√33OP=40√33,∴x=−40√3 3.【小贴士】切线的判定和性质,弧长计算,锐角三角函数定义,解题的关键是熟练掌握切线的性质.。
届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
山东省淄博市张店区第九中学2024-2025学年九年级数学第一次月考(10月)试卷(含解析)

初三数学试题一,选择题1.(4分)下列从左到右的变形是分解因式的是( )A .B .C .D .2.(4分)下列分式中,是最简分式的是( )A.B .C .D .3.(4分)对于算式,下列说法错误的是( )A .能被98整除B .能被99整除C .能被100整除D .能被101整除4.(4分)如果把分式中的和都同时扩大3倍,那么分式的值()A .不变B .扩大3倍C .缩小D .扩大9倍5.(4分)若,则的值为( )A .5B .C .10D .6.(4分)如图是一个长为,宽为的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图那样拼成一个正方形,则中间空白部分的面积是( )A .B .C .D .7.(4分)根据分式的基本性质,分式可变形为( )A .B .C .D .8.(4分)已知三角形的三边,,满足,则是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形9.(4分)计算的结果是( )A .B .C .D .10.(4分)定义:如果两个分式的积等于这两个分式的差乘以一个常数,那么这两个分式叫做和谐分2(1)(1)1x x x +-=-221(2)1x x x x -+=-+2262(3)x x x x +=+255(1)y y y y -=-22x y x y ++223 a a b 211x x --22a ab ab b ++39999-xy x y-x y 13215(3)()x mx x x n +-=++mn 5-10-2a 2b 2()a b -ab 2(2)a b +22a b -a a b --aa b --aa b +a a b -+aa b-a b c ()2222()b a b a bc ac +-=-ABC △22111m m m m ----1m +1m -2m -2m --式.如,则与是和谐分式.下列每组两个分式是和谐分式的是()A .与B .与C .与D .与二,填空题.11.(4分)要使分式有意义,则需满足的条件是_____________.12.(4分)若多项式可以用完全平方公式进行因式分解,则____________.13.(4分)分式的值为0,则___________.14.(4分)已知,那么的值为_____________.15.(4分)已知对于正数,我们规定:,例如:,则___________.三.解答题(共8小题)16.(10分)因式分解:(1)(2).17.(10分)计算:(1);(2)18.(10分),0,1,2中选一个合适的数求值.19.(10分)下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步)(第二步)1111113213n n n n ⎛⎫⨯=- ⎪++++⎝⎭11n +13n +1n 121n +121n -131n +221n -331n +321n -231n +15x -x 29x kx ++k =242x x --x =23m n -=22467m n n --+x 1()1x f x =+11(2)123f ==+(2023)(2022)(2021)f f f ++11111(2)(1)23202120222023f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L 22516x -(6)9x x -+2111a a a a -++-2224x x x y y y⎛⎫÷⨯ ⎪-⎝⎭2-()()2242464x x x x -+-++24x x y -=(2)(6)4y y =+++2816y y =++(第三步)(第四步)回答下列问题;(1)该同学第二步到第三步运用了什么公式进行因式分解?(2)该同学因式分解的结果是否彻底?若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.20.(12分)计算下列各式:(1)_________________;(2)_____________;(3)______________;请你根据所学知识寻找计算上面的算式的简便方法,利用你找到的简便方法计算下式:.21.(12分)阅读材料:要将多项式分解因式,可以先把它的前两项分成一组,再把它的后两项分成一组,从而得到:,这时中又有公因式,于是可以提出,从而得到,因此有,这种方法称为分组法.请回答下列问题:(1)尝试填空:______________;(2)解决问题:因式分解;.(3)拓展应用:已知三角形的三边长分别是,,,且满足,试判断这个三角形的形状,并说明理由.22.(13分)请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:.,.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以2(4)y =+()2244x x =-+()()222221x xx x --++2112-=22111123⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭222111111234⎛⎫⎛⎫⎛⎫---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭222211*********n ⎛⎫⎛⎫⎛⎫⎛⎫---⋯- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭am an bm bn +++()()()()am an bm bn am an bm bn a m n b m n +++=+++=+++()()a m n b m n +++()m n +()m n +()()m n a b ++()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++2189x xy y -+-=22ac bc a b -+-a b c 2222220a ab b bc c -+-+=11x x -+21x x -11x +2211x x +-1210222225555+==+=化为“带分式”(整式与真分式和的形式),例如:.(1)将分式化为带分式;(2)当取哪些整数值时,分式的值也是整数?(3)当的值变化时,分式的最大值为_____________________.23.(13分)“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时利用几何直观的方法获取结论,在解决整式运算问题时经常运用.例1:如图1,可得等式:;例2:由图2,可得等式:.(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为的正方形,从中你发现的结论用等式表示为__________________;(2)利用(1)中所得到的结论,解决下面的问题:已知,.求的值.(3)如图4,拼成为大长方形,记长方形的面积与长方形的面积差为.设,若的值与无关,求与之间的数量关系.11221111x x x x x +-+==+---211x x +-x 211x x +-x 22272x x ++()a b c ab ac +=+22(2)()32a b a b a ab b ++=++a b c ++10a b c ++=22236a b c ++=ab bc ac ++AMGN ABCD EFGH S CD x =S CD a b初三数学试题答案1.解:A .从左到右的变形是多项式乘法,不是分解因式,故本选项不符合题意;B .等式的右边不是整式的积的形式,即从左到右的变形不属于分解因式,故本选项不符合题意;C .从左到右的变形属于分解因式,故本选项符合题意;D .等号两边的式子不相等,故本选项不符合题意.故选:C .2.解:A 、分子与分母没有公分母,是最简分式;B 、原式可化简为,故不是最简分式;C 、原式可化简为,不是最简分式;D 、原式可化简为,不是最简分式,故选:A .3.解:∵,∴原式能被99,100,98整除,故选:D .4.解:,即如果把分式中的和都同时扩大3倍,那么分式的值扩大3倍,故选:B .5.解:由,比较系数,得,,解得,,则.故选:C .6.解:中间部分的四边形是正方形,边长是,则面积是.故选:A .7.解:A 、只改变了分子的符号,故A 错误;23ab11x +a b 39999-()299991=⨯-99(991)(991)=⨯+⨯-9910098=⨯⨯333333x y xy xy x y x y x y⋅==⨯---xy x y --x y 2215(3)()(3)3x mx x x n x n x n +-=++=+++3m n =+153n -=2m =-5n =-(2)(5)10mn =-⨯-=2a b b a b +-=-2()a b -B 、只改变了分子的符号,故B 错误;C 、改变了分子分母的符号,故C 正确;D 、只改变了分子的符号,故D 错误;故选:C .8.解:∵,∴,∴,∴,∴或,∴或,∴是等腰三角形或直角三角形,故选:D .9.解:原式.故选:B .10.解:∵,,∴和不是和谐分式,故A 不符合题意;∵,,∴和不是和谐分式,故B 不符合题意;∵,,∴,故C 符合题意;,,∴和不是和谐分式,故D 不符合题意.故选C .二.填空题(共4小题)()2222()b a b a bc ac +-=-()222()()b a b a b a c +-=-()222()()0b a b a b a c +---=()222()0b a a b c -+-=0b a -=2220a b c +-=a b =222a b c +=ABC △222(21)21(1)1111m m m m m m m m m ---+-====----1121121(21)(21)n n n n n n n n n +-+-==+++11121(21)n n n n ⋅=++1n 121n +11312122131(21)(31)(21)(31)n n n n n n n n n +-++-==-+-+-+1112131(1)(31)n n n n ⋅=-+-+121n -131n +232(31)3(21)52131(21)(31)(21)(31)n n n n n n n n +---==-+-+-+2362131(21)(31)n n n n ⋅=-+-+236232n 13n 152n 13n 1⎛⎫⋅=- ⎪-+-+⎝⎭323(31)2(21)5(1)2131(21)(31)(21)(31)n n n n n n n n n +--+-==-+-+-+3262131(21)(31)n n n n ⋅=-+-+321n -231n +11.解:由题意得:,解得:,故答案为:.12.解:∵多项式可以用完全平方公式进行因式分解,∴,∴.故答案为:.13.解:∵分式的值为0,∴,,∴故答案为:.14.解:∵,∴,故答案为:16.15.解:由题干中已知条件可得,,原式50x -≠5x ≠5x ≠29x kx ++2229(3)69x kx x x x ++=±=±+6k =±6±242x x --240x -=20x -≠2x =-2-23m n -=22467m n n --+(2)(2)67m n m n n =+--+3(2)67m n n =+-+6367m n n =+-+637m n =-+3(2)7m n =-+337=⨯+16=1()1x f x f ⎛⎫+= ⎪⎝⎭11(1)112f ==+111(1)(2)(3)(2023)232023f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦L 11112=++++L 1120222=+⨯120222=故答案为:.16、解:(1);(2).17、解:(1);(2)原式;18、解:原式又∵分母不能为0,∴不能取,0,2,当时,原式.19、解:(1),用到的是完全平方公式;(2)∵,12022222516x -225(4)x =-(54)(54)x x =+-(6)9x x -+269x x =-+2)(3x =-2111a a a a -++-111111a a a a a +=+==+++2242y x x y x y -=⋅⋅22x =-3(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x x ⎡⎤+--+=-⋅⎢⎥+--+⎣⎦22362(2)(2)(2)(2)x x x x x x x x x+-+-+=⋅-+228(2)(2)(2)(2)x x x x x x x+-+=⋅-+2(4)(2)(2)(2)(2)x x x x x x x++-=⋅-+2(4)x =+28x =+x 2-1x =21810=⨯+=22816(4)y y y ++=+()22444(2)x x x -+=-∴因式分解不彻底;(3)设,∴20、解:(1);(2);(3);故答案为:;;;原式.21、解:(1),,,,故答案为:;(2),,(3)这个三角形是等边三角形,理由如下:22y x x =-()()222221x x x x --++(2)1y y =++221y y =++2(1)y =+()2221x x =-+4(1)x =-213124-=2211211233⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭22211151112348⎛⎫⎛⎫⎛⎫---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭3423581324112233n n n n-+=⋅⋅⋅⋅L n 12n +=2189x xy y -+-(218)(9)x xy y =-+-2(9)(9)x y x =-+-(2)(9)y x =+-(2)(9)y x +-22ac bc a b -+-()()()c a b a b a b =-++-()()a b a b c =-++,,,∵,,∴,,∴,∴∴这个三角形是等边三角形.22、解:(1)原式;(2)由(1)得:,要使为整数,则必为整数,∴为3的因数,∴或,解得:,2,,4;(3)原式,当时,原式取得最大值.故答案为:23、解:(1)正方形面积为,小块四边形面积总和为∴由面积相等可得:,故答案为:.(2)由(1)可知,∵,;∴,∴.(3)由题意知,,,,,2222220a ab b bc c -+-+=2222220a ab b b bc c -++-+=22()()0a b b c -+-=2()0a b - (2)()0b c -…2()0a b -=2()0b c -=a b =b c=a b c==2(1)33211x x x -+==+--213211x x x +=+--211x x +-31x -1x -11x -=±3±0x =2-()2222233222x x x ++==+++20x =7272Q 2()a b c ++222222a b c ab bc ac+++++2222()222a b c a b c ab bc ac ++=+++++2222()222a b c a b c ab bc ac ++=+++++()2222222()ab bc ac a b c a b c ++=++-++10a b c ++=22236a b c ++=()22222()()1003664ab bc ac a b c a b c ++=++-++=-=164322ab bc ac ++=⨯=2BC a =3DE a =EH CF b ==3EF CD CF DE x b a =+-=+-,∴,即,又∵为定值,∴,即.ABCD EFGH S S S =-长方形长方形2(3)S CD BC EH EF x a b x b a =⋅-⋅=⋅-⋅+-2223(2)3S ax bx b ab a b x b ab =--+=--+S 20a b -=2b a =。
2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.32.(3分)下列几何体的主视图与众不同的是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×1044.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤25.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>38.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第象限.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.3【分析】根据①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.即可判断出答案.【解答】解:四个选项中,最小的数是﹣6.故选:B.2.(3分)下列几何体的主视图与众不同的是()A.B.C.D.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:A、主视图是下面两个正方形,上面一个正方形相叠;B、主视图是下面两个正方形,上面一个正方形相叠;C、主视图是下面两个正方形,上面一个正方形相叠;D、主视图上下都是两个正方形相叠.故选:D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤2【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x>﹣2,解②得:x≤2,则不等式组的解集是:﹣2<x≤2.故选:D.5.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ 【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,P A=PB,∴点A、B到PQ的距离相等,故C错误.故选:C.7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>3【分析】求y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围.【解答】解:y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围,从图上看当1<x<3时二次函数图象在一次函数图象下方,所以1<x<3.故选:A.8.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.【分析】原式利用二次根式乘法法则计算即可得到结果.【解答】解:原式==,故答案为:10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为13.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣5x+3=0根的判别式的值是:△=(﹣5)2﹣4×3=13.故答案为:13.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.【分析】点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.【解答】解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第二象限.【分析】观察图形得抛物线开口向下,抛物线与y轴的交点在x轴的上方,根据二次函数图形与系数的关系得到a<0,c>0,即可判断P点所在的象限.【解答】解:∵抛物线开口向下,∴a<0;∵抛物线与y轴的交点在x轴的上方,∴c>0.∴点P(a,c)在第二象限.故答案为二.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为24.【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得菱形ABCD的周长.【解答】解:∵在平面直角坐标系中,点点A是抛物线y=a(x﹣3)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=3,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是6,∴AB=6,∴菱形ABCD的周长为:6×4=24,故答案为:24.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.【分析】设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,根据时间=路程÷速度结合小刚比小明提前4min到达公园,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,依题意,得:﹣=4,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴3.5x=700.答:小刚乘公交车的平均速度为700米/分钟.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM=DE=500,∴BM=100,在Rt△CEM中,tan53°=,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.【分析】(1)证明△BFG≌△DHE(AAS),即可得出BG=DE;(2)当点F与B重合,点H与D重合时,菱形EFGH的面积最大,由菱形的性质得出EG⊥BD,BE =DE=BG,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得出方程32+(4﹣x)2=x2,解得x=,得出CG=AE=4﹣=,菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积,即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FBG=∠HDE,∵四边形EFGH是菱形,∴FG=EH,∠EFG=∠EHG,∠GFH=∠EFG,∠EHF=∠EHG,∴∠GFH=∠EHG,∴∠BFG=∠DHE,在△BFG和△DHE中,,∴△BFG≌△DHE(AAS),∴BG=DE;(2)解:当点F与B重合,点H与D重合时,菱形EFGH的面积最大,如图所示:∵四边形EFGH是菱形,∴EG⊥BD,BE=DE=BG,∵四边形ABCD是矩形,∴∠BAD=90°,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴CG=AE=4﹣=,∴菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积=3×4﹣2×××3=;故答案为:.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.【分析】(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,将A(1,0)代入解析式来求a的值.(2)由锐角三角函数定义解答.【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).把A(1,0)代入,得0=a(1﹣4)2﹣3,解得a=.故该二次函数解析式为y=(x﹣4)2﹣3;(2)令x=0,则y=(0﹣4)2﹣3=.则OC=.因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,所以B(7,0).所以OB=7.所以tan∠ABC===,即tan∠ABC=.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可(答案不唯一).【解答】解:(1)如图,△MON即为所求.(2)四边形OMPQ即为所求.21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了3小时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)【分析】(1)根据题意和图象中的数据可以求得甲车到达B地休息了多长时间;(2)根据函数图象中的数据可以求得甲车返回A地途中y与x之间的函数关系式;(3)根据函数图象中的数据可以求得甲乙的速度,从而可以解答本题.【解答】解:(1)由题意可得,甲车到达B地休息了:7﹣2﹣2=3(小时),故答案为:3小;(2)设甲车返回A地途中y与x之间的函数关系式是y=kx+b,,得,即甲车返回A地途中y与x之间的函数关系式是y=80x﹣240;(3)甲车的速度为160÷2=80km/h,乙车的速度为:420÷7=60km/h,令60x=160,得x=,令60x=210+(210﹣160),得x=,当x为或时,两车与A地的距离恰好相同.22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC=S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为10【分析】【探究】(1)由旋转的性质可得CB=CD,∠CBD=∠CDE,∠BCD=60°,可得△BCD是等边三角形,可得∠CBD=60°=∠BCD=∠CDE,可得DE∥BC;(2)由平行线之间的距离处处相等,且底相同,可得S△BCE=S△BCD,通过证明AD=BD,可得S△BCD =S△ADC,可得S△ADC=S△BCE;【应用】由中线的性质可求S△BCD=S△ADC,由平行线的性质可求S△BCE=S△BCD=S△ADC=2,由三角形面积公式可求S△ACE=8,即可求解.【解答】证明:【探究】(1)∵将△EDC绕直角顶点C顺时针旋转60°,∴CB=CD,∠CBD=∠CDE,∠BCD=60°,∴△BCD是等边三角形,∴∠CBD=60°,∵∠CDE=60°=∠CBD,∴∠BCD=∠CDE,∴DE∥BC;(2)∵DE∥BC,∴S△BCE=S△BCD,∵∠ACB=90°,∠CBD=∠BCD=60°,∴∠A=∠ACD=30°,∴AD=CD,∴AD=BD,∴S△BCD=S△ADC,∴S△ADC=S△BCE,故答案为:=;【应用】∵CD是斜边AB的中线,∴S△BCD=S△ADC,∵DE∥BC,∠ACB=90°,∴S△BCE=S△BCD=S△ADC=2,∠AFD=∠ACB=90°,∵S△ACD=AC×DF=2,S△ACE=×AC×EF,且EF=4DF,∴S△ACE=8,∴四边形ADCE的面积=S△ADC+S△ACE=10,故答案为:10.23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.【分析】(1)证明△APE∽△AOB,可得=,由此即可解决问题.(2)如图2中,当PE被BC平分时,设PE交BC于F.由PF∥OB,BF=CF,推出OP=PC=OC,求出AP即可解决问题.(3)分两种情形:①如图3﹣1中,当0<t≤1时,重叠部分是△APE,根据S=•AE•PE求解.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,根据S=S△APE﹣S△BFE求解即可.(4)分两种情形:①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.证明∠EAQ=∠BNM,推出tan∠EAQ=tan∠BNM,可得=,由此构建方程即可解决问题.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.由BM∥QE,推出△ABM∽△AEQ,可得=,由此构建方程即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴OB=OD=BD=2,∵BD⊥AB,PE⊥AB,∴OA===,PE∥BD,∴△APE∽△AOB,∴=,即=,解得:PE=2t;(2)如图2中,当PE被BC平分时,设PE交BC于F.∵PF∥OB,BF=CF,∴OP=PC=OC=,∴AP=OA+OP=,∴t=.(3)①如图3﹣1中,当0<t≤1时,重叠部分是△APE,S=•AE•PE=•3t•2t=3t2.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,S=S△APE﹣S△BFE=3t2﹣•(3t﹣3)•(4t﹣4)=﹣3t2+12t﹣6.综上所述,S=.(4)①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.在Rt△ABD中,AD===5,∵S△ABD=•AB•BD=•AD•BM,∴BM==,∴AM=MN===,∴NM=AN﹣AM=3﹣=,∵∠E′=∠AEQ=90°,QE=QE′.AQ=AQ,∴Rt△AQE≌Rt△AQE(HL),∴∠QAE=∠QAE′,∵∠E′AE=∠ABN+∠ANB,∠ANB=∠ABN,∴∠EAQ=∠BNM,∴tan∠EAQ=tan∠BNM,∴=,∴=,∴t=.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.∵∠QAB=∠QAE′,MB⊥AB,MN⊥AD,∴BM=MN,∠ABM=∥ANM=90°,∵AM=AM,∴△AMN≌△AMB(HL),∴AB=AN=3,设BM=MN=x,则DM=4﹣x,在Rt△DMN中,则有(4﹣x)2=x2+22,解得x=,∵BM∥QE,∴△ABM∽△AEQ,∴=,∴=,解得t=2,综上所述,满足条件的t的值为s或2s.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.【分析】(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,即可求解;(2)①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即可求解;②分DA是平行四边形的一条边、DA是平行四边形的对角线两种情况,分别求解即可;③直线MD把正方形面积分为1:5两部分时,则S△MKS=S正方形MNRS,即可求解.【解答】解:(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,故点A、B、C、D的坐标为:(1,0)、(3,0)、(2,﹣1)、(0,3),答:点C和点A的坐标分别为:(0,3)、(1,0);(2)y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折后的抛物线表达式为:y=x2+4x+3,①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即:x2﹣4x+3=±3或x2+4x+3=±3,解得:x=0或4或﹣4;答:点E的横坐标为:0或4或﹣4;②设点P(m,n),n=m2±4m+3,点Q(s,0),﹣﹣﹣﹣当DA是平行四边形的一条边时,当x≥0时,点D向右平移1个单位向下平移3个单位得到A,同样,点P(Q)向右平移1个单位向下平移3个单位得到Q(P),故:m+1=s,n﹣3=0或m﹣1=s,n+3=0,且n=m2﹣4m+3,解得:m=0或4(舍去0),故s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);当DA是平行四边形的对角线时,当x≥0时,m+s=1,n+0=3,且n=m2﹣4m+3,解得:s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);综上,Q的坐标为:(5,0)或(﹣3,0);③如下图:设边RS交直线AC于点K,设点M(m,m2﹣4m+3),则点N(﹣m,m2﹣4m+3),则MN=2m,直线MD函数表达式中的k值为:k ==m﹣4,tan∠MA=﹣k=4﹣m=tanα,则∠RSM=α,直线MD把正方形面积分为1:5两部分时,则S△MKS =S正方形MNRS,即×2m ×=×(2m)2,解得:m=1.第21页(共21页)。
辽宁省丹东九年级上第一次月考数学试卷(附答案解析)

2022-2023辽宁省丹东九年级(上)第一次月考数学试卷一、选择题(每题2分,共20分)1.(2分)已知一个菱形的周长是20,两条对角线的比是4:3,则这个菱形的面积是()A.24 B.96 C.12 D.452.(2分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±43.(2分)下列命题错误的是()A.平行四边形的对边相等B.一个角是直角的平行四边形是矩形C.矩形的对角线相等D.对角线相等的四边形是矩形4.(2分)下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=05.(2分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2 D.46.(2分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.(2分)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2 C.2 D.8.(2分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣39.(2分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45 10.(2分)有3个正方形如图所示放置,直角三角形部分的面积依次记为A,B,则A:B等于()A.1:B.1:2 C.2:3 D.4:9二、填空题(每题2,共20分11.(2分)将方程x2+2x﹣7=0配方为(x+m)2=n的形式为.12.(2分)菱形ABCD,∠BAD=120°,且AB=3,则BD=.13.(2分)若一元二次方程(3m+6)x2+m2﹣4=0的常数项为0,则m=.14.(2分)如图,已知点A是一次函数y=x﹣4在第四象限的图象的一个动点,且矩形ABOC的面积为3,则A点坐标为.15.(2分)已知方程ax2+bx+c=0,满足a﹣b+c=0,则必有一个根为.16.(2分)点P是矩形ABCD的边AD上的一个动点,AB=3,AD=4,那么点P 到矩形的两条对角线AC和BD的距离之和是.17.(2分)某商品原价100元,连续两次涨价x%后售价为121元,则列出的方程是.18.(2分)已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是.19.(2分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.20.(2分)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三、简答题21.(20分)解方程(1)6x2﹣7x+1=0(2)4x2﹣3x=52(3)(x﹣2)(x﹣3)=12(4)5x2﹣18=9x.22.(6分)最简二次根式与是同类二次根式,且x为整数,求关于m的方程xm2+2m﹣2=0的根.23.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC 于F(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.24.(6分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m ﹣+1)的值.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现每件商品每降价1元,商场平均每天可多售出2件.求:(1)每件商品降价多少元时,商场日盈利可达到2100元?(2)每件商品降价多少元时,商场日盈利最多?26.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2022-2023辽宁省丹东九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)已知一个菱形的周长是20,两条对角线的比是4:3,则这个菱形的面积是()A.24 B.96 C.12 D.45【解答】解:∵菱形的周长是20,∴菱形的边长为20÷4=5,∵两条对角线的比是4:3,∴设两对角线的一半分别为4k、3k,由勾股定理得,(4k)2+(3k)2=52,解得k=1,∴两对角线的一半分别为4,3,两对角线的长分别为8,6,∴这个菱形的面积=×8×6=24.故选:A.2.(2分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±4【解答】解:把x=4代入方程x2﹣3x=a2可得16﹣12=a2,解得a=±2,故选:C.3.(2分)下列命题错误的是()A.平行四边形的对边相等B.一个角是直角的平行四边形是矩形C.矩形的对角线相等D.对角线相等的四边形是矩形【解答】解:A、正确.平行四边形的对边相等;B、正确.一个角是直角的平行四边形是矩形;C、正确.矩形的对角线相等;D、错误.对角线相等的四边形不一定是矩形,比如等腰梯形对角线相等,不是矩形;故选:D.4.(2分)下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=0【解答】解:A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=﹣16<0,方程没有实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.5.(2分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2 D.4【解答】解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选:D.6.(2分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.7.(2分)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2 C.2 D.【解答】解:由题意,可得BE与AC交于点P.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:B.8.(2分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选:A.9.(2分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∵共比赛了45场,∴x(x﹣1)=45,故选:A.10.(2分)有3个正方形如图所示放置,直角三角形部分的面积依次记为A,B,则A:B等于()A.1:B.1:2 C.2:3 D.4:9【解答】解:∵大四边形是正方形,∴∠ECH=45°,∴HC=HE,同理,CH=HG=GD,即EF=CD,OD=CD,∴=,∵面积为A的三角形与面积为B三角形都是等腰直角三角形,∴这两个三角形相似,∴A:B=()2=,故选:D.二、填空题(每题2,共20分11.(2分)将方程x2+2x﹣7=0配方为(x+m)2=n的形式为(x+1)2=8.【解答】解:把方程x2+2x﹣7=0的常数项移到等号的右边,得到x2+2x=7,方程两边同时加上一次项系数一半的平方,得到x2+2x+1=7+1,配方得(x+1)2=8.故答案为(x+1)2=8.12.(2分)菱形ABCD,∠BAD=120°,且AB=3,则BD=3.【解答】解:如图:∵四边形ABCD是菱形,∴∠BAC=∠BAD,AC⊥BD,BD=2BO,∵∠BAD=120°,∴∠BAC=60°,∵AB=3,∴BO=3×sin60°=,∴BD=3.故答案为:3.13.(2分)若一元二次方程(3m+6)x2+m2﹣4=0的常数项为0,则m=2.【解答】解:由题意,得m2﹣4=0且3m+6≠0,解得m=2,故答案为:2.14.(2分)如图,已知点A是一次函数y=x﹣4在第四象限的图象的一个动点,且矩形ABOC的面积为3,则A点坐标为(1,﹣3)或(3,﹣1).【解答】解:∵点A是一次函数y=x﹣4在第四象限的图象的一个动点,∴可设A(x,x﹣4),∴OB=x,AB=4﹣x,=OB•OA=x(4﹣x)=3,解得x=1或x=3,∴S矩形ABOC∴A点坐标为(1,﹣3)或(3,﹣1),故答案为:(1,﹣3)或(3,﹣1).15.(2分)已知方程ax2+bx+c=0,满足a﹣b+c=0,则必有一个根为x=﹣1.【解答】解:∵a﹣b+c=0,∴c=﹣a+b,∴ax2+bx﹣a+b=0,∴a(x+1)(x﹣1)+b(x+1)=0,∴(x+1)(ax﹣a+b)=0,∴x+1=0或ax﹣a+b=0,∴方程必有一个根为x=﹣1.故答案为x=﹣1.16.(2分)点 P 是矩形ABCD 的边AD 上的一个动点,AB=3,AD=4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是 2.4 .【解答】解:连接OP ,∵矩形的两条边AB 、AD 的长分别为3和4,∴S 矩形ABCD =AB•BC=12,OA=OC ,OB=OD ,AC=BD=5,∴OA=OD=2.5,∴S △ACD =S 矩形ABCD =6,∴S △AOD =△ACD =3,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×2.5×PE +×2.5×PF=(PE +PF )=3,解得:PE +PF=2.4.故答案为:2.4.17.(2分)某商品原价100元,连续两次涨价x%后售价为121元,则列出的方程是 100(1+x%)2=121 .【解答】解:第一次涨价后的价格为100×(1+x%),第二次涨价后的价格为100×(1+x%)2,则可列方程为100(1+x%)2=121,故答案为100(1+x%)2=121.18.(2分)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 15°或75° .【解答】解:有两种情况:(1)当E 在正方形ABCD 内时,如图1∵正方形ABCD,∴AD=CD,∠ADC=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°﹣60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°﹣∠ADE)=75°;(2)当E在正方形ABCD外时,如图2∵等边三角形CDE,∴∠EDC=60°,∴∠ADE=90°+60°=150°,∴∠AED=∠DAE=(180°﹣∠ADE)=15°.故答案为:15°或75°.19.(2分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.20.(2分)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=2﹣3.【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△R t△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴∠BHA=∠BHE=60°,∴∠KHF=180°﹣60°﹣60°=60°,∵∠F=90°,∴∠FKH=30°,∴AH=AB•tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.三、简答题21.(20分)解方程(1)6x2﹣7x+1=0(2)4x2﹣3x=52(3)(x﹣2)(x﹣3)=12(4)5x2﹣18=9x.【解答】解:(1)∵6x2﹣7x+1=0,∴(6x﹣1)(x﹣1)=0,∴6x﹣1=0,x﹣1=0,∴x1=,x2=1(2)∵4x2﹣3x=52,∴4x2﹣3x﹣52=0,∴(4x+13)(x﹣4)=0,∴4x+13=0或x﹣4=0,∴x1=﹣,x2=4.(3)∵(x﹣2)(x﹣3)=12,∴x2﹣5x﹣6=0,∴(x,﹣6)(x+1)=0,∴x﹣6=0或x+1=0,x1=﹣1 x2=6.(4)∵5x2﹣18=9x,∴5x2﹣9x﹣18=0,∴(5x+6)(x﹣3)=0,∴5x+6=0或x﹣3=0,∴x1=﹣,x2=322.(6分)最简二次根式与是同类二次根式,且x为整数,求关于m的方程xm2+2m﹣2=0的根.【解答】解:∵最简二次根式与是同类二次根式,且x为整数,∴2x2﹣x=4x﹣2,即2x2﹣5x+2=0,解得:x=(舍去)或x=2,把x=2代入方程得:2m2+2m﹣2=0,即m2+m﹣1=0,解得:m=.23.(8分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC 于F(1)求证:四边形AEFD是菱形;(2)如果∠A=60度,AD=5,求菱形AEFD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DE∥AF,∵EF∥AD,∴四边形DAFE是平行四边形,∵∠2=∠AFD,∵DF是▱ABCD的∠ADC的平分线∴∠1=∠2,∴∠AFD=∠1.∴AD=AF.∴四边形AFED是菱形.(2)∵∠DAF=60°,∴△AFD为等边三角形.∴DF=5,连接AE与DF相交于O,则FO=.∴OA=.∴AE=5.=AE•DF=∴S菱形AFED24.(6分)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m ﹣+1)的值.【解答】解:∵m是方程x2﹣x﹣2=0的一个实数根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+1)===2×(1+1)=2×2=4.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现每件商品每降价1元,商场平均每天可多售出2件.求:(1)每件商品降价多少元时,商场日盈利可达到2100元?(2)每件商品降价多少元时,商场日盈利最多?【解答】解:(1)由题意得:(50﹣x)(30+2x)=2100,化简得:x2﹣35x+300=0,解得:x1=15,x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去.∴x=20答:每件商品降价20元,商场日盈利可达2100元;(2)y=(50﹣x)(30+2x)=﹣2x2+70x+1500,当x=﹣=17.5时,y最大.答:每件商品降价17.5元时,商场日盈利的最大.26.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
陕西西安市高新一中2019-2020学年九年级(上)第一次月考数学试卷(10月份) 含解析

2019-2020学年九年级(上)第一次月考数学试卷一.选择题(共10小题)1.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm2.如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A.B.C.D.3.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣D.y=x2﹣14.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定5.如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,原来捣头点E着地,现在踏脚D着地,则捣头点E 上升了()A.1.2米B.1米C.0.8米D.1.5米6.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是()A.∠A=55°,∠D=35°B.AC=9,BC=12,DF=6,EF=8C.AC=3,BC=4,DF=6,DE=8D.AB=10,AC=8,DE=15,EF=97.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b8.如图,△ABC中,点D为BC边上一点,点E在AD上,过点E作EF∥BD交AB于点F,过点E作EG∥AC交CD于点G,下列结论错误的是()A.B.C.D.=19.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.810.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.12B.10C.8D.8+4二.填空题(共6小题)11.如果=,那么的值是.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为.13.在人体躯和身高的比例上,肚脐是理想的黄金分割点,即(下半身长m与身高l)比例越接近0.618越给人以美感,某女士身高165cm,下半身长(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约cm的高跟鞋看起来更美.(结果保留整数)14.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=米.(结果保留根号)15.如果,那么k的值为.16.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.三.解答题(共9小题)17.运动会的领奖台可以近似的看成如图所示的立体图形,请你画出它的三视图.18.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B 为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)19.如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;(2)分别写出A,B的对应点C、D的坐标;(3)求△OCD的面积.20.如图,在▱ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=3,AD=7,BE=2,求FC的长.21.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择了在测量点A、B、C 进行测量,点B、C分别在AM、AN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长.22.如图所示,甲物体高4米,影长3米,乙物体高2米,影长4米,两物体相距5米.(1)在图中画出灯的位置,并画出丙物体的影子.(2)若灯杆,甲、乙都与地面垂直并且在同一直线上,试求出灯的高度.23.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.24.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x 轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=4时,求点E的坐标;(2)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm【分析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得=,又由b =3cm,c=8cm,d=12cm,即可求得a的值.【解答】解:∵四条线段a、b、c、d成比例,∴=,∵b=3cm,c=8cm,d=12cm,∴=,解得:a=2cm.故选:A.2.如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该组合体的俯视图为故选:A.3.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.4.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以白炽灯向上移时,阴影会逐渐变小.相反当乒乓球越接近灯泡时,它在地面上的影子变大.【解答】解:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选:A.5.如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,原来捣头点E着地,现在踏脚D着地,则捣头点E 上升了()A.1.2米B.1米C.0.8米D.1.5米【分析】由题可知,易得题中有一组相似三角形,利用它们的对应边成比例即可解答.【解答】解:根据题意得:AD:DE=AB:x∴解得:x=0.8.故选:C.6.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是()A.∠A=55°,∠D=35°B.AC=9,BC=12,DF=6,EF=8C.AC=3,BC=4,DF=6,DE=8D.AB=10,AC=8,DE=15,EF=9【分析】根据相似三角形的判定方法对各个选项进行分析即可.【解答】解:A、相似:∵∠A=55°∴∠B=90°﹣55°=35°∵∠D=35°∴∠B=∠D ∵∠C=∠F∴△ABC∽△DEF;B、相似:∵AC=9,BC=12,DF=6,EF=8,∴,∵∠C=∠F∴△ABC∽△DEF;C、有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似;D、相似:∵AB=10,BC=6,DE=15,EF=9,∴,∵∠C=∠F∴△ABC∽△DEF;故选:C.7.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.8.如图,△ABC中,点D为BC边上一点,点E在AD上,过点E作EF∥BD交AB于点F,过点E作EG∥AC交CD于点G,下列结论错误的是()A.B.C.D.=1【分析】根据相似三角形的判定得出△AEF∽△ADB,△DEG∽△DAC,再根据相似三角形的性质和平行线分线段成比例定理逐个判断即可.【解答】解:A、∵EF∥BD,∴△AEF∽△ADB,∴=,∵EG∥AC,∴=,∴≠,故本选项符合题意;B、∵GE∥AC,∴△DEG∽△DAC,∴=,故本选项不符合题意;C、∵EF∥BD,EG∥AC,∴,,∴,故本选项不符合题意;D、∵GE∥AC,EF∥BD,∴△AEF∽△ADB,△DEG∽△DAC,∴,,∴==1,故本选项不符合题意;故选:A.9.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.【解答】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.10.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.12B.10C.8D.8+4【分析】可设BE=x,CE=y,由题意可得△ABE≌ECF,并且△ECF∽△FDG,从而得出关于x、y的两个方程,求解后即可得出矩形ABCD的周长.【解答】解:∵小正方形的面积为1,∴小正方形的边长也为1设BE=x,CE=y,∵∠AEB+∠CEF=90°,而∠EFC+∠CEF=90°∴∠AEB=∠EFC又∵∠B=∠C=90°,AE=EF=4∴△ABE≌ECF(AAS)∴AB=EC=y,BE=CF=x∴由勾股定理可得x2+y2=42而同理可得∠EFC=∠FGD,且∠C=∠D=90°∴△ECF∽△FDG∴∴FD=EC=,∵AB=CD∴y=x+y∴y=2x,将其代入x2+y2=42中于是可得x=,y=而矩形ABCD的周长=2(x+y)+2y=5y=5×=8故选:C.二.填空题(共6小题)11.如果=,那么的值是.【分析】将=变形为+2=,再根据等式的性质即可求解.【解答】解:=,+2=,=.故答案为:.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为12 .【分析】由主视图所给的图形可得到俯视图的对角线长为2,利用勾股定理可得俯视图的面积,乘以高即为这个长方体的体积.【解答】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为2,∴a2+a2=(2)2,解得a2=4,∴这个长方体的体积为4×3=12.13.在人体躯和身高的比例上,肚脐是理想的黄金分割点,即(下半身长m与身高l)比例越接近0.618越给人以美感,某女士身高165cm,下半身长(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约8 cm的高跟鞋看起来更美.(结果保留整数)【分析】根据黄金分割定义:下半身长与全身的比等于0.618即可求解.【解答】解:根据已知条件可知:下半身长是165×0.6=99cm,设需要穿的高跟鞋为ycm,则根据黄金分割定义,得=0.618,解得:y≈7.8≈8,经检验y≈7.8是原方程的根,答:她应该选择大约8cm的高跟鞋.故答案为8.14.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=(18﹣10)米.(结果保留根号)【分析】设FE⊥AB于点F,那么在△AEF中,∠AFE=90°,解直角三角形AEC可以求得AF的长,进而求得DE=AB﹣AF即可解题.【解答】解:设冬天太阳最低时,甲楼最高处A点的影子落在乙楼的E处,那么图中ED 的长度就是甲楼的影子在乙楼上的高度,设FE⊥AB于点F,那么在△AEF中,∠AFE=90°,EF=20米.∵物高与影长的比是1:,∴=,则AF=EF=10,故DE=FB=18﹣10.故答案为(18﹣10)15.如果,那么k的值为或﹣1 .【分析】①当a+b+c≠0时,由等比定理(若a:b=c:d(其中b,d≠0),则(a+c):(b+d)=(a﹣c):(b﹣d)=a:b=c:da:b=c:d=e:f=…m:k则(a+c+e+…+m):(b+d+f+…+k)=a:b称为等比定理)解答k的值;②当a+b+c=0时,a+b=﹣c,将其整体代入比例式解答k的值.【解答】解:①当a+b+c≠0时,由等比定理得=k,即k=;②当a+b+c=0时,a+b=﹣c,∴,∴k=﹣1;故答案为:或﹣1.16.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【解答】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作A'E⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB•AC=BC•AF,∴3×=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是;故答案为:.三.解答题(共9小题)17.运动会的领奖台可以近似的看成如图所示的立体图形,请你画出它的三视图.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,据此作答.【解答】解:如图所示:.18.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B 为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)【分析】过P作PD∥AC交BC于点D,或作∠BPD=∠C,即可利用相似三角形的判定解答即可.【解答】解:如图所示:19.如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;(2)分别写出A,B的对应点C、D的坐标;(3)求△OCD的面积.【分析】(1)延长AO到C使得OC=2OA,延长BO到D,使得OD=2OB,连接CD,△OCD 即为所求.(2)根据C,D的位置写出坐标即可.(3)利用分割法求出三角形的面积即可.【解答】解:(1)如图,△OCD即为所求.(2)C(﹣6,﹣2),D(﹣4,2),(3)S△OCD=24﹣×4×2﹣×6×2﹣×2×4=10.20.如图,在▱ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=3,AD=7,BE=2,求FC的长.【分析】(1)由平行四边形的性质可知AB∥CD,AD∥BC,根据平行线的性质得到∠B=∠ECF,∠DAE=∠AEB,又因为∠DAE=∠F,进而可证明:△ABE∽△ECF,由相似三角形的性质即可证得结论;(2)由(1)可知:△ABE∽△ECF,可得,由平行四边形的性质可知BC=AD=7,所以EC=BC﹣BE=7﹣2=5,代入计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴∠B=∠ECF,∠DAE=∠AEB,又∵∠DAE=∠F,∴∠AEB=∠F,∴△ABE∽△ECF,(2)解:∵△ABE∽△ECF,∴,∵四边形ABCD是平行四边形,∴BC=AD=7.∴EC=BC﹣BE=7﹣2=5.∴,∴.21.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择了在测量点A、B、C 进行测量,点B、C分别在AM、AN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:∵,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,∵BC=45∴MN=3000,答:直线隧道MN长为3000米.22.如图所示,甲物体高4米,影长3米,乙物体高2米,影长4米,两物体相距5米.(1)在图中画出灯的位置,并画出丙物体的影子.(2)若灯杆,甲、乙都与地面垂直并且在同一直线上,试求出灯的高度.【分析】(1)首先连接GA、HC并延长交于点O,从而确定点光源,然后连接OE并延长即可确定影子;(2)OM⊥QH设OM=x,BM=y,根据三角形相似列出比例式即可确定灯的高度.【解答】解:(1)点O为灯的位置,QF为丙物体的影子;(2)作OM⊥QH设OM=x,BM=y,由△GAB∽△GOM得=即:①,由△CDH∽△OMH得即:②由①②得,x=4.8,y=0.6.答灯的高度为4.8米.23.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)由等腰三角形的三线合一定理先证AD⊥BC,再证∠DAB+∠DBA=90°,由邻余四边形定义即可判定;(2)由等腰三角形的三线合一定理先证BD=CD,推出CE=5BE,再证明△DBQ∽△ECN,推出==,即可求出NC,AC,AB的长度.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.24.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x 轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=4时,求点E的坐标;(2)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)由相似三角形的性质求出BH=6,得出OE=8即可求出点E的坐标.(2)本题需先证出△BCP∽△BAE,求出AE=t,再分两种情况讨论,求出t的值,即可得出P点的坐标.【解答】解:(1)当t=4时,PC=4,过点E作CB的垂线,垂足为H,如图1所示:∵A(2,0),C(0,3),∴OA=2,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=2,∵∠BPC+∠PBC=90°,∠PBC+∠EBH=90°,∴∠BPC=∠EBH,∵∠EHB=∠BCP=90°,∴△PBC∽△BEH,∴=,即=,解得:BH=6,∴AE=BH=6,∴OE=OA+AE=2+6=8,∴点E的坐标是(8,0);(2)存在,理由如下:∵∠ABE+∠ABP=90°,∠PBC+∠ABP=90°,∴∠ABE=∠PBC,∵∠BAE=∠BCP=90°,∴△BCP∽△BAE∴=,∴=,∴AE=t,当点P在点O上方时,如图2所示:若=时,△POE∽△EAB,∵OP=3﹣t,OE=2+t,∴=,解得:t1=,t2=(舍去),∴OP=3﹣=,∴P的坐标为(0,),当点P在点O下方时,如图3所示:①若=,则△OPE∽△ABE,=,解得:t1=3+,t2=3﹣(舍去),OP=t﹣3=3+﹣3=,P的坐标为(0,﹣),②若=,则△OEP∽△ABE,=,整理得:t2=﹣9,∴这种情况不成立,综上所述,存在以P、O、E为顶点的三角形与△ABE相似,P的坐标为:(0,)或(0,﹣).25.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.(2)①证明△ADM∽△GMN,可得=,由此即可解决问题.②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①如图2中,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM∽△GMN,∴=,∴=,∴y=x2﹣x+10.当x=4时,y有最小值,最小值=2.②存在.由题意:∠DMN=∠DGM.可以推出∠DNM=∠DMG,推出∠DNM≠∠DMN,所以有两种情形:如图3﹣1中,当MN=MD时,∵∠MDN=∠GDM,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∵MN=DM,∴DG=GM=10,∴x=AM=8﹣10.如图3﹣2中,当MN=DN时,作MH⊥DG于H.∵MN=DN,∴∠MDN=∠DMN,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵MH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得=,∴=,∴MG=,∴x=AM=8﹣=.综上所述,满足条件的x的值为8﹣10或.。
人教版2020年九年级数学上册 第二次月考模拟试卷三(含答案)

,x1=3+ ,x2=3﹣ ;
(2)x(x﹣7)=5x﹣36,整理得:x2﹣12x+36=0,
(x﹣6)2=0,开方得:x﹣6=0,即 x1=x2=6. 18.解:(1)把(0,1),(1,﹣2),(2,1)代入 y=ax2+bx+c 得
,解得
,
所以抛物线解析式为 y=3x2﹣6x+1; (2)y=3(x2﹣2x)+1=3(x2﹣2x+1﹣1)+1=3(x﹣1)2﹣2, 所以抛物线的顶点坐标为(1,﹣2). 19.解:∵关于 x 的方程 2x2+kx+1﹣k=0 的一个根是﹣1,
围栏多少米;若不能完成,请说明理由.
24.已知关于 x 的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中 a、b、c 分别为△ABC 三边的长. (1)如果 x=﹣1 是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根.
其中正确的有( )
A.1 个
B.2 个
C.3 个
D.4 个
4.已知关于 x 的一元二次方程 3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
5.已知当 x>0 时,反比例函数 y= 的函数值随自变量的增大而减小,此时关于 x 的方程 x2﹣2(k+1)x+k2﹣1=0 的根的情况为( )
即 F 点的坐标是(a,
),
∵直线 BC 过点 B(0.3)和 C(﹣3,0), 设直线 BC 的解析式是 y=kx+b (k≠0),代入得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文为Word版,可任意修改编辑
人教版2018年 九年级数学上册 第一次月考模拟卷10月份
一、选择题:
1、将方程3x2﹣x=﹣2(x+1)2化成一般形式后,一次项系数为( )
A.﹣5 B.5 C.﹣3 D.3
2、下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是( )
A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2
3、用配方法解方程x2﹣4x﹣1=0,方程应变形为( )
A.(x+2)2=3 B.(x+2)2=5 C.(x﹣2)2=3 D.(x﹣2)2=5
4、如图,在平面直角坐标系中将△ABC绕点C(0,﹣1)旋转180°得到△A1B1C1,设点A1的坐标为(m,n),则
点A的坐标为( )
A.(﹣m,﹣n) B.(﹣m,﹣n﹣2) C.(﹣m,﹣n﹣1) D.(﹣m,﹣n+1)
5、二次函数的图像的顶点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋
转角的度数为( )
A.35° B.40° C.50° D.65°
7、如图,已知顶点为(-3,-6)抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )
A.b2>4ac
B.ax2+bx+c≥-6
C.若点(-2,m),(-5,n)在抛物线上,则m>n
D.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1
8、已知二次函数的图象与x轴有交点,则k的取值范围是( )
A. B. C.且 D.且
9、有一块长32 cm,宽24 cm的矩形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已
知盒子的底面积是原纸片面积的一半,则盒子的高是( )
本文为Word版,可任意修改编辑
A.2 cm B.3 cm C.4 cm D.5 cm
10、如图,边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB1C1D1,边B1C1与CD交于点O,则四
边形AB1OD的面积是( )
A. B. C.-1 D.
11、如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为( )
A.2 B.3 C. D.
12、如图,二次函数y=ax2+bx+c的图象的对称轴是直线x=1,
则下列结论:
①a<0,b<0;②a+b+c>0;③a﹣b+c<0;④当x>1时,y随x的增大而减小;
⑤b2﹣4ac>0;⑥4a+2b+c>0;⑦a+b>m(am+b)(m≠1).
其中正确的结论有( )
A.4个 B.5个 C.6个 D.7个
二、填空题:
13、若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=______.
14、关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是 .
15、如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB= °.
16、抛物线y=2x2﹣6x+10的顶点坐标是 .
17、如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转
α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α= .
本文为Word版,可任意修改编辑
18、如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底
的等腰三角形,则点P的坐标为 .
三、解答题:
19、解方程x2-4x+2=0(配方法); 20、解方程:x2-5x-1=0.
21、二次函数图像的顶点坐标是(-2,3),并经过点(1,2),求这个二次函数的函数关系式。
22、某企业2015年收入2500万元,2017年收入3600万元.
(1)求2015年至2017年该企业收入的年平均增长率;
(2)根据(1)所得的平均增长率,预计2016年该企业收入多少万元?
23、已知二次函数y=﹣x2+2x+3.
(1)求函数图象的顶点坐标和图象与x轴交点坐标;
(2)当x取何值时,函数值最大?
(3)当y>0时,请你写出x的取值范围.
本文为Word版,可任意修改编辑
24、在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得到△A′BO′,
点A,O旋转后的对应点分别为A′,O′,记旋转角为α.
(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标.
25、已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,
y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若
不存在,请说明理由.
本文为Word版,可任意修改编辑
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
本文为Word版,可任意修改编辑
参考答案
1、D
2、B
3、D
4、B
5、D
6、C
7、C
8、D
9、C
10、D
11、A
12、C
13、2016.
14、答案为a≥1且a≠5.
15、答案为:20.
16、答案为:(,).
17、答案为:70°或120°.
18、(1+,2)或(1﹣,2) .
19、x1=2+,x2=2-
20、x1= ,x2=.
21、
22、解:(1)设2013年至2015年该企业收入的年平均增长率为x.
由题意,得2500(1+x)2=3600,解得x1=0.2,x2=﹣2.2(舍).
答:2013年至2015年该企业收入的年平均增长率为20%;
(2)3600(1+20%)=4320(万元).答:根据(1)所得的平均增长率,预计2016年该企业收入4320万元.
23、解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴图象顶点坐标为(1,4),
当y=0时,有﹣x2+2x+3=0解得:x1=﹣1,x2=3,
∴图象与x轴交点坐标为(﹣1,0),(3,0);
(2)由(1)知,抛物线顶点坐标为(1,4),且抛物线开口方向向下,当x=1时,函数值最大;
(3)因为图象与x轴交点坐标为(﹣1,0),(3,0),且抛物线开口方向向下,所以当y>0时,﹣1<x<3.
24、解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.∴AB==5.
∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°.
∴△ABA′为等腰直角三角形,∴AA′=BA=5.
(2)作O′H⊥y轴于点H.
∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°.∴∠HBO′=60°.
本文为Word版,可任意修改编辑
在Rt△BHO′中,∵∠BO′H=90°-∠HBO′=30°,∴BH=BO′=.∴O′H=.
∴OH=OB+BH=3+=.∴点O′的坐标为(,).
25、解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,
α+β=,αβ=﹣2,∵=﹣2,∴=﹣2,即=﹣2,解得:m=1,
故抛物线解析式为:y=﹣x2+4x+2;
(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,
∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),
又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),
作点D关于y轴的对称点D′,点E关于x轴的对称点E′,
则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),
连接D′E′,交x轴于M,交y轴于N,
此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:
延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,
则D′E′===10,
设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,
∴DE===2,∴四边形DNME的周长最小值为:10+2;
(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,
若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,
∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+,x2=2﹣,
当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+,x4=2﹣,
故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).