九年级(上)第一次月考数学试题
九年级数学第一次月考试题(含答案)

九年级数学上册第一次月考试题姓名:_______________班级:_______________考号:_______________一、填空题(每空3 分,共30 分)1、函数中,自变量x 的取值范围是________;函数y =中,自变量x 的取值范围是____________。
2、观察下列各式:,…,请你将猜想到的规律用含自然数n (n ≥l)的代数式表示出来_____________________.3、已化简的和是同类二次根式,则 。
4、若,则 。
5、的平方根是一4、m ,则= 。
6、已知一元二次方程的一个根为,则.7、设一元二次方程的两个实数根分别为和,则,.8、家家乐奥运福娃专卖店今年3月份售出福娃3600个,5月份售出4900个,设每月平均增长率为x ,根据题意,列出关于x 的方程为 .二、选择题(每题3 分,共30分)9、下列计算结果正确的是:( )(A)(B)(C)(D)10、下列根式中不是最简二次根式的是()A. B. C. D.11、下列式子,正确的是()A. B.C. D.12、使式子有意义的的值是()A. B.C. D.13、设,,用含、的式子表示,则下列表示正确的是()A. B. C. D.14、方程组的解是()A.B.C.D.15、若关于x 的一元二次方程的常数项为0,则m的值等于()A.1 B.2 C.1或2 D.016、方程的根是( )A. B . C . D .17、已知代数式的值为9,则的值为()A.18 B.12 C.9 D.718、关于x的一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定三、计算题(19-25每题5分,26-27每题7分,27题11分,共60 分)19、计算: 20、计算:21、计算: 22、解方程:23、解方程:. 24、解方程:25、用配方法解一元二次方程:. 26、已知,求关于的方程的解。
九年级(上)第一次月考数学试卷(含答案)

九年级(上)第一次月考数学试卷、选择题(每小题3分,共24分在下列各个小题中,均给出了四个答案,其中有且只有一个正确答案,将正确答案代号填入括号内)1.下列方程是二次方程的是()A. B.C. D.2.如果A. B. C. D.3.如右图所示,折叠矩形,使点落在边的点处, 为折痕,已知C. D.4.一"兀.二次方程的解是(A. B.C. D.5.若代数式与代数式的值相等,则的值是(A. 或B.或C.D.或6.方程的左边配成完全平方后所得方程为()12.方程的根是则该三角形的周长是(二、填空题(每小题 3分,共24分)9.根据下列表格的对应值,判断取值范围是绕点逆时针旋转 ,得11.已知是关于的方程 的一个根,则A. B.C.D.以上答案都不对7 .关于的 二次方程 的一根为A.B. C. D.8 .三角形两边的长分别是边的长是 次方程的一个实数根,A.B.或C.D.或为常数)的一个解的13.已知是方程的根,求- -的值为_____________14.关于的方程后两个相等的实根,则.15.已知是方程的一个根,则代数式的值是____________16.某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为题意可列方程为三、解答题(第17-20题28分,21题8分24题8分,25题10分共54分)17.解方程:(配方法).18.解方程:19.解方程:(分解因式法).20.解方程21.如图,在中,一/ ,点从点开始沿以的速度匀速移动,同时另一点由点开始以的速度沿着匀速移动, 的面积等于边向点几秒时,22.如图,是一张边长为的正方形纸片,,分别为,的中点,沿过点的折痕将角翻折,使得点落在上的点处,折痕交于点,则23. 在方格中的位置如图所示.请在方格纸上建立平面直角坐标系,使得、两点的坐标分别为、.并求出点的坐标;作出关于横轴对称的,再作出以坐标原点为旋转中心、旋转后的,并写出,两点的坐标.四、解答题24.李大妈加盟了“红红”全国烧烤连锁店,该公司的宗旨是“薄利多销”,经市场调查发现,当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?25.如图甲,在中,/ 为锐角.点为射线上一动点,连接,以为一边且在的右侧作正方形解答下列问题:如果,/ .①当点在线段上时(与点不重合),如图乙,线段、之间的位置关系为数量关系为②当点在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?如果,/ ,点在线段上运动.试探究:当满足一个什么条件时,(点、重合除外)?画出相应图形,并说明理由. (画图不写作法)26.阅读下面的例题,范例:解方程解:当时,原方程化为,解得:,(不合题意,舍去)当时,原方程化为,解得:,(不合题意,舍去)原方程的根是,请参照例题解方程.答案1.【答案】 B【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是;二次项系数不为.以上三个条件必须同时成立,据此即可作出判断.【解答】解:、不是方程,错误;、符合一元二次方程的定义,正确;、原式可化为,是一元四次方程,错误;、是分式方程,错误.故选.2.【答案】 C【解析】先把原式的右边利用完全平方公式展开,再利用等式的对应项的系数相等可求【解答】解:故选3.【答案】 A【解析】由为折痕,可得,由矩形,可得设出的长,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设,则,「矩形,为折痕,中,,解得.故选.4.【答案】 C【解析】观察发现方程的两边同时加后,左边是一个完全平方式,即,即原题转化为求的平方根.【解答】解:移项得:,,即 , .故选:.5.【答案】 B【解析】由两个代数式的值相等,可以列出一个一元二次方程,分析方程的特点,用分组分解法进行因式分解,求出方程的两个根.【解答】解:因为这两个代数式的值相等,所以有:或,或.故选.6.【答案】 A【解析】把方程变形得到,方程两边同时加上一次项的系数一半的平方,两边同时加上即可.【解答】解:••故选.7.【答案】 A【解析】根据一元二次方程解的定义把代入方程求,然后根据一元二次方程的定义确定满足条件的的值.【解答】解:把代入方程得,解得,而,所以故选.8. 【答案】 C【解析】由于第边的长是一元二次方程的根就可以求出三角形的周长.【解答】解:•,的一个实数根,那么求出方程或,时,三角形的三边分别为、和,,该三角形的周长是;时,三角形的三边分别为、和,而,,三角形不成立.故三角形的周长为.故选.9. 【答案】【解析】根据上面的表格,可得二次函数程的解,当时,数【解答】解:..・当时,当时,;轴的交点的横坐标应在的图象与轴的交点坐标即为方时,;则二次函和之间.方程的一个解的范围是: 故答案为:.10. 【答案】【解析】直接利用旋转的性质求解.【解答】解: 绕点逆时针旋转,得故答案为.11.【答案】【解析】根据一元二次方程解的定义把代入得到关于的方程,然后解关于的方程即可.【解答】解:把代入得,解得故答案为.12.【答案】或【解析】原方程的左边是两个一次因式乘积的形式,而方程的右边为,可令每个一次因式的值为,得到两个一元一次方程,解这两个一元一次方程即可求出原方程的解.【解答】解:,或,解得或13.【答案】-【解析】把方程的解代入方程,两边同时除以,可以求出代数式的值.【解答】解:把代入方程有:两边同时除以有:- -故答案是:一.14.【答案】方程即可得出结论. 【解答】解:.••方程 有两个相等的实根,解得: 故答案为: 15. 【答案】 【解析】二次方程的根就是 二次方程的解,就是能够使方程左右两边相等的未知数的值. 代入方程故本题答案为 【解析】本题可设平均每次降价的百分率是 ,则第一次降价后药价为元,第二次在元的基础之又降低,变为元,进而可列出方进而可列出方 程,求出答案. 【解答】解:设平均每次降价的百分率是 ,则第二次降价后的价格为元,根据题意得: 故答案为: 17.【答案】解:: 【解析】先移项得到得到,然后利用直接开平方法求解.【解答】解:•,,即,18.【答案】解:由原方程,得--- ,或解得,,或【解析】将原方程转化为一般形式,然后利用因式分解法解方程即可. 【解答】解:由原方程,得--- ,或解得,,或19.【答案】解:,或【解析】先移项,然后利用平方差公式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.【解答】解:••1• ,或,* * ) .,则有20.【答案】解:解得,或①当时,②当时,【解,然后解关于的方程,最后再来求设,则原方程变为析】的值.【解答】解:,则有解得,或①当时,②当时,21.【答案】解:设秒后,的面积等于平方米,或应舍去,所以当秒时面积平方米.【解析】根据勾股定理先求出的长,然后根据运动速度,设秒后, 平方米,从而可列方程求解.[解答]解:设秒后,的面积等于平方米,或应舍去,所以当秒时面积平方米.22.【答案】一【解析】由是一张边长为的正方形纸片,,分别为,, ,由翻折可得‘,’'中,利用勾股定理可求得答案.【解答】解:: 是一张边长为的正方形纸片,、分别为的面积等于的中点,可得,在, 的中点,为折痕,中,’ ’ ,.•・' 一,'中,设,则’,・・・,_ ,解得一故答案为:.23.【答案】::v :: V/::;r- * "1 T 4 --B -T T r T ・i ,■•・・■・,一;•* 1A p. * A 1■i i Ci 力i i i八::::。
九年级数学上册第一次月考试卷(含答案)

更
a b c 0, a b c 2 , 所 以 a c 1 , 所 以 a 1 c ,因为 c<0,所以 a 1 ,所以②③④正确.
考点:二次函数图象的性质. 11.-3. 【解析】 2 试题分析:根据一元二次方程的定义得到 m-3≠0 且 m -7=2,然 后解不等式和方程即可得到满足条件的 m 的值. 2 试题解析:根据题意得 m-3≠0 且 m -7=2, 所以 m=-3. 考点:一元二次方程的定义. 12.
九年级上册第一次月考试卷
满分 100 分,时间 60 分钟
一、选择题(每题 3 分,共 24 分)
1.已知关于 x 的一元二次方程 x 2 x a 0 有两个相等的实数根,则 a 的值是(
2
)
A.4
2
B.-4
C.1
D.-1
3 2
2.如果 x x 1 0 ,那么代数式 x 2 x 7 的值是( A、6 B、8 C、-6 D、-8
∠PAD+∠BAP=90°, x2 x 1 , 所 以 ∴∠APB=∠PAD, 3 2 3 2 2 2 2 2 x 2 x 7 x x x 7 x ( x x ) x 7 x x又∵∠B=∠DEA=90°, 7 1 7 6 ∴△ABP∽△DEA,
22.某工厂生产的某种产品按质量分为 10 个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所 示(其中 x 为正整数,且 1≤x≤10):
为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为 x 的产品时,当天的利润为 y 万元. (1)求 y 关于 x 的函数关系式; (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
九年级数学上册第一次月考试卷(附答案)

九年级数学上册第一次月考试卷(附答案)一.单选题。
(每小题4分,共48分)1.下列各组线段中,成比例线段的一组是()A.1,2,3,4B.2,3,4,6C.1,3,5,7D.2,4,6,82.反比例函数y=6x的图象分别位于()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2B.3C.4D.5(第3题图)(第4题图)(第9题图)4.如图,在△ABC中,点D,E分别在AB,AC上,若DE∥BC,ADAB =25,DE=6cm,则BC的长为()A.9cmB.12cmC.15cmD.18cm5.点A(a,1)在双曲线y=3x上,则a的值是()A.1B.﹣1C.3D.﹣36.如果两个相似多边形的周长比是2:3,那么它们的面积比是()A.4:9B.2:3C.√2:√3D.16:817.若点A(2,y1),B(﹣1,y2),C(4,y3),都在反比例函数y=8x的图象上,则y1,y2,y3的大小比较是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y2<y1<y38.连续掷两枚质地均匀的硬币,两枚正面朝上的概率是()A.14B.12C.13D.349.如图,点A是函数y=kx图象上一点,AB垂直x轴于点B,若S△ABO=4,则k的值为()A.4B.8C.﹣4D.﹣810.某时刻测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长是12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米11.若反比例函数y=kx的图象的两个分支位于第一、三象限,则一次函数y=kx-k的图象大致是()A. B. C. D.12.若反比例函数y=a-1x(a>1,x<0)图象上有两个点(x1,y1)和(x2,y2),设m=(x1-x2)(y1-y2),则y=mx-m不经过第()象限.A.一B.二C.三D.四二.填空题。
九年级上册数学第一次月考试题及答案5套

九年级(上)第一次月考数学试卷(一)一、选择题(3分*10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2 4.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x 6.17 6.18 6.19 6.20y=ax2+bx+c ﹣0.03 ﹣0.01 0.02 0.04A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.205.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x﹣1)=28 D.x(x+1)=287.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()8.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.129.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0 B.x2﹣4x+4=0 C.x2+4x+10=0 D.x2+4x﹣5=010.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s 的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.二、填空题(3分×6=18分)11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.12.一个小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣4(t﹣1)2+5,则小球距离地面的最大高度是米.13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.16.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③b2﹣4ac>0;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;⑥方程ax2+bx+c=3有两个相等的实数根.其中正确的有.三、解答题(本大题共7小题,满分52分)17.解方程:(1)(x﹣3)2+2x(x﹣3)=0;(2)4x2﹣8x﹣1=0(用配方法解).18.已知x2﹣3x﹣6=0,求的值.19.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.20.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.21.某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.(1)若花草园的面积为100平方米,求x;(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个花草园的面积不小于88平方米时,直接写出x的取值范围.22.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲=,y乙=;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.九年级(上)第一次月考数学试卷一参考答案1.B.2.B3.C.4.C.5.B.6.B.7.D.8.B.9.D10.C.11.2015.125.13.x2﹣70x+825=0.14y=﹣(x+6)2+4.15﹣2.16.①③⑤⑥.17.解:(1)(x﹣3)(x﹣3+2x)=0,即(x﹣3)(3x﹣3)=0,∴x﹣3=0或3x﹣3=0,解得:x=3或x=1;(2)4x2﹣8x=1,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x=1±.18解:====.∵x2﹣3x﹣6=0,∴x2﹣3x=6.∴原式=.19.证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.20.解:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元),答:2017年该地区将投入教育经费3327.5万元.21.解:(1)根据题意知平行于墙的一边的长为(30﹣2x)米,则有:x(30﹣2x)=100,解得:x=5或x=10,∵0<30﹣2x≤16,∴7≤x<15,故x=10;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∵30﹣2x≥10,解得:x≤10,∴7≤x≤10,当x=10时,y最小=100;(3)由题意得﹣2x2+30x≥88,解得:x≤4或x≥11,又∵7≤x<15,∴11≤x<15.22.解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,W随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.23.解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP =4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.九年级(上)第一次月考数学试卷(二)一、选择题1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.(x﹣1)(x﹣3)=0 D.=22.下列函数中,开口方向向上的是()A.y=ax2B.y=﹣2x2C.D.3.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.方程ax2+bx+c=0(a≠0)有实数根,那么成立的式子是()A.b2﹣4ac>0 B.b2﹣4ac<0 C.b2﹣4ac≤0 D.b2﹣4ac≥06.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥47.下列方程中两实数根互为倒数有()①x2﹣2x﹣1=0;②2x2﹣7x+2=0;③x2﹣x+1=0.A.0个B.1个C.2个D.3个8.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是()A.B.x(x﹣1)=90 C.D.x(x+1)=909.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.10.已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A.2 B.3 C.﹣2 D.3或﹣212.已知方程x2+kx﹣2=0的一个根是1,则另一个根是,k的值是.13.写出一个以﹣3和2为根的一元二次方程:.14.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x 的方程是.15.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=.三、解答题16.按要求解方程(1)x2﹣4x+1=0(配方法)(2)4x2﹣6x﹣3=0(运用公式法)(3)(2x﹣3)2=5(2x﹣3)(分解因式法)(4)(x+8)(x+1)=﹣12(运用适当的方法)17.求证:方程2x2+3(m﹣1)x+m2﹣4m﹣7=0对于任何实数m,永远有两个不相等的实数根.18.阅读下面的例题,解方程(x﹣1)2﹣5|x﹣1|﹣6=0例:解方程x2﹣|x|﹣2=0;解:令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2,y2=﹣1当|x|=2,x=±2;当|x|=﹣1时(不合题意,舍去)∴原方程的解是x1=2,x2=﹣2.19.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?20.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.21.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.九年级(上)第一次月考数学试卷(二)参考答案1.C.2.C.3.D.4.A5.D.6.B7.B8.B.9.D.10.B.11.x1=0,x2=.12.x1=﹣2,k=1.13.x2﹣x﹣6=0.14.289(1﹣x)2=256.15.﹣1.16.解:(1)x2﹣4x+4=4﹣1,∴(x﹣2)2=3,∴x=2±;(2)∵a=4,b=﹣6,c=﹣3,∴△=b2﹣4ac=(﹣6)2﹣4×4×(﹣3)=36+48=84,∴x==;(3)(2x﹣3)2﹣5(2x﹣3)=0,∴(2x﹣3)(2x﹣3﹣5)=0,∴x=或x=4;(4)x2+9x+8=﹣12,∴x2+9x+20=0,∴(x﹣4)(x﹣5)=0,x=4或x=517.解:△=9(m﹣1)2﹣4×2(m2﹣4m﹣7),=m2+14m+65,=(m+7)2+16.∵对于任何实数m,(m+7)2≥0,∴△>0,即原方程有两个不相等的实数根.所以方程2x2+3(m﹣1)x+m2﹣4m﹣7=0对于任何实数m,永远有两个不相等的实数根.当|x﹣1|=﹣1时,不符合题意,舍去;当|x﹣1|=6时,即x﹣1=6或x﹣1=﹣6,解得:x=7或x=﹣5.19.解:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.20.解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.21.解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣,=2(x2﹣8x)+,=2×(﹣9)+,=﹣.九年级(上)第一次月考数学试卷(三)一、选择题(本题共12小题,每小题3分,共36分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.=2 C.x2+2x=x2﹣1 D.3(x+1)2=2(x+1)2.把一元二次方程(x+2)(x﹣3)=4化成一般形式,得()A.x2+x﹣10=0 B.x2﹣x﹣6=4 C.x2﹣x﹣10=0 D.x2﹣x﹣6=03.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和24.抛物线y=﹣x2+3的顶点坐标是()A.(﹣1,3)B.(0,3)C.(1,3)D.(3,0)5.解下面方程:(1)(x﹣2)2=5,(2)x2﹣3x﹣2=0,(3)x2+x﹣6=0,较适当的方法分别为()A.(1)直接开平法方(2)因式分解法(3)配方法B.(1)因式分解法(2)公式法(3)直接开平方法C.(1)公式法(2)直接开平方法(3)因式分解法6.若2x2+1与4x2﹣2x﹣5的值互为相反数,则x的值是()A.﹣1或B.1或﹣C.1或﹣D.1或7.已知点(﹣1,y1),(2,y2),(﹣3,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y38.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=99.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤010.抛物线y=x2+1的图象大致是()A.B.C.D.11.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2D.若x1<x2<0,则y1>y212.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x+1)=182×C.x(x﹣1)=182 D.x(x﹣1)=182×2二、填空题(本题共7小题,每小题3分,共21分)13.若y=(m+1)是二次函数,则m的值为.14.已知二次方程x2+(t﹣2)x﹣t=0有一个根是2,则t=,另一个根是.15.若二次函数y=m的图象开口向下,则.16.x=a是方程x2﹣6x+5=0的一个根,那么a2﹣6a=.18.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为.19.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒150元下调至96元,求这种药品平均每次降价的百分率是.三、解答题20.解方程:(1)x2+2x=1(2)(x﹣3)2+2(x﹣3)=0(3)(x﹣2)2﹣27=0 (4)3x2+1=2x.21.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.22.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.24.某商场销售一批名牌衬衫,平均每天可售出30件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 500元,每件衬衫应降价多少元?九年级(上)第一次月考数学试卷(三)参考答案1.D.2.A. 3 D.4.B.5.D.6.B.7.A.8.C.9.D.10.C.11.D.12.C.13.7.14.0,x=0.15.m=﹣1.16.﹣5.17.x2+1(答案不唯一).18.12.19.20%.20解:(1))方程整理得:x2+2x﹣1=0,这里a=1,b=2,c=﹣1,∵△=4+4=8,∴x=,∴x1=,x2=;(2)分解因式得:(x﹣3)(x﹣3+2)=0,可得x﹣3=0或x﹣1=0,解得:x1=3,x2=1.(3)移项得,(x﹣2)2=27,移项得,x1=,x2=.(4)∵3x2+1=2x,∴3x2﹣2x+1=0,∴(x﹣1)2=0,∴x1=x2=.21.(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.22解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得解得,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得:x2+3x﹣1.75=0,∵a=1,b=3,c=﹣1.75,∴b2﹣4ac=32﹣4×1×(﹣1.75)=16,解之,得:x==,∴x1=0.5,x2=﹣3.5(舍去),答:每年市政府投资的增长率为50%;(2)到2012年底共建廉租房面积=9.5÷(万平方米).答:到2012年的共建设了38万平方米廉租房.24.解:(1)设每件衬衫应降价x元,根据题意,得:(40﹣x)(30+2x)=1500,整理,得:x2﹣25x+150=0,解之得:x1=15,x2=10,因题意要尽快减少库存,所以x取15.答:每件衬衫应降价15元.九年级(上)第一次月考数学试卷(四)一、选择题(共10小题,每小题3分,满分30分)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.42.抛物线y=x2﹣2x的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.4.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+25.小颖在二次函数y=2x2+4x+5的图象上,依横坐标找到三点(﹣1,y1),(2,y2),(﹣3,y3),则你认为y1,y2,y3的大小关系应为()A.y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y17.某超市一月份的营业额为300万元,已知第一季度的总营业额共2000万元,如果平均每月增长率为x,则由题意列方程应为()A.300(1+x)2=2000 B.300+300×2x=2000C.300+300×3x=2000 D.300[1+(1+x)+(1+x)2]=2000 8.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.9.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.510.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A.4+m B.m C.2m﹣8 D.8﹣2m二、细心填一填(每小题3分,共30分)11.如果x2+2(m﹣1)x+4是一个完全平方式,则m=.12.已知(x2y2+3)(x2y2﹣2)=0,则x2y2=.13. +y2﹣6y+9=0,则xy=.14.直线y=2x+8与抛物线y=x2的公共点坐标是.15.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是.16.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为.17.抛物线y=x2﹣2x+m,若其顶点在x轴上,则m=.18.已知关于x的方程x2+mx﹣6=0的一个根为2,则m=,另一个根是.19.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.20.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.三、解答题(共60分,要求:写出必要的解题步骤和说理过程)21.用适当的方法解下列方程解下列方程.(1)2(x﹣3)2=8(直接开平方法);(2)4x2﹣6x﹣3=0(配方法);(3)(2x﹣3)2=5(2x﹣3)(分解因式法);(4)2x2﹣3x﹣5=0(公式法).22.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?23.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.24.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?(2)如果你是该商场经理,你将如何决策使商场平均每天能获得最大盈利?是多少?25.学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元.铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?26.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.九年级(上)第一次月考数学试卷四参考答案1.B.2.D.3.B.4.D.5.B.6.A.7.D.8.A.9.B.10.C.113或﹣112.2.13.﹣4.14.(﹣2,4)和(4,16).15.x2﹣x=0.16.6或10或12.17.1.181、﹣3.19.k<﹣1.20.﹣1或421.解:(1)(x﹣3)2=4,x﹣3=±2,所以x1=5,x2=1;(2)x2﹣x=,x2﹣x+=,(x﹣)2=,x﹣=±,所以x1=,x2=;(3)(2x﹣3)2﹣5(2x﹣3)=0,(2x﹣3)(2x﹣3﹣5)=0,、2x﹣3=0或2x﹣3﹣5=0,所以x1=,x2=4;(4)△=(﹣3)2﹣4×2×(﹣5)=49,x==,所以x1=,x2=﹣1.22.解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,整理得(1+x)2=81,则x+1=9或x+1=﹣9,解得x1=8,x2=﹣10(舍去),∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.23.解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得.所以抛物线的表达式是;(2)可设N(5,y N),于是.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点坐标是(7,0),(7=2÷2+2×3).过G点作GH垂直AB交抛物线于H,则yH=﹣×72+6=3+>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.24.解:(1)设每件衬衫应降价x元,由题意得,(20+5x)(44﹣x)=1600,解得,x1=36,x2=4(不合题意舍去);应降价36元.(2)设商场平均每天所获得的总利润为y元,则y=(20+5x)(44﹣x),=﹣5x2+200x+880,=﹣5(x2﹣40x+400)+2880,=﹣5(x﹣20)2+2880.∴当x=20时,y最大为2880.∴每件衬衫降价20元时,使商场平均每天能获得最大利润是2880元.25.解:(1)设矩形广场四角的小正方形的边长为x米,根据题意,得:4x2+(80﹣2x)=5200整理,得:x2﹣45x+350=0解之,得:x1=35,x2=10,∴要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为10米或35米.(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则,y=30×[4x2+(80﹣2x)]+20×[2x+2x(80﹣2x)]即:y=80x2﹣3600x+240000配方得,y=80(x﹣22.5)2+199500当x=22.5时,y的值最小,最小值为199500.∴当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为199500元.26.解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,1)(1,0).九年级(上)第一次月考数学试卷(五)一、选择题(本题共12个小题,每小题3分,共36分)1.如果(m+3)x2﹣mx+1=0是一元二次方程,则()A.m≠﹣3 B.m≠3 C.m≠0 D.m≠﹣3且m≠02.若y=2是二次函数,则m等于()A.﹣2 B.2 C.±2 D.不能确定3.已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a为()A.1 B.﹣2 C.1或﹣2 D.24.一元二次方程x2﹣2x+3=0的解的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x﹣2)2﹣36.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣37.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.有最大值是28.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为()A.y=36(1﹣x)B.y=36(1+x)C.y=18(1﹣x)2D.y=18(1+x2)9.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0 B.x2+4x﹣3=0 C.x2﹣4x+3=0 D.x2+3x﹣4=010.顶点为(﹣5,0),且开口方向、形状与函数y=﹣x2的图象相同的抛物线是()A.y=(x﹣5)2B.y=﹣x2﹣5 C.y=﹣(x+5)2D.y=(x+5)211.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.12.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8二、填空题(本大题共6小题,每小题3分,共18分)13.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围是.14.抛物线y=x2﹣2x+3的顶点坐标是.15.九年级女生进行乒乓球比赛,在女子单打中,每一个选手都和其他选手进行一场比赛,现有12名选手参加比赛,则一共要进行场比赛.16.有一人患了红眼病,经过两轮传染后共有144人患了红眼病,设每轮传染中平均一个人传染了x个人,则可列方程为.17.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为.18.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.若等腰三角形ABC的一边长a=4,另两边边长b、c恰好是这个方程的两个实数根,则△ABC的周长为.三、解答题(共66分)19.(12分)用适当的方法解下列方程①(x﹣1)2=4②x2+4x﹣5=0③(x﹣3)2+2x(x﹣3)=0④(x+2)2﹣10(x+2)+25=0.20.(8分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.21.(8分)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1、x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.22.(8分)已知二次函数y=﹣2x2﹣4x+1,先用配方法转化成y=a(x﹣h)2+k,再写出函数的顶点坐标、对称轴以及描述该函数的增减性.23.(10分)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.24.(10分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?25.(10分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.如果要使每天销售饮料获利14000元,问每箱应降价多少元?九年级(上)第一次月考数学试卷(五)参考答案1 A.2.C.3.C.4.C.5.B.6.D.7.B.8.C.9.C.10.C.11.D.12.B.13.k<1.14.(1,2).15.66.16.144.17.y1<y2.18.10.19.解:①开平方,得x﹣1=±2.x1=3,x2=﹣1;②因式分解,得(x+5)(x﹣1)=0,于是得x+5=0或x﹣1=0,解得x1=﹣5,x2=1;③因式分解,得(x﹣3)[(x﹣3)+2x]=0,于是,得x﹣3=0或3x﹣3=0,解得x1=3,x2=1;④因式分解,得[(x+2)﹣5]2=0,于是,得x﹣3=0,解得x1=x2=3.20.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.21.解:(1)∵方程x2+3x+m﹣1=0的两个实数根,∴△=32﹣4(m﹣1)=13﹣4m≥0,解得:m≤.(2)∵方程x2+3x+m﹣1=0的两个实数根分别为x1、x2,∴x1+x2=﹣3,x1x2=m﹣1.∵2(x1+x2)+x1x2+10=0,即﹣6+(m﹣1)+10=0,∴m=﹣3.22.解:y=﹣2x2﹣4x+1=﹣2(x2+2x+1)+2+1=﹣2(x+1)2+3顶点坐标(﹣1,3)对称轴是x=﹣1,增减性:x>﹣1时,y随x的增大而减小,x<﹣1时,y随x的增大而增大.23.解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)∵抛物线解析式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4),点E的坐标为(1,0),∴BE=1﹣(﹣1)=2,DE﹣4,∴BD==2.24.解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴定义域为{x|≤x<8};(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m.25.解:设要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120﹣x)(100+2x)=14000,整理得x2﹣70x+1000=0,解得x1=20,x2=50;∵扩大销售,∴x=50答:每箱应降价50元,可使每天销售饮料获利14000元.。
九年级上第一次月考数学试题及答案

九年级上第一次月考数学试题及答案数 学 试 题命题人:方红兵一、选择题(本大题共10小题,每小题4分,满分40分)1﹨抛物线y =-3x 2+2x -l 的图象与坐标轴的交点个数是 ( ) A .无交点 B .1个 C .2个 D .3个 2﹨已知甲﹨乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )A .B .C .D .3、若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( )A 、m >1B ﹨m >0C ﹨m >﹣1D ﹨﹣1<m <04﹨将抛物线y =x 2﹣2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A ﹨y =(x ﹣1)2+4B ﹨ y =(x ﹣4)2+4C ﹨y =(x +2)2+6D ﹨y =(x ﹣4)2+65﹨在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )6﹨若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数xy 1-=图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 1 7﹨以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线xy 3=经过点D ,则正方形ABCD 的面积是( ) A .10 B .11 C .12 D .138﹨如图,A ﹨B 是双曲线xky上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34 B .38C. 3 D .4【第7题图】 【第8题图】 【第9题图】9、抛物线y=ax 2+bx+c (a ≠0)的图象大致如图所示,下列说法: ①2a+b=0; ②当-1≤x ≤3时,y <0; ③若(x 1,y 1)﹨(x 2,y 2)在函数图象上,当x 1<x 2 时,y 1<y 2; ④9a+3b+c=0。
人教版九年级上册数学第一次月考试卷含答案

人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
九年级数学上册第一次月考【压轴大题】练习

九年级数学上册 | 第一次月考【压轴大题】练习【一】如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.(1)求y与x的函数关系式;解:∵在矩形ABCD中,BC=x,∴CD=30-x/2=15-1/2x,∴y=x(15-1/2x)=-1/2x2+15x(2)写出其二次项、一次项、常数项;【解析】二次项为-1/2x2,一次项为15x,常数项为0(3)写出自变量x的取值范围.【解析】自变量的取值范围为:0<x≤20.【二】如图,已知抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点.(1)求抛物线的表达式和顶点坐标;解:把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4)(2)当0<x<3时,求y的取值范围;【解析】由图可得当0<x<3时,﹣4≤y<0;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.解:∵A(﹣1,0)、B(3,0),∴AB=4,设P(x,y),则S△PAB=1/2AB•|y|=2|y|=10,∴|y|=5,∴y=±5;①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5)【三】已知二次函数y=a(x−2)2+3的图象经过点(−1,0).(1)求这个二次函数的解析式;解:把(−1,0)代入二次函数解析式得:9a+3=0,即a=−1/3,则函数解析式为y=−1/3 (x−2)2+3(2)分别指出这个二次函数图象的开口方向、对称轴和顶点坐标.解:∵a=−1/3<0,∴抛物线开口向下,顶点坐标为(2,3),对称轴为直线x=2(3) 写出把此抛物线向右平移1个单位长度,再向上平移2个单位长度后的抛物线解析式.解:抛物线y=−1/3 (x−2)2+3向右平移1个单位长度所得解析式为:y=−1/3 (x−3)2+3,再向上平移2个单位长度后,所得函数的表达式为:y=−1/3 (x−3)2+3+2=−1/3 (x−3)2+5.故答案为y= −1/3 (x−3)2+5【四】在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是(0,2);解:如图1中,由题意A(0,0),B(2,0),C(0,1),∵点P是线段AB关于射线OC的等腰点,∴OP=AB=2,∴P(0,2)②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;解:如图2中,当OP=AB时,作PH⊥x轴于H.在Rt△POH中,∵PH=OC=1,OP=AB=2∴OH=√OP²-PH²=√2²-1²=√3,观察图象可知:若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1时,n<﹣√3.(2)若n=√3,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是﹣4<t≤﹣2或t=0或2<t ≤4.解:如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.由题意C(√3,1),∴CH=√3,OH=1,∴tan∠COH=CH/EH=√3,∴∠COH=60°,当⊙B经过原点时,B(﹣2,0),此时t=﹣4,∵射线OC上只存在一个线段AB关于射线OC的等腰点,∴射线OC与⊙A,⊙B只有一个交点,观察图象可知当﹣4<t≤﹣2时,满足条件,如图3﹣2中,当点A在原点时,∵∠POB=30°,此时两圆的交点P在射线OC上,满足条件,此时t=0,如图3﹣3中,当⊙B与OC相切于P时,连接BP.∴OC是⊙B的切线,∴OP⊥BP,∴∠OPB=90°,∵BP=2,∠POB=30°,∴OB=BP/cos60°=2/(1/2)=4,此时t=4﹣2=2,如图3﹣4中,当⊙A与OC相切时,同法可得OA=4,此时t=4,此时符合题意.如图3﹣5中,当⊙A经过原点时,A(2,0),此时t=2,观察图形可知,满足条件的t的值为:2<t≤4,综上所述,满足条件t的值为﹣4<t≤﹣2或t=0或2<t≤4.【五】在ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;解:∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=1/2BC,∵∠ACB=90°∴∠DEC=90°∵DF⊥DE,∴∠EDF=90°∴四边形CEDF是矩形,∴DE=CF=1/2BC,∴CF=BF=1,∵CE=AE=2,∴EF==√CF²+CE²=√1²+2²=√5(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.解:AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,∠AED=∠BMD,∠ADE=∠BDM,AD=BD,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-上学期九年级第一次月考
数 学 试 题
(满分:150分 考试时间:120分钟)
九年( )班 座号__________ 姓名______ ____ 成绩: 一、选择题(本题10小题,每小题4分,共40分)
1、已知△ABC 的三边长分别是3cm 、4cm 、5cm ,则△ABC 的面积是( ) A 、6cm 2 B 、7.5cm 2 C 、10cm 2 D 、12cm 2
2、关于x 的方程2
(3)210a x x a -++-=是一元二次方程的条件是( ) A 、0a ≠ B 、3a ≠ C 、3a ≠
D 、3a ≠-
3、具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A 、顶角、一腰对应相等 B 、底边、一腰对应相等 C 、两腰对应相等 D 、一底角、底边对应相等
4、下列四句话中,正确的是( )
A 、任何一个命题都有逆命题
B 、任何一个定理都有逆定理
C 、若原命题为真,则其逆命题也为真
D 、若原命题为假,则其逆命题也假 5、一元二次方程x 2-1=0的根为( )
A 、x =1
B 、x =-1
C 、x 1=1,x 2=-1
D 、x 1=0,x 2=16 6、如图△ABC 中,AB=AC ,∠ABC =36︒,D 、
E 是BC 上的点,
∠BAD =∠DAE =∠EAC ,则图中等腰三角形的个数是( )
A 、2个
B 、3个
C 、4个
D 、6个 7、顺次连结菱形各边中点所得的四边形是( )
A 、矩形
B 、菱形
C 、正方形
D 、平行四边形 8、
ABCD 中,DB =DC ,∠BDC =40︒,AE ⊥BD 于E , 则∠DAE 等于( )
A 、20︒
B 、25︒
C 、30︒
D 、35︒
A B
C
D
F E
O
A
B C
D
9、如图,在等腰梯形ABCD 中,AB ∥CD ,DC = 3 cm , ∠A=60°,BD 平分∠ABC ,则这个梯形的周长是( ) A. 21 cm ; B. 18 cm ; C. 15cm ; D. 12 cm ;
10、 AD 是△ABC 的高,E 为AB 的中点,EF ⊥BC ,如果
DC =
1
3BD ,那么FC :BF 等于( ) A 、53 B 、43 C 、32 D 、23
二、填空题(本题有9小题,每小题3分,共27分)
11、如图(1),已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 。
12、如图(2),△ABC 中,∠ACB=90°,以△ABC 的各边为边在△ABC 外作三个正方
形,S 1、S 2、S 3分别表示着三个正方形的面积,S 1=81,S 3=225,则S 2= . 13、如图(3),在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相
交于D 点,则∠BCD 的度数是 .
14、如图(4),∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为 .
(1) (2) (3) (4) 15、已知1x =-是方程2
60x ax -+=的一个根,则a=____________。
16、请写出有一个根为4的一元二次方程 .
17、在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则
△DEF 的周长为__________
18、一个两位数字,十位数字比个位数字大3,而这两个数字之积等于这个两位数的7
2
,若设个位数字为x ,则可列出方程________ ____ ____ 。
19、将矩形纸片ABCD 按如图所示的方式折
叠,得到菱形AECF .若AB =3,则BC 的长为 .
A
B
C B A 三、解答题(本大题有8题,共83分) 20、解下列方程(每题6分,计24分)
(1)、9)12(2
=-x (2)、0342
=-+x x (用配方法)
(3)、3x 2+5(2x+1)=0(用公式法) (4)、()()752652x x x +=+
21.(本题满分8分)
尺规作图:已知△ABC,在△ABC 内求作一点P ,使P 到∠A 的两边AB 、AC 的距离相等,且PB =PA .
如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结设,写一个真命题并加以证明.
①AB =DE ;②AC =DF ;③∠ABC =∠DEF ;④BE =CF
已知: 求证: 证明:
23.(本题满分8分)
如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE = CD .求证:BD = DE .
A D
F C E B
已知:菱形ABCD 中,对角线AC = 16 cm ,BD = 12 cm ,BE ⊥DC 于点E ,求菱形ABCD 的面积和BE 的长.
四、列一元二次方程解应用题(每小题7分,计14分)
25、两个正方形,小正方形的边长比大正方形的边长的一半多4cm ,大正方形的面积比小正方形的面积的2倍少32cm 2,求大小两个正方形的边长。
B
A
C
D
O E
26、某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商
品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
27、(本题10分)已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且CE=BD,连结AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.
28、如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:∠ABE∠∠DAF;(2)若∠AGB=30°,求EF的长.
24
题图
29、(本题满分13分)
如图,已知矩形ABCD ,AD =4,CD =10,P 是AB 上一动点,M 、N 、E 分别是
PD 、PC 、CD 的中点.
(1)求证:四边形PMEN 是平行四边形;
(2)请说明当AP 为何值时,四边形PMEN 是菱形;
(3)四边形PMEN 有可能是矩形吗?若有可能,求出AP 的长;若不可能,请简要说明理由.
A
B
C
D
P
M
N
E。