开关电源的总损耗

合集下载

开关电源常见损耗分析与对策

开关电源常见损耗分析与对策

开关电源常见损耗分析与对策
以图一中典型的反激转换器(flyback converter)为例,去分析电源转换器的损耗。

因为反激转换器低价位和广泛的输入范围的特性,在实际应用层面受到欢迎。

对一个开关电源而言,主要的损耗包括了传导损耗(conduction loss)和切换损耗(switching loss),以及由控制电路所造成的损耗。

表二、三、四分别对这些主要损耗,包括主要的传导损耗和切换损耗,控制电路所造成的损耗,列出了大约的估算,和常用的解决对策。

表二主要的开关损耗
表三主要的传导损耗
表四控制电路的主要损耗
可以很明显的发现无论是传导损耗或切换损耗,都和切换频率有很密切的关系。

降低切换频率可以有效的降低损耗,特别是在轻载时。

但由波宽调变产生器所产生的波宽必须被控制,免得造成磁性元件的饱和。

而且,反激转换器的输出能量可以表示为Po = (Vdc^2 ×Ton^2) /(2 ×Lp ×T) ×η,其中η代表转换效率。

在轻载时,导通时间(Ton)很短暂,增长切换週期(T),或降低切换频率(fs),是一个很直觉的想法。

开关器件开关过程损耗计算公式

开关器件开关过程损耗计算公式

开关器件开关过程损耗计算公式开关器件是电子电路中常见的一种元件,用于控制电流的通断。

在开关器件的开关过程中,会产生一定的损耗。

本文将介绍开关过程损耗的计算公式及其背后的原理。

开关器件的损耗主要包括导通损耗和关断损耗。

导通损耗是指开关器件在导通状态下的功率损耗,关断损耗是指开关器件在关断状态下的功率损耗。

我们来看导通损耗的计算公式。

导通损耗与开关器件的导通电阻和电流有关。

一般来说,导通损耗可以通过以下公式计算:导通损耗 = 导通电阻 × (导通电流)^2其中,导通电流是指开关器件在导通状态下通过的电流,导通电阻是指开关器件在导通状态下的电阻。

接下来,我们来看关断损耗的计算公式。

关断损耗与开关器件的关断电流和关断时间有关。

一般来说,关断损耗可以通过以下公式计算:关断损耗 = 关断电流 × 关断时间其中,关断电流是指开关器件在关断状态下的电流,关断时间是指开关器件从导通状态到关断状态所需的时间。

需要注意的是,开关器件的开关过程中还会有其他损耗,如开关过程中的动态损耗和开关过程中的电压损耗。

这些损耗通常可以通过实验测量或仿真计算得到。

开关过程损耗的计算公式可以帮助工程师评估开关器件的性能,并优化电路设计。

通过减小导通损耗和关断损耗,可以提高开关器件的效率,减少能量损耗。

除了通过计算公式来评估开关过程损耗,工程师还可以通过选择合适的开关器件和优化电路设计来降低损耗。

例如,选择导通电阻较小的开关器件,可以减小导通损耗;合理设计电路,减小关断时间,可以降低关断损耗。

总结起来,开关过程损耗的计算公式为导通损耗 = 导通电阻 × (导通电流)^2,关断损耗 = 关断电流 × 关断时间。

通过计算和优化,可以降低开关器件的损耗,提高电路的效率。

在实际应用中,工程师需要根据具体情况选择合适的开关器件和优化电路设计,以达到最佳的性能和能量效率。

开关电源8大损耗,讲的太详细了

开关电源8大损耗,讲的太详细了

开关电源8大损耗,讲的太详细了能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。

绝大多数电源IC 的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。

一般厂商会给出实际测量的结果,但我们只能对我们自己的数据担保。

图1 给出了一个SMPS 降压转换器的电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。

采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS 损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET 和二极管),另外小部分损耗来自电感和电容。

但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。

选择IC 时,需要考虑控制器的架构和内部元件,以期获得高效指标。

例如,图1 采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。

我们将在本文展开讨论这些措施带来的好处。

图1. 降压转换器集成了低导通电阻的MOSFET,采用同步整流,效率曲线如图所示。

降压型SMPS损耗是任何SMPS 架构都面临的问题,我们在此以图2 所示降压型(或buck)转换器为例进行讨论,图中标明各点的开关波形,用于后续计算。

降压转换器的主要功能是把一个较高的直流输入电压转换成较低的直流输出电压。

为了达到这个要求,MOSFET 以固定频率(f S),在脉宽调制信号(PWM)的控制下进行开、关操作。

当MOSFET 导通时,输入电压给电感和电容(L 和C OUT)充电,通过它们把能量传递给负载。

在此期间,电感电流线性上升,电流回路如图2 中的回路1 所示。

当MOSFET 断开时,输入电压断开与电感的连接,电感和输出电容为负载供电。

电感电流线性下降,电流流过二极管,电流回路如图中的环路2 所示。

MOSFET 的导通时间定义为PWM 信号的占空比(D)。

开关损耗计算公式

开关损耗计算公式

开关损耗计算公式1.开关损耗的概念开关电源作为一种常见的电源类型,其在使用过程中会伴随着损耗。

而其中重要的一种就是开关损耗,这种损耗是由于开关管在反复进行开关过程中,会产生电感、电容、二极管等等的反向电流,从而产生能量损耗,这些损耗就是开关损耗。

2.开关损耗的分类开关损耗可分为导通损耗和开关损耗两种。

导通损耗是指开关管导通时的损耗,其大小取决于开关管的导通电阻及电源电压;而开关损耗是指开关管有明显的反向阻抗及电子载流子的迁移,从而在反向断路时产生的损耗,其大小取决于开关管的开关频率及负载电容。

3.开关损耗的计算公式开关损耗的计算公式为:Psw=0.5fvho*(Eon+Eoff)*Iload其中,Psw代表开关损耗功率,f为开关频率,vho为开关管输出电压幅值,Eon为开管损失,Eoff为关管损失,Iload为负载电流。

4.各项参数的解释开关损耗公式中的各项参数解释如下:(1)fvho:开关管输出电压幅值,由于开关管导通时,肯定有较小的电压掉电,因此这里要用输出电压的幅值来计算。

(2)Eon:开关管开启损耗,是指开关管在导通时产生的损耗,由于导通阻抗的存在,电流只能通过少量的电阻降,因此产生一定的损耗。

(3)Eoff:开关管关闭损耗,是指开关管在关断时产生的损耗,因为关断过程中会出现电容放电、电感储能等现象,所以会产生相应的能量损耗。

(4)Iload:负载电流,开关管所控制的负载电流,与电路中电阻和电容等元器件有关。

5.开关损耗的影响因素(1)开关频率:开关频率越高,开关管的损耗就越大,这是由于开关管在高频率下会出现更多的反向电流。

(2)开关管特性:开关管的导通阻抗、关断速度等特性,都会对开关损耗产生影响。

(3)电源电压:电源电压高,开关损耗也会随之增大。

6.如何降低开关损耗为了降低开关损耗,可以从以下几个方面入手:(1)选择适合的开关管型号,如IGBT、MOS、SBD等,根据具体场合,选用性价比高的产品。

开关电源变压器损耗计算

开关电源变压器损耗计算

开关电源变压器损耗计算
计算开关电源变压器的损耗,可以采用下面的方法:
1. 计算铁心损耗:开关电源变压器的铁心损耗包括磁滞损耗和涡流损耗,可以通过铁心材料的特性曲线和变压器铁心的磁通密度来计算。

一般情况下,铁心损耗占总损耗的比重较小,通常在5%以下。

2. 计算铜损耗:开关电源变压器的铜损耗是由变压器线圈中的电流通过导线时产生的热量而导致的。

铜损耗的大小取决于变压器的额定电流和绕组的电阻值。

在设计开关电源变压器时,需要根据变压器线圈的截面积和电阻值来计算铜损耗。

3. 计算其他损耗:开关电源变压器还可能存在其他的损耗,如液体绝缘材料的损耗、绝缘损耗以及机械损耗等。

这些损耗的大小往往比较难以估算,可以通过实验来确定。

总的来说,开关电源变压器的损耗计算是一个较为复杂的过程,需要掌握一定的电路和材料知识。

为了确保变压器的工作稳定和可靠,需要对其损耗进行适当的估算和优化设计。

开关电源损耗计算方法

开关电源损耗计算方法

开关电源损耗计算方法开关电源是现代电子设备中常见的一种电源转换装置,其工作原理主要是通过控制开关的通断来调节输出电压。

然而,在开关电源的工作过程中,不可避免地会产生一定的损耗,这些损耗会影响电源的效率和稳定性。

因此,如何计算和降低开关电源的损耗,成为电源设计中的重要问题。

本文将详细探讨开关电源损耗的计算方法。

一、开关电源的基本结构与工作原理开关电源主要包括输入整流滤波电路、功率开关管、变压器、输出整流滤波电路等部分。

工作时,通过控制功率开关管的通断,使得变压器初级线圈上的电流发生变化,进而改变次级线圈上的感应电动势,从而实现电压的变换。

在这个过程中,功率开关管、变压器以及其他元器件都会产生损耗。

二、开关电源的主要损耗类型1. 开关损耗:这是由于功率开关管在导通和截止过程中产生的损耗,主要包括开通损耗和关断损耗。

2. 导通损耗:当功率开关管处于导通状态时,其内部电阻会消耗一部分能量,形成导通损耗。

3. 变压器损耗:包括磁滞损耗、涡流损耗和铜损。

磁滞损耗是由磁性材料的磁滞特性引起的;涡流损耗是由于交变磁场在导体中产生的涡流所消耗的能量;铜损是由于电流通过变压器绕组产生的热量。

4. 整流损耗:这是由整流二极管在反向恢复期间产生的损耗。

5. 其他损耗:如驱动电路的损耗、电容的ESR损耗等。

三、开关电源损耗的计算方法1. 开关损耗的计算:开关损耗主要取决于开关频率、开关速度和电压、电流的变化率。

通常采用SPICE仿真软件进行计算。

2. 导通损耗的计算:导通损耗等于导通电流与导通电阻的乘积。

3. 变压器损耗的计算:磁滞损耗和涡流损耗可以使用B-H曲线和E-J曲线进行计算,铜损则等于电流的平方与电阻的乘积。

4. 整流损耗的计算:整流损耗等于二极管的正向压降与电流的乘积。

5. 其他损耗的计算:需要根据具体的电路参数进行计算。

四、降低开关电源损耗的方法1. 选择低导通电阻的开关管,以降低导通损耗。

2. 提高开关频率,减小变压器的体积和重量,但可能会增加开关损耗。

BUCK型开关电源中的损耗与效率的计算

BUCK型开关电源中的损耗与效率的计算

在BUCK型‎开关电源中‎,如果没有损‎耗,那效率就是‎100%,但这是不可‎能的,BUCK型‎开关电源中‎主要的损耗‎是导通损耗‎和交流开关‎损耗,导通损耗主‎要是指MO‎S管导通后‎的损耗和肖‎特基二极管‎导通的损耗‎(是指完全导‎通后的损耗‎,因为导通不‎是瞬间导通‎,有个从线性‎区到非线性‎区的过程),在MOS管‎导通时,由于存在导‎通电阻,那么流过电‎流就必然存‎在导通损耗‎,而肖特基导‎通损耗是指‎在MOS 管‎关闭期间,由于电感的‎电流不能突‎变加上电感‎反冲现象,会产生与M‎OS管导通‎时的相反电‎压方向,从而使肖特‎基导通,流过的电流‎会在肖特基‎上产生损耗‎。

由于MOS‎管在导通的‎时候,流过其的电‎流不是瞬间‎达到最大,此时电流有‎个从零逐渐‎上升到最大‎的过程,此时MOS‎管漏源(DS)之间的电压‎也是从Vd‎c逐渐下降‎到零,MOS管关‎闭的时候也‎存在此情况‎,只是与打开‎的时候过程‎相反,那么在这逐‎渐的过程中‎就会产生损‎耗,这就是交流‎开关损耗,交流开关损‎耗包括MO‎S管打开和‎关闭损耗,交流开关损‎耗与开关的‎频率成正比‎,因为一开一‎关的次数越‎多,损耗自然就‎大了。

在忽略交流‎开关损耗的‎情况下,假设输入电‎压Vdc,输出电压为‎V o,MOS管导‎通时间为T‎on,关闭时间为‎T off,整个周期为‎T,即T=Ton+Toff。

在MOS管‎导通期间流‎过的平均电‎流为Io,由于电感电‎流不能突变‎,那么在MO‎S管关闭期‎间流过肖特‎基的平均电‎流也为Io‎,在MOS管‎和肖特基导‎通期间产生‎的压差基本‎为1V,那么导通损‎耗=P(mos管)+P(肖特基)=1*Io*Ton/T+1*Io*Toff/T=1*Io。

那么此时的‎效率E=Po/(Po+Ploss‎e)=(Vo*Io)/(Vo*Io)+(1*Io)=Vo/Vo+1。

在考虑交流‎开关损耗的‎时候,基本交流开‎关损耗可以‎分两种情况‎来考虑,第一种情况‎是MOS管‎导通期间,电流开始上‎升的时候电‎压同时开始‎下降,MOS管关‎闭期间电流‎开始下降的‎时候电压同‎时上升,此种情况也‎是最理想的‎情况(一般实际情‎况很难达到‎),那么在此情‎况下,交流开关损‎耗=整个开关周‎期的导通损‎耗+整个开关周‎期的关断损‎耗=(时间从0到‎T on,流过电流和‎电压剩积的‎积分)*(Ton/T)+(时间从0到‎T off,流过电流和‎电压剩积的‎积分)*(Toff/T)=Io*Vdc/6*(Ton/T)+Io*Vdc/6*(Toff/T)。

开关电源变压器损耗计算

开关电源变压器损耗计算

开关电源变压器损耗计算
开关电源变压器的损耗主要包括铜损和铁损两部分。

1. 铜损:铜损是由于变压器线圈的电阻引起的损耗。

它可以通过以下公式计算:
P_cu = I^2 * R
其中,P_cu表示铜损功率,I表示变压器的额定电流,R表示线圈的总电阻。

2. 铁损:铁损是由于磁场变化引起的损耗,分为磁滞损耗和涡流损耗两部分。

- 磁滞损耗可以通过以下公式计算:
P_h = K_h * f * B^x
其中,P_h表示磁滞损耗功率,K_h为磁滞损耗系数,f表示变压器的工频,B表示磁场强度,x为磁滞指数。

- 涡流损耗可以通过以下公式计算:
P_e = K_e * f^2 * B^2 * t^2
其中,P_e表示涡流损耗功率,K_e为涡流损耗系数,f表示变压器的工频,B表示磁场强度,t为变压器的铁心厚度。

总损耗可以通过铜损和铁损相加得到:
P_total = P_cu + P_h + P_e
需要注意的是,损耗的具体计算需要参考变压器的设计参数和材料特性,上述公式中的系数需要根据具体情况进行确定。

同时,在实际应用中,还需要考虑变压器的负载率和温升等因素对损耗的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的总损耗
开关电源的总损耗
根据效率定义,电源的总损耗为
△P=Pi-Po=Po(1/η-1) (7.3.2)
总损耗包括功率器件、变压器、滤波电路、缓冲电路、辅助电源、EMI滤波、保险丝、假负载等一切损耗。

有时“变换器效率”,实际上仅只包含功率电路、变压器、整流滤波电路和缓冲电路损耗,不包含除此以外的其他电路损耗,甚至不包含功率开关驱动损耗。

开关电源适配器设计开始,应当对所设计电源效率有一个恰当的估计,由此选择功率开关。

用式(7.3.2)计算出允许的总损耗。

再根据所选择拓朴给出功率电路的允许损耗——功率开关损耗Ps,变压器损耗Pt,滤波器损耗Pf,漏感引起的损耗Pls,缓冲电路损耗Psn,整流损耗Pr等等。

辅助电源如果是直接取自于输入电压,不影响功率电路输入功率,可根据所选择的功率器件,保护电路和显示电路的消耗电流,单独给出允许损耗;如果辅助电源采用自举供电,在功率电路中还应当包含其损耗。

功率开关损耗Ps包括功率管导通和开关损耗。

导通损耗与电流I或电流的平方I2成正比。

高压器件比低压器件导通电阻(或压降)大,更长的开关时间,因此通态损耗和开关损耗也大。

开关损耗随频率增加而增加,因此高压大功率开关电源一般开关频率较低。

IGBT电压定额一般在500V以上,导通压降在2-3V,从损耗的观点看不适宜工作在低电压(小于200V)和工作频率超过30kHz电路中。

低压MOSFET电流定额越大,导通电阻越小。

如果将大电流定额的器件用在小工作电流场合,导通损耗明显降低,但大电流器件的栅极电荷比小电流大,栅极驱动损耗将明显增加,因此必须在栅极损耗和导通损耗之间折中,但栅极损耗随开关频率增加而增加,如果采用大马拉小车,开关频率是调节损耗的重要因素。

双极型功率管通态压降一般在1V以上,为减少存储时间,通常采用抗饱和措施,导通压降增加。

粗略估计,可以假定开关损耗等于导通损耗。

变压器损耗Pt包括磁芯损耗和线圈损耗(铜损耗)。

正确设计和绕制的变压器效率一般在98%以上,但是反激变压器损耗大些。

如果要求高效率,必须选择较低的磁感应,磁芯的体积较大。

但是如果设计不当,损耗将明显增加。

尤其是反激变压器如果存在较大漏感,钳位电路采用RCD,损耗明显加大。

滤波损耗Pf包含滤波电感损耗和电容损耗。

如果是连续模式电感,则主要损耗是线圈损耗,磁芯损耗可以忽略。

电容存在串联等效电阻Resr上的损耗,电感连续模式中,电容纹波电流较小,电容损耗也较小,整个滤波损耗约小于输出功率的1%。

如果是反激变压器,电容的Resr损耗大大增加,滤波损耗就是电容损耗。

整流电路损耗Pr包括整流管正向压降引起的导通损耗,反向恢复引起关断损耗,以及为避免振荡二极管的缓冲电路损耗。

低输出电压电源整流管导通压降是影响整机效率的主要因素,导通损耗可以用二极管的正向压降乘以输出电流来估计。

因此输出电压越低,整流管压降影响就越大。

输出电压5V以下,要达到效率80%以上效率必须采用同步整流。

但是同步整流使得电路复杂,同时在高频时,驱动损耗将明显增加,限制了效率的提高。

当输出电压升高时,二极管反向恢复损耗和缓冲电路损耗将明显增加。

辅助电源损耗包括控制芯片损耗、启动电路损耗、驱动损耗,以及显示、保护电路损耗。

辅助电源损耗可以用辅助电源输出电流乘以其输出电压来估算。

其他损耗还有保险丝损耗、电磁兼容滤波器损耗、输入启动限流电路损耗、输入滤波损耗和布线损耗等。

输入级损耗有些与输出功率与输入级以后电路损耗密切相关。

也即输出功率大,输入部分(如电磁兼容滤波器、保护电路、功率开关)电流大,损耗也大。

后继损耗有假负载、采样、电压、电流检测、保护等电路附加损耗,滤波和整流等。

例如整流器压降对效率有致命的影响。

例如,输出级功率和损耗使得输入功率增加5%,即输入电流增加5%,功率管导通电阻损耗增加 1.052-1=0.1(10%)。

因此要求高效率开关电源,输出电路应尽量减少附加损耗。

在设计变换器之前,应很好地估计变换器效率。

如果需要高效率,肯定需要这样的估算作为选择拓朴过程的一部分,拓朴的错误选择将导致提高效率要花很大的代价。

为了保证整机的设计效率,必须对所设计的电源损耗作正确的估计。

如果没有设计经验,可以分析现有同等级输出功率电源的效率和损耗作为分配参考。

中低功率等级的变换器效率很难超过95%,输出功率越小,辅助电路的损耗所占的比例越大,效率越低。

从概念来说,假定要构建一个输入功率100W的变换器。

如果这个变换器效率是80%,它的输出是80W,内损耗为20W。

如果增加2%的效率,即82%,换句话说输出82W,节约2W,损耗减少10%。

要是变换器效率是90%,则输出功率是90W,内损耗为10W,如果增加效率2%,得到92W 输出,节约10W损耗中的2W,即20%。

很清楚,节约损耗10%要比节约20%损耗容易,效率超过90%再增加效率2%变得十分困难。

在各单元设计前应当进行损耗分配,作为各单元设计依据。

各单元保证小于分配的损耗,才能保证希望的整机效率。

如果一个单元损耗超过分配的损耗,而且要减少这部分损耗要付出更高的成本,而另一个单元减少损耗成本较低,可以在单元之间协调,达到预期的效率而不增加成本。

相关文档
最新文档