实验二 用同时分析法观测50Hz非正弦周期信号的分解与合成

合集下载

实验五 非正弦周期信号的分解和合成

实验五 非正弦周期信号的分解和合成

实验五非正弦周期信号的分解和合成一、实验要求1、观察正弦波,矩形波和三角波信号的频谱,并进行分析;2、设计以一个BPF1-BPF6的带通滤波器,加法器。

滤波器调谐在基波和各次谐波上,然后用加法器对各次谐波进行合成,观察合成信号与原信号的区别;3、分别对单相正弦波、矩形波和三角波的输出信号进行分解和合成,观测基波及各次谐波频率和幅度,加法器的输出波形。

二、实验内容:(1)用频谱仪和FOURIER分析法观测非正弦周期信号的频谱,分别观测50HZ单相正弦波,方波,矩形波和三角波信号的频谱记录之.A)50hz单相正弦波单相正弦波的产生:产生的波形图如下:对应的频谱图:B)50HZ方波Fourier分析法观测的频谱:C)50HZ矩形波对应的频谱:(2)设计BPF1-BPF6带通滤波器,加法器.滤波器调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成.将50HZ的方波信号其接至各带通滤波器的输入端,将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值.并记录之本实验不是采用带通滤波器进行实现,而是通过谐振回路对相应的谐波进行提取,实现的电路图如下:基波和二次谐波的电路如下:三次谐波和四次谐波如下:九次谐波的波形如下:(4)将方波分解所得的基波和三次谐波加到加法器的响应输入端,观测加法器的输出波形,并记录之.电路图:合成后的波形:(5)在4的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之,并分析讨论将一三五谐振回路进行串联得到的信号,可见,效果相对上图比较好些(6)分别将50HZ单相正弦波,矩形波和三角波的输出信号接至50HZ电信号分解与合成模块输入端、观测基波和各次谐波的频率和幅度,求和器的输出波形。

最后我们来看看六次谐波叠加的效果:可以看到信号恢复的已经比较不错了,由于在合成信号时会有吉布斯效应,所以会有一个约9%的小凸起。

上面是观察方波信号的,当然我们也可以对三角波信号进行同样的观察,可以预见的是,三角波信号的3,,5次谐波能量将会更小,基波能量将非常集中,因此合成出来的结果应该会更加完美。

TKSS信号与系统实验箱

TKSS信号与系统实验箱

信号与系统实验姓名:学号:班级:10级电信一班实验一 基本运算单元一、实验目的1、熟悉由运算放大器为核心元件组成的基本运算单元2、掌握基本运算单元特性的测试方法 二、实验设备与仪器1、信号与系统实验箱TKSS-A 型或TKSS-B 型或TKSS-C 型;2、双踪示波器。

三、实验原理 1、运算放大器运算放大器实际就是高增益直流放大器,如图1-1所示。

具有两个输入端和一个输出端:当信号从“-”端输入时,输出信号与输入信号反相,故“-” 端称为反相输入端; 而从“+”端输入时,输出信号与输入信号同相, 故称“+”端为同相输入端。

在对系统模拟中,常用的基本运算单元有加法器、比例运算器、积分器和微分器四种,现简述如下:(1) 加法器图1-2为加法器的原理电路图。

基于运算放大器的输入电流为零,则由图1-2得(1-2) 同理得:由上式求得:(1-3) R 33--=-=u R u i p -ou u 41=---=-=u R i u u F p 40R u u R u u R u u R u ++++-+-+-=3214321u u u u ++=+因为所以u o =u 1+u 2+u 3 (1-4)即运算放大器的输出电压等于输入电压的代数和。

(2)比例运算器图1-3为反相运算器的电路图。

由于放大器的“+”端和“-”端均无输入电流,所以u +=u -=0,图中的A 点为“虚地”, 于是得 i F =i r(1-5)式中rF R RK =, “-”号表示输出电压与输入电压反相,故称这种运算器为反相运算器当R F =R r 时, K=1,式(1-5)变为u 0=-u 1,这就是人们常用的反相器。

图1-3中的电阻R P 用来保证外部电路平衡对称,以补偿运放本身偏置电流及其温度漂移的影响,它的取值一般为R P =R r //R F 。

四、实验内容与步骤1、在本实验箱自由布线区设计加法器、比例运算器 2.测试基本运算单元特性。

信号分解与合成实验报告

信号分解与合成实验报告

实验二 信号分解与合成--谢格斯 110701336 聂楚飞110701324一、实验目的1、观察电信号的分解。

2、掌握带通滤波器的有关特性测试方法。

3、观测基波和其谐波的合成。

二、实验内容1、观察信号分解的过程及信号中所包含的各次谐波。

2、观察由各次谐波合成的信号。

三、预备知识1、了解李沙育图相关知识。

2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。

四、实验仪器1、信号与系统实验箱一台(主板)。

2、电信号分解与合成模块一块。

3、20M 双踪示波器一台。

五、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。

对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。

而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。

通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。

本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。

将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。

从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。

本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频率分别是543215432ωωωωω、、、、,因而能从各有源带通滤波器的两端观察到基波和各次谐波。

其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。

但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。

六、实验步骤1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。

信号与系统实验报告资料

信号与系统实验报告资料

《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。

2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

非正弦周期信号及其分解

非正弦周期信号及其分解

π
3
5
k
k为奇数
利用三角函数公式 sin(α + β ) = sinα cos β + cosα sin β
将傅里叶级数写成另一种形式:


∑ ∑ f (t) = A0 + Akm sin(kωt +θk ) = a0 + (ak cos kωt + bk sin kωt)
k =1
k =1
a0 = A0
ak = Akm sinθk bk = Akm cosθk
T = 2s,ω = π

∑ 3 4 t(s) u(t) = A0 + Akm sin(kωt +θk )
-1
k =1 ∞
∑ = a0 + (ak cos kωt + bk sin kωt)
k =1
当k为奇数时: bk
=
4

当k为偶数时: bk = 0
u(t) = 4 (sin πt + 1 sin 3πt + 1 sin 5πt + ⋅⋅⋅ + 1 sin kπt + ⋅⋅⋅)
π
3
5
k
k为奇数
图示为周期电压u(t) 的一段波形,求u(t)的傅里叶级数。
u(V ) 1
基波+三次+ 五次谐波分量
基波+三次 谐波分量
1 2 3 4 t(s) -1
基波分量
基波+三次+五次 +七次谐波分量
三次谐波分量
五次谐波分量 七次谐波分量
u(t) = 4 (sin πt + 1 sin 3πt + 1 sin 5πt + ⋅⋅⋅ + 1 sin kπt + ⋅⋅⋅)

信系统非正弦周期信的分解与合成实验报告

信系统非正弦周期信的分解与合成实验报告

非正弦周期信号的分解与合成一、实验目的1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与系数作比较。

2.观测基波和其谐波的合成。

二、实验设备1、THBCC-1型信号与系统控制理论及计算机控制技术实验平台2、PC机(含“THBCC-1”软件)三、实验原理1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。

不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

2.实验装置的结构图3、各次不同波形及其傅氏级数表达式 方波矩形波的傅立叶频谱)7sin 715sin 513sin 31(sin 4)(Λ+ω+ω+ω+ωπ=t t t t A t f ,其中的T π=ω2三角波三角波的傅立叶频谱)7cos4915sin 2513sin 91(sin 8)(2Λ+ω-ω+ω-ωπ=t t t t A t f ,其中的T π=ω2半波半波的傅立叶频谱正弦整流全波f (t ) At O 0.5T TA km 4A/2π 4A/3π4A/35π 4ω 8ω2ω 6ω 4A/63π ω 4A/15π正弦全波整流形波的傅立叶频谱)8cos 6316cos 3514cos 1512cos 3121(4)(Λ-ω-ω-ω-ω-π=t t t A t f ,其中T π=ω2矩形波矩形波形波的傅立叶频谱四、实验内容及步骤1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。

2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。

F ( j ? ) U ? ?2? / ? 4 ? / ? 6? / ?f ( t )U ? tO方波和基波方波和二次谐波方波和三次谐波方波和四次谐波方波和五次谐波方波和六次谐波3.将方波分解所得的基波、三次谐波分别接至加法器的相应输入端,观测加法器的输出波形,并记录。

信号与系统实验-实验二 信号分解与合成

信号与系统实验-实验二 信号分解与合成

实验二信号分解与合成一、实验目的1、观察电信号的分解。

2、掌握带通滤波器的有关特性测试方法。

3、观测基波和其谐波的合成。

二、实验内容1、观察信号分解的过程及信号中所包含的各次谐波。

2、观察由各次谐波合成的信号。

三、实验仪器1、信号与系统实验箱一台(主板)。

2、电信号分解与合成模块一块。

3、20M双踪示波器一台。

四、实验结果(1)0°、90°、180°下基波与三次谐波的波形与各自的李沙育图如下所示:0°:波形及各项数据李沙育图90°:波形及各项数据李沙育图(2)基波跟三次谐波合成波形:(3)0°、90°、180°基波跟五次谐波的波形以及各自的李沙育图如下所示:0°:波形及各项数据李沙育图180°:波形及各项数据李沙育图(4)基波、三次谐波和五次谐波合成波形:五、实验分析(1)通过观察实验结果,比较基波跟三次谐波0°、90°和180°时的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比,即3:1;同理可得,实际上五次谐波与基波的相移和频比,其应为5:1。

(2)分析相位、幅值在波形合成中的作用答:对于频率相同的两个波形:如果相位相同,合成后幅值相加;如果相位相反,合成后幅值相减。

将分解的波形进行傅立叶反变换就可得到合成波形。

(3)实验中的误差。

实验中出现误差主要出现在基波以及每个谐波的调幅跟调相上,因为仪器问题没办法使条件完全满足,得到的图形结果只能是近似等价。

(4)什么是吉布斯效应,它是如何产生的,它的具体的表现是什么?答:①什么是吉布斯效应:将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。

当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。

当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。

这种现象称为吉布斯现象。

信号的分解与合成实验报告

信号的分解与合成实验报告

竭诚为您提供优质文档/双击可除信号的分解与合成实验报告篇一:实验报告二.信号的分解与合成实验二信号的分解与合成时间:第星期课号:院系专业:姓名:学号:座号:=================================================== =========================================一、实验目的1、观察信号波形的分解与合成,加深对信号频谱的理解;2、学会用软件multisim进行信号的分解和合成;二、实验预习1、方波信号是周期性信号,对周期信号进行傅里叶级数分解,(如果方波信号的频率是f)分解后基波信号的频率为多少?各次谐波频率是多少?各次谐波频率与基波频率的关系?。

2、方波信号有偶次谐波吗?为什么?3、熟悉实验指导书第18页图1-24信号分解与合成电路。

参考指导书50Khz方波信号的分解与合成的例子,设计一个30Khz方波信号的分解与合成的电路。

30Khz方波信号的分解与合成的电路参数的要求:(1)五个滤波器的电容值c1?c2?c3?c4?c5?1?F(2)根据公式f?12?Lc计算出,,。

并画出电路图。

三、实验内容1.设计30Khz方波信号分解与合成电路:将30Khz的方波信号分解出一、三、五次谐波;首先在电子工作台上画出待分析的电路。

(电路参考实验指导书第18页图1-24信号分解与合成电路)注意:函数信号发生器的设置:波形选择:方波;频率:30Khz;占空比:50%;信号幅度:1V。

再用示波器分别观测方波信号波形、一、三、五次谐波波形,合成波波形,测量周期,幅度。

2.画波形图:分别画出方波信号波形、一、三、五次谐波波形,合成波五个信号的波形图(时间轴对应),标明周期,幅度。

(注意实验过程中在下面空白处记录波形图,课后把数据整理在坐标纸上并粘贴在此处)3.实验过程中的故障现象及解决方法。

四、思考题篇二:信号分解与合成实验报告实验二信号分解与合成--谢格斯110701336聂楚飞110701324一、实验目的1、观察电信号的分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二用同时分析法观测50H z非正弦周期信号的分解与合成
一、实验目的
1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅利叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备
1、信号与系统实验箱:TKSS-A型或TKSS-B型或TKSS-C型;
2、双踪示波器。

三、实验原理
1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的
2、
3、
4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。

2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

3、一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示
表2-1 各种不同波形的傅里叶级数表达式
1、方波
2、三角波
3、半波
4、全波
5、矩形波 实验装置的结构如图2-2所示
)7sin 715sin 513sin 31(sin 4)(⋅⋅⋅++++=t t t t u t u m ωωωωπ)5sin 2513sin 91(sin 8)(2⋅⋅⋅++-=t t t U t u m
ωωωπ)3cos 3sin 312cos 2sin 21cos (sin 2)(⋅⋅⋅++++=t T t T t T U T U t u m m
ωτπωτπωτππτ)4cos 151cos 31sin 421(2)(⋅⋅⋅+--+=t t t U t u m ωωωππ)6cos 3514cos 1512cos 3
121(4)(⋅⋅⋅+---=t t t U t u m ωωω
π
图2-2信号分解于合成实验装置结构框图,
图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

1BPF ~6BPF 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。

四、实验内容及步骤
1、调节函数信号发生器,使其输出50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF 的输出幅度为最大。

2、将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。

3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。

4、在3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。

5、分别将50Hz 单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ 电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。

6、将50Hz 单相正弦半波、全波、矩形波、三角波的基波和谐波分量别接至加法器的相应的输入端,观测求和器的输出波形,并记录之。

五:实验结果分析
六、思考题
1、什么样的周期性函数没有直流分量和余弦项。

答:周期性函数没有直流分量和余弦项。

2、分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

答:理论合成是由无限个波形合成的,而实验中合成波形之间还是有不小误差的。

相关文档
最新文档