考研数学分析重要考点归纳

合集下载

数学分析知识点最全

数学分析知识点最全

数学分析知识点最全数学分析是数学的一个重要分支,它主要研究实数空间上的函数与序列的性质、极限、连续性、可微性等。

以下是数学分析的一些重要知识点:1.实数与复数的性质:包括实数和复数的定义、有理数和无理数的性质、实数的完备性、复数的代数和几何性质等。

2.数列的极限与收敛性:数列极限的定义、极限存在的判定、序列的比较、夹逼定理等。

3.函数的极限与连续性:函数极限的定义、函数极限存在的判定、函数的连续性与间断点、无穷点的连续性等。

4.导数与微分:导数的定义、导数存在的判定、导函数的计算法则、高阶导数与泰勒展开、凸凹性与拐点等。

5.不定积分与定积分:不定积分的定义与计算、变量替换法、分部积分法、定积分的定义与计算、定积分的应用(面积、弧长、体积等)等。

6.级数与幂级数:级数的定义与性质、级数的收敛性判定、常见级数的收敛性、幂级数的收敛半径与求和等。

7.解析几何与曲线的性质:平面曲线的方程、曲线的切线与法线、曲线的弧长与曲率等。

8.参数方程与极坐标系:参数方程与平面曲线的参数方程表示、平面曲线的切线与法线等。

9.函数项级数与傅立叶级数:函数项级数的收敛性判定、幂级数与傅立叶级数的展开等。

10.偏导数与多元函数的微分:偏导数的定义与计算、高阶偏导数、多元函数的全微分与偏微分、隐函数与显函数等。

11.多重积分与曲面积分:二重积分的定义与计算、三重积分的定义与计算、曲面积分的定义与计算等。

12.向量值函数与向量场:向量值函数的极限与连续性、向量场的散度与旋度等。

以上只是数学分析的一部分重要知识点,数学分析还包括很多其他内容,如场论、数学分析在物理学和工程中的应用等。

对于数学分析的学习,需要掌握一定的数学基础和逻辑思维能力,并进行大量的练习与实际应用。

考研数学知识点汇总

考研数学知识点汇总

考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。

研究生数学分析基础知识点归纳总结

研究生数学分析基础知识点归纳总结

研究生数学分析基础知识点归纳总结数学分析是研究实数、函数、极限、导数、积分等数学概念和运算规则的基础学科。

作为研究生的基础课程之一,熟悉数学分析的基础知识点对于进一步深化数学研究和解决实际问题具有重要意义。

本文将对研究生数学分析的基础知识点进行归纳总结。

一、实数与数列实数是数学中最基本的概念之一,它包括有理数和无理数。

有理数可以表示为两个整数的比值,无理数则不能表示为有理数的比值。

数列是按照一定规律排列的数的集合。

常见的数列有等差数列和等比数列。

等差数列中,每个数与它的前一个数之差是一个常数,称为公差;等比数列中,每个数与它的前一个数之比是一个常数,称为公比。

二、函数与极限函数是描述两个变量之间关系的一种工具。

在数学分析中,我们常常研究的是实值函数,即定义域和值域都是实数集合。

极限是研究函数在某一点附近趋于无穷时的性质。

我们通常用函数在该点附近取值的情况来描述这种趋势。

常见的极限包括左极限、右极限和无穷极限。

三、导数与微分导数是描述函数变化率的重要概念。

它刻画了函数在某一点附近的局部性质。

导数的定义是函数在该点的极限,可以通过求导数来研究函数的变化情况。

微分是导数的一个应用,它描述了函数在某一点的线性逼近。

微分可以用来求解优化问题、近似计算等。

四、积分与函数的面积积分是对函数进行求和的过程,它可以用来求解曲线下面积、函数的平均值等。

积分的定义是将函数分成无穷小的小区间,然后对每个小区间的值进行求和并取极限。

函数的面积是积分的一个重要应用。

通过计算函数与坐标轴之间的面积,我们可以得到函数在一段区间上的积分值,进而研究函数的性质。

五、级数与收敛性级数是由无穷多个数相加而成的表达式。

级数的部分和是指级数的前n个数相加的结果。

级数的收敛性是研究级数求和是否存在有限结果的性质。

当级数的部分和趋于某个有限值时,我们称该级数收敛;当级数的部分和不趋于有限值时,我们称该级数发散。

六、泰勒展开与函数逼近泰勒展开是将函数表示为一系列无穷次多项式相加的形式。

有关考研数学的知识点总结

有关考研数学的知识点总结

有关考研数学的知识点总结一、数学分析数学分析是考研数学中非常重要的一部分,其中包括实数、极限、连续、导数与微分、不定积分、定积分、微分方程等内容。

1. 实数实数包括有理数和无理数,所有有理数都可以表示为分数形式,而无理数则不可以。

2. 极限极限是数学分析中非常重要的一个概念,它是函数逼近的概念,通常用符号lim表示。

极限有左极限、右极限和无穷极限等不同形式。

3. 连续连续是函数的一个非常重要的性质,连续函数在一定范围内有非常好的性质,例如连续函数的介值定理等。

4. 导数与微分导数是函数变化率的表示,微分则是函数在某点附近的线性近似。

导数和微分在数学分析中有非常重要的应用。

5. 不定积分不定积分是求导的逆运算,通常用积分符号∫表示。

不定积分需要考生掌握一些积分的常见法则和方法。

6. 定积分定积分是区间上函数值的累积和,通常用积分符号∫表示。

定积分在数学分析和物理等领域有非常广泛的应用。

7. 微分方程微分方程描述了变化的规律,它在物理、工程、生物等领域有非常重要的应用。

微分方程是考研数学中比较难的一部分,考生需要掌握一些基本的解微分方程的方法。

二、高等代数高等代数是考研数学中另一个非常重要的一部分,其中包括线性代数和群论两个部分。

1. 线性代数线性代数是研究向量空间和线性变换的一门数学学科,其中包括向量、矩阵、行列式、特征值和特征向量、正交、对称矩阵等内容。

2. 群论群论是研究代数结构的一门数学学科,其中包括群的基本概念、子群、正规子群、同态映射、同构等内容。

三、概率论与数理统计概率论与数理统计是考研数学中的另一个非常重要的一部分,其中包括概率的基本概念、离散型随机变量、连续型随机变量、随机变量的函数的概率分布、大数定律和中心极限定理、参数估计和假设检验等内容。

总的来说,考研数学的知识点非常丰富,需要考生有扎实的数学基础才能顺利通过考试。

希望考生能够认真复习,掌握好这些知识点,顺利通过考研数学。

考研数学数学分析重要定理总结

考研数学数学分析重要定理总结

考研数学数学分析重要定理总结一、导数与微分导数和微分是数学分析中非常重要的概念,在求解函数的极限、切线方程、最值等方面具有广泛的应用。

以下是一些常见的导数和微分的重要定理:1. 函数可导与函数连续的关系:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。

2. 可导函数的四则运算法则:若f(x)和g(x)在点x=a处可导,则(1) (f+g)(a) = f(a) + g(a)(2) (f-g)(a) = f(a) - g(a)(3) (f·g)(a) = f(a)·g(a)(4) (f/g)(a) = [f(a)/g(a)] (g(a)≠0)3. 反函数的导数:若函数y=f(x)在区间I上连续、可导,并且在某点x=a处导数不为零,则它的反函数x=g(y)在区间f(I)上也是连续、可导的,并且在对应点y=f(a)处的导数为1/f'(a)。

4. 高阶导数公式:若函数y=f(x)的导数f'(x)存在,则可以继续求导,得到f''(x)、f'''(x)等高阶导数。

5. 麦克劳林级数与泰勒级数:若函数f(x)在点x=a处的各阶导数存在,则f(x)可以展开成麦克劳林级数或泰勒级数:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2! f''(a)+...二、积分与定积分积分和定积分是数学分析中研究函数面积、曲线长度、物理量等的重要工具。

以下是一些常见的积分和定积分的重要定理:1. 积分的线性性质:设函数f(x)和g(x)在区间[a,b]上可积,则对于任意常数α、β,有(1) ∫[a,b] (αf(x)+βg(x))dx = α∫[a,b] f(x)dx + β∫[a,b] g(x)dx2. 牛顿-莱布尼兹公式:若函数F(x)是f(x)的一个原函数,则对于区间[a,b]上的积分,有∫[a,b] f(x)dx = F(b) - F(a)3. 积分换元法:若函数f(x)在区间[a,b]上连续,函数g(t)在区间[α,β]上可导且g'(t)连续,并且f(g(t))·g'(t)连续,则有∫[a,b] f(g(t))g'(t)dt = ∫[α,β] f(x)dx4. 定积分的性质:设函数f(x)在区间[a,b]上连续,则定积分∫[a,b] f(x)dx存在,并且具有以下性质:(1) ∫[a,b] f(x)dx = -∫[b,a] f(x)dx(2) 若函数f(x)在区间[a,b]上非负,则∫[a,b] f(x)dx ≥ 0(3) 若函数f(x)在区间[a,b]上非负且不恒为零,则∫[a,b] f(x)dx > 0三、级数与收敛性级数是数学分析中研究无穷和的重要概念,对于理解数列、函数等的性质和应用具有重要意义。

考研数学分析重点知识点总结

考研数学分析重点知识点总结

考研数学分析重点知识点总结数学分析是考研数学中非常重要的一门学科,它涉及到微积分、级数、极限等概念。

对于考生来说,掌握数学分析的重点知识点是提高成绩的关键。

本文将从微积分、级数、极限三个方面总结考研数学分析的重点知识点。

一、微积分微积分是数学分析的基础,也是考研数学分析中的重点内容。

在微积分部分,考生需要掌握以下几个重点知识点:1. 导数与微分:掌握导数和微分的定义和性质,熟练运用导数的几何意义和微分的物理意义来解决相关问题。

2. 高阶导数与高阶微分:理解高阶导数和高阶微分的定义和概念,能够求解高阶导数和高阶微分的相关问题。

3. 隐函数与参数方程:了解隐函数和参数方程的定义及其求导法则,能够应用隐函数与参数方程求导解题。

4. 极值与最值:熟悉极值与最值的判定条件和求解方法,能够应用极值与最值的知识解决相关问题。

5. 泰勒展开:理解泰勒展开的概念和应用条件,能够应用泰勒展开解决近似计算和误差估计的问题。

二、级数级数也是考研数学分析中的重点考点,它包括数列、数列极限和级数等概念。

在级数部分,考生需要掌握以下几个重点知识点:1. 数列极限与函数极限的关系:了解数列极限与函数极限的关系,能够利用数列极限与函数极限之间的关系解决相关问题。

2. 收敛级数与发散级数:能够判断级数的收敛性和发散性,熟悉判别法和判定条件。

3. 常见级数的性质与求和:掌握常见级数的性质与求和公式,如等比级数、调和级数等。

4. 级数收敛的判别法:熟悉级数收敛的判别法,如比较判别法、积分判别法等,能够灵活运用判别法解决问题。

三、极限极限是数学分析中的基础概念,也是考研数学分析的重点内容。

在极限部分,考生需要掌握以下几个重点知识点:1. 数列极限的定义与性质:了解数列极限的定义和性质,熟悉极限的四则运算规则。

2. 函数极限的定义与求解:掌握函数极限的定义和求解方法,理解函数极限与数列极限之间的关系。

3. 极限存在性的判定:熟悉极限存在性的判定法则,如夹逼定理、单调有界原理等。

数学分析(考研必看)

数学分析(考研必看)

数学分析第一章实数集与函数§1.实数一、 实数及其性质1. 实数的定义:实数,是有理数和无理数的总称。

2. 实数的六大性质:①(四则运算封闭性):实数集R 对加、减、乘、除(除数不为0)四则运算封闭,即任意两个实数的和、差、积、商(除数不为0)仍然是实数。

②(有序性):实数集是有序的,即任意两个实数a, b 必满足以下三种关系之一:a<b 、a=b 、a>b 。

③(传递性):实数的大小关系具有传递性,即若a>b, b>c 则a>c 。

④(阿基米德性):实数具有阿基米德性,即对任何a, b ∈R, 若b>a>0,则存在正整数na>b.⑤(稠密性):实数集R 具有稠密性,即任意两个不相等的实数之间必有另外一个实数,且既有有理数也有无理数。

⑥实数集R 与数轴上点一一对应。

二、 绝对值与不等式1. 实数绝对值的性质: ①0;00a a a a =-≥==当且仅当时有 ②-a a a ≤≤ ③;a h h a h a h h a h <<=>-<<≤<=>-≤≤ ④a b a b a b -≤±≤+三角不等式⑤ab a b = ⑥(0)a a b b b=≠ §2数集·确界原理一、 区间与邻域1. 有限区间:开区间:{}x a x b <<记作(),a b ;闭区间:{}x a x b ≤≤记作[],a b ;半开半闭区间:{}x a x b ≤<记作[),a b ,{}x a x b <≤记作(],a b无限区间:(]{},a x a -∞=≤,(){},a x x a -∞=≤,(){},a x x a +∞=>,(){},x x R -∞+∞=-∞<<+∞=2. 邻域:设a R ∈,0>,满足绝对值不等式x a -<的全体实数x 的集合称为点a 的邻域,记作();U a 或写作()U a ,即有(){}();,U a x x a a a =-<=-+。

考研大学的数学知识点总结

考研大学的数学知识点总结

考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。

希望能对大家的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学分析重要考点归纳
1.1考点归纳
一、数列极限
1.定义
设{an}是一个数列,,对∀ε>0,∃正整数N,当时,有,则称{an}收敛于a,则a称为数列的极限,记作.
(1)无穷小数列:;
(2)无穷大数列:;
(3)发散数列:若极限不存在,则称为发散数列;
(4)收敛⇔的任何子列都收敛.
2.性质
(1)唯一性
收敛数列{an}只有一个极限.
(2)有界性
若{an}收敛,则∃正数M,对∀n∈N*有.
(3)保号性
若(或<0)则对或(),∃正数N,当n>N时有an>a′(或an<a′).
(4)保不等式性
收敛数列{an}与{bn}.若∃正数N0,当n>N0时有a n≤bn,则
(5)夹逼性
设{an},{bn}都收敛于a,{cn}满足:∃正数N0,当n>N0时有则{cn}收敛,且
3.四则运算
4.单调有界定理
单调且有界的数列一定存在极限.
5.柯西收敛准则
{an}收敛⇔对∀ε>0,∃正整数N,当n,m>N时有
二、函数
1.函数三要素
定义域值域对应法则
2.性质
(1)有界性
若∃正数M,对∀x∈D有
则称f在D上有界.
(2)单调性
①单调递增对∀x1,x2∈D.当x1<x2时,f(x1)<f(x2);
②单调递减对∀x1,x2∈D.当x1<x2时,f(x1)>f(x2).
(3)奇偶性
D关于原点对称
①奇函数f(-x)=-f(x),图像关于原点对称;
②偶函数f(-x)=f(x),图像关于y轴对称.
(4)周期性
若∃T>0,对一切x∈D,x+T∈D,有f(x+T)=f(x),称T为函数f的周期,T的最小值称为最小正周期.
3.分类
(1)复合函数
形如y=f(g(x)),u=g(x)的函数称为复合函数,对于每一个x,经过中间变量u,都得到唯一确定的y值,其中u=g(x)的值域不能超过y=f(u)的定义域.
(2)反函数
设函数f:D→f(D)是单射,则它存在逆映射,称此映射为函数f的反函数.注:互为反函数的两个函数的图像关于直线y=x对称.
三、函数极限
1.概念
(1)函数f在点x0的极限
f定义在U°(x0;δ')上,A为定数.对∀ε>0,若∃正数δ(<δ'),当0<|x -x0|<δ时有|f(x)-A|<ε,则称函数f在点x0的极限为A,记作
(2)函数f在x趋于∞时的极限
f定义在[a,+∞)上,A为定数.对∀ε>0,若∃正数N(≥a),使得当x>N 时有
则称函数f在x趋于∞时的极限为A,记作
(3)左极限
f定义在[x0,x0+η)上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有
则称A为f在点x0的左极限,记为
(4)右极限
f定义在(x0-η,x0]上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有就称A为f在点x0的右极限,记为
(5).
2.性质
(1)唯一性;
(2)有界性;
(3)保号性;
(4)保不等式性;
(5)夹逼性.
注:函数极限性质同数列极限性质类似.
3.归结原则
f定义在上,存在⇔对任何含于且以x0为极限的数列,都存在且相等.4.单调有界定理
f为定义在上的单调有界函数,则右极限存在.
5.柯西准则
f定义在上,存在⇔∀ε>0,∃正数,使得对,有6.两个重要极限
7.无穷小量与无穷大量
(1)无穷小
①时的无穷小,得;
②时的无穷小,得.
(2)无穷小的性质
若f(x)为无穷小量,g(x)为有界量,则它们的积f(x)g(x)也为无穷小量.
(3)无穷大
f(x)定义在U0(x0)上.对∀给定的正数M,总∃正数(或正数X),只要(或|x|>X),总有|f(x)|>M,则称f为当或()时的无穷大.
8.相关无穷小的定义
(1)高、低阶无穷小
若,则称x→x0时f为g的高阶无穷小量(或称g为f的低阶无穷小量),记作
(2)同阶无穷小
f和g定义U0(x0)上,若∃正数K和L,满足
则称f与g为当x→x0时的同阶无穷小量.
(3)等价无穷小
若,则称f与g是当x→x0时的等价无穷小量,记作注:常用的等价无穷小
9.渐近线
设曲线y=f(x)
(1)斜渐近线y=kx+b
(2)垂直渐近线
若(或者左、右极限趋于无穷),则垂直渐近线为.(3)水平渐近线
若(或者),则水平渐近线为y=b.
四、函数的连续性
1.概念
(1)连续的定义
f(x)定义在U(x0)上,若
则f在点x0连续.
2.性质
(1)有界性;
(2)保号性;
(3)四则运算.
3.间断点
(1)定义
函数f(x)在点x0处不连续,则称点x0为函数f(x)的不连续点或间断点.如果x0是函数f(x)的间断点,但左极限及右极限都存在,则x0称为函数f(x)的第一类间断点.不是第一类间断点的任何间断点,称为第二类间断点.
(2)类型
①第一类间断点
a.可去间断点在间断点处函数左右极限相等.
b.跳跃间断点在间断点处函数左右极限不相等.
②第二类间断点
a.无穷间断点在间断点处函数极限为无穷大(无穷小).
b.振荡间断点在间断点处函数值在一个区间变化.
4.定理
(1)最值定理
f为闭区间[a,b]上的连续函数,则f在[a,b]上有最大值与最小值.
(2)有界性定理
f为闭区间[a,b]上的连续函数,则f在[a,b]上有界.
(3)介值性定理
f为闭区间[a,b]上的连续函数,f(x)可以取介于最大值和最小值之间的任何值.(4)根的存在定理
f为闭区间[a,b]上的连续函数,且f(a)·f(b)<0,则在(a,b)内至少有一点ξ,使得.
5.一致连续
(1)定义
f定义在区间I上,如果对于∀给定的正数ε,总∃正数δ,使得对于区间I上的任意两点x1、x2,当时,有
则称f在I上一致连续.
(2)一致连续与连续的关系
如果f(x)在区间I上一致连续,则f(x)在I上一定连续;当f(x)在区间I 上连续,f(x)在区间I上不一定一致连续.
(3)一致连续性定理
f为闭区间[a,b]上的连续函数,则f在[a,b]上一致连续.。

相关文档
最新文档