2016年河南省中招数学押题试卷带答案解析

合集下载

2016年河南省中考数学押题试卷含答案解析

2016年河南省中考数学押题试卷含答案解析

2016年河南省中考数学押题试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.32.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b24.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣45.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和606.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.87.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.108.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2二、填空题(每小题3分,共21分)9.计算:(﹣2)3+= .10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC交于点F,AE∥BC,则∠AFD的度数为.11.不等式组的所有非负整数解为.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为时,四边形BEDF是矩形;②当AE与AB的数量关系为时,四边形BEDF是菱形.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m= ,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为,位置关系为;②线段CE+CD= AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2016年河南省中考数学押题试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.3【考点】绝对值.【分析】根据绝对值的性质计算即可得解.【解答】解:﹣3的绝对值是3,即|﹣3|=3.故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】利用同底数幂的乘法法则,合并同类项,积的乘方运算法则,完全平方公式化简,即可做出判断.【解答】解:A、2a+3b=2a+3b,故错误;B、a8÷a2=a6,故错误;C、(﹣2a2)3=﹣8a6,故正确;D、(a﹣b)2=a2﹣2ab﹣b2,故错误;故选C.4.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣4【考点】根的判别式.【分析】根据方程有实数根结合根的判别式可得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+4x﹣2a=0有实数根,∴△=42﹣4×1×(﹣2a)=16+8a≥0,解得:a≥﹣2.故选B.5.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和60【考点】众数;中位数.【分析】首先把所给数据按从小到大排序,然后利用中位数和众数定义定义即可确定结果.【解答】解:把已知数据按从小到大排序后为50,54,55,58,58,60,65,70,这组数据中58出现的次数最多,故众数是58,中位数是:(58+58)÷2=58.故选C.6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.8【考点】由三视图判断几何体.【分析】根据三视图可得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图和左视图可得第二层小正方体的个数,最后相加即可.【解答】解:由俯视图可得最底层有5个小正方体,根据主视图和左视图可得第二层有1个小正方体,则搭成这个几何体的小正方体有5+1=6(个);故选B.7.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.10【考点】平行四边形的性质;等边三角形的判定与性质;勾股定理.【分析】首先延长DC,EF相交于点H.由在▱ABCD中,AB=6,AD=8,可求得CD,BC的长,又由EF⊥AB,∠ABC=60°,求得∠BFE=∠CFH=30°,然后由含30°的直角三角形的性质,求得BF,FC,CH,FH的长,然后由勾股定理求得DF的长.【解答】解:延长DC,EF相交于点H.∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD=6,AD=BC=8,∵EF⊥AB,∴∠B=∠FCH=60°,∠BEF=∠H=90°,∴∠BFE=∠CFH=30°,∵E是AB的中点,∴BE=AE=AB=3.∴BF=2BE=6,∴CF=BC﹣BF=2,∴CH=CF=1,∴FH==,DH=CD+CH=6+1=7,∴DF==2.故选A.8.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2【考点】二次函数图象上点的坐标特征.【分析】由于抛物线y=x2﹣1的图象关于y轴对称,开口向上,分别判断如下:若y1=y2,则x1=﹣x2;若x1=﹣x2,则y1=y2;若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;若x1<x2<0,则y1>y2.【解答】解:A、若y1=y2,则x1=﹣x2;B、若x1=﹣x2,则y1=y2;C、若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;D、正确.故选D.二、填空题(每小题3分,共21分)9.计算:(﹣2)3+= ﹣5 .【考点】算术平方根;有理数的乘方.【分析】先依据有理数的乘法法则和算术平方根的性质计算,然后再依据有理数的加法法则计算即可.【解答】解;原式=﹣8+3=﹣5.故答案为:﹣5.10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC交于点F,AE∥BC,则∠AFD的度数为75°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠EDC=∠E,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠B=60°,∴∠C=90°﹣60°=30°,∴∠AFD=∠C+∠EDC=30°+45°=75°.故答案为:75°.11.不等式组的所有非负整数解为0,1,2 .【考点】一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出x的所有非负整数解即可.【解答】解:,由①得,x≤2;由②得,x>﹣3,故不等式组的解集为:﹣3<x≤2,其非负整数解为:0,1,2.故答案为:0,1,2.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是40°.【考点】切线的性质.【分析】连接OC,在RT△COE中,求出∠COE即可解决问题.【解答】解:如图,连接OC,∵OA=OC,∴∠A=∠OCA=25°,∵∠A=∠D=25°,∴∠A=∠ACO=25°,∴∠COE=∠A+∠ACO=50°,∵CE是切线,∴∠OCE=90°,∴∠E=90°﹣∠COE=40°.故答案为40°.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸出白球的有9种情况,∴两次都摸出白球的概率是:.故答案为:.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为3π.【考点】扇形面积的计算;旋转的性质.【分析】先根据直角三角形的性质去除AN及AB的长,再由三角形的面积公式求出△ABC的面积,由扇形的面积公式得出扇形BAB′及扇形CAC′的面积,由S阴影=S1+S2即可得出结论.【解答】解:∵在四边形ABCD中,∠ABC=90°,BC=6,∠BAC=30°,∴AC=12,AB==6,S△ABC=×6×6=18,∴S扇形BAB′=π×6()2=9π,∴S1=18﹣9π.∵S△AB′C′=S△ABC=18,S扇形CAC′=π×122=12π,∴S2=12π﹣18,∴S阴影=S1+S2=18﹣9π+12π﹣18=3π.故答案为:3π.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为或16﹣.【考点】翻折变换(折叠问题);等腰三角形的性质;矩形的性质.【分析】①当AD′=D′B=5时,过点D′作MN⊥AB于点N,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,设DE=a,则D′E=a.根据折叠的性质得到AD′=AD=5,根据勾股定理得到AN=,D′N=,根据相似三角形的性质即可得到结论.【解答】解:①当AD′=D′B=5时,过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,如图2所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AD′=AD=5,∴AD′2﹣AN2=BD′2﹣BN2,即52﹣AN2=82﹣(8﹣AN)2,∴AN=,∴BN=,∴D′N=,∵∠MED′+∠ED′M=∠ED′M+∠AD′N=90°,∴∠MED′=∠AD′N,∴△EMD′∽△AD′N,∴,即=,∴a=16﹣,∴当△AD′B为等腰三角形时,则DE的长为或16﹣.故答案为:或16﹣.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序化简原式,再从﹣<x<的范围内选取符合原式的x的值代入.【解答】解:原式=÷=•=x﹣1,在﹣<x<的范围内取x=0,得原式=﹣1.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为AE=AB 时,四边形BEDF是矩形;②当AE与AB的数量关系为3AE=AB 时,四边形BEDF是菱形.【考点】四边形综合题.【分析】(1)直接利用平行四边形的性质,得出AO=CO,进而得出∠EAO=∠FCO,结合全等三角形的判定方法得出答案;(2)①利用矩形的判定方法,得出BD=EF,即可得出答案;②利用菱形的判定方法,结合勾股定理的逆定理,得出∠BOE=90°,即可得出答案.【解答】(1)证明:连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BA∥DC,BO=DO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(SAS);(2)解:①当AB=AE时,四边形BEDF是矩形;理由:∵△AOE≌△COF,∴EO=FO,又∵BO=DO,∴四边形BEDF是平行四边形,∵AB⊥AC,AB=AE,∴BO=EO,∴BD=EF,∴平行四边形BEDF是矩形;故答案为:AB=AE;②当AE与AB的数量关系为 3AE=AB时,四边形BEDF是菱形,理由:∵∠ABD=30°,AB⊥AC,∴设AO=x,则AB=x,BO=2x,∵3AE=AB,∴AE=x,由AO=x,故EO=x,∵(x)2+(2x)2=(x+x)2,∴△BOE是直角三角形,即∠BOE=90°,∴平行四边形BEDF是菱形.故答案为:AB=3AE.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m= 32 ,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【考点】概率公式;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由扇形统计图可求得m的值;由态度为C的占32%,即可求得态度为C所对应的圆心角的度数;(2)首先求得25到35的人数,继而可补全条形统计图;(3)利用样本估计总体的方法,即可求得答案;(4)由题意,直接利用概率公式求解即可求得答案.【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).【考点】解直角三角形的应用.【分析】过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.然后根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD与ED的长,再用CD的长减去ED的长即可解答.【解答】解:如图:过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.∴CE=CD﹣ED=1.350﹣0.844=0.506≈0.51∴安装铁架上垂直管CE的长约为0.51米.20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将x=﹣2代入一次函数解析式中求出a的值,根据点A的坐标利用反比例函数图象上点的坐标特征即可求出k值,从而得出结论;(2)联立一次函数与反比例函数解析式成方程组,解方程组求出两函数图象除点A外的另一点坐标,结合函数图象的上下位置关系以及两交点的横坐标即可得出不等式的解集;(3)根据一次函数的解析式求出点B、C的坐标,设点P的坐标为(m,﹣),根据三角形的面积公式结合S△BOP=4S△OBC,即可得出关于m的方程,解方程即可得出m的值,再将其代入点P的坐标即可得出结论.【解答】解:(1)∵点A(﹣2,a)在一次函数y=﹣x﹣1的图象上,∴a=﹣1×(﹣2)﹣1=1,∴点A(﹣2,1).∵点A(﹣2,1)在反比例函数y=的图象上,∴k=﹣2×1=﹣2,∴反比例函数的表达式为y=﹣.(2)联立一次函数与反比例函数解析式得:,解得:或,∴反比例函数与一次函数图象的另一个交点为(1,﹣2).观察函数图象可知:当﹣2<x<0或x>1时,反比例函数图象在一次函数图象的上方,∴不等式>﹣x﹣1的解集为﹣2<x<0或x>1.(3)令y=﹣x﹣1中x=0,则y=﹣1,∴点C(0,﹣1);令y=﹣x﹣1中x=0,则﹣x﹣1=0,解得:x=﹣1,∴点B(﹣1,0).设点P的坐标为(m,﹣),∵S△BOP=4S△OBC,∴BO•|y P|=4×OB•OC,即|﹣|=4,解得:m=±,∴点P的坐标为(,﹣4)或(﹣,4).21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.【考点】一次函数的应用.【分析】(1)设B种树苗每棵x元,利用“购进A种树苗用去800元、B种树苗用去420元,购进A、B两种树苗共17棵”得出方程求出即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答;(3)根据购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:(1)设B种树苗每棵x元,根据题意,得+=17,解得 x=60经检验:x=60是原方程的解.答:A种树苗每棵80元,B种树苗每棵60元;(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:W=80a+60(17﹣a)=20a+1020;(3)∵购买B种树苗的数量少于A中树苗的数量,∴17﹣a<a,解得:a>8.购进A、B两种树苗所需费用为W=20a+1020,因为A种树苗贵,则费用最省需x取最小整数9,此时17﹣a=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为相等,位置关系为垂直;②线段CE+CD= AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.【考点】三角形综合题.【分析】(1)①根据AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,证△BAD≌△CAF,推出CE=BD,CE ⊥BD即可;②结论:CE+CE=AC.由△ABC是等腰直角三角形,得到BC=AC,BC=BD+CD,由此即可得出结论;(2)结论:CE=AC+CD,如图2中,先证明△BAD≌△CAE,推出BD=CE即可,再根据等腰直角三角形性质即可解决问题.(3)根据SAS证△BAD≌△CAE,推出CE=BD即可,由此即可解决问题.【解答】(1)证明:如图1中,①∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵AD=AE,∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ABC=∠ACE=45°,∴∠ECB=90°,∴BD⊥CE;②结论:CE+CE=AC.理由:由①得BD=CE,∴BC=AC,∵BC=BD+CD=CE+CD,∴CE+CD=AC;(2)解:如图2中,存在数量关系为:CE=AC+CD;理由:由(1)同理可得在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,在等腰直角三角形ABC中,BC=AC,∴BD=BC+CD=AC+CD,∴CE=AC+CD;(3)解:由(1)同理在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∴CD=BC+BD=BC+CE.∵BC=4,CE=2,∴CD=6.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.【解答】解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,3),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴解得∴y=﹣x2+x+3.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x。

2016河南中招数学试题及解析答案解析

2016河南中招数学试题及解析答案解析

2015年河南省中招考试数学试题及答案解析一、选择题(每小题3分,共24分) 1.下列各数中最大的数是( )C.πD.-8【答案】:A【解析】:根据有理数的定义,很容易得到最大的数是5,选A 。

2.如图所示的几何体的俯视图是( )【答案】:B【解析】:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,找到从上面看所得到的图形即可,选B 。

3.据统计,2014年我国高新产品出口总额达40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×1012【答案】:D【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。

确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。

当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。

将40570亿用科学记数法表示4.0570×1012元,选D 。

4.如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=1250,则∠4的度数为( )a cC DB A 正面第2题A.550B.600 C .700 D.750【答案】:A【解析】:本题考查了三线八角,因为∠1=∠2,所以a∥b,又∠3=1250,∠3与∠4互补,则∠4的度数为550。

选A。

5.不等式组x503x1+≥⎧⎨-⎩>的解集在数轴上表示为()GURUILIND CB A【答案】:C【解析】:本题考查了不等式组的解集,有①得x≥-5,有②得x<2,这里注意空心和实心;所以选C。

6.小王参加某企业招聘测试,他的笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【答案】:D【解析】:本题主要考察加权平均数的计算方法,(85×2+80×3+90×5)÷(2+3+5)=86分,所以选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD 的平分线AG ,交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A.4B.6C.8D.10【答案】:C【解析】:本题主要考察平行四边形和等腰三角形三线合一定理。

2016年河南省中招数学试题答案及解析1(精)

2016年河南省中招数学试题答案及解析1(精)

2016年河南省中招数学试题及解析谷瑞林2016年河南省普通高中招生数学试题及答案解析一、选择题(每小题3分,共24分)1.-13的相反数是()A. -13B. 13C.-3D.3【答案】:B【解析】:根据相反数的定义,很容易得到-13的相反数是13,选B 。

2. 某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-8【答案】:A【解析】:科学记数法的表示形式为10na ⨯的形式,其中110a ≤<,n 为整数。

确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。

当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数。

将0.00000095用科学记数法表示9.5×10-7,选A 。

3. 下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()DCBA【答案】:C【解析】:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物C 。

4. 下列计算正确的是()(-3)2=6 C.3a4-2a 2=a2 D.(-a 3)2=a5【答案】:A 【解析】:根据有理数的定义幂的运算性质,运算正确的是A ,选A 。

5. 如图,过反比例函数y=kx(x >0)的图像上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为()根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B.乙C.丙D.丁【答案】:A【解析】:本题考查了平均数与方差对运动员发挥稳定性的因素,方差越小越稳定,故选A 。

8. 如图,已知菱形OABC 的顶点是O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为()A. (1,-1)B.(-1,-1)C. 0)D.(0,【答案】:B【解析】:本题考查了中点坐标的求法及旋转的知识,每秒旋转450,8秒旋转一周,60秒÷8=7周余4秒,正好又转1800,由第一象限转到第三象限,前后是中心对称,点D 坐标是(1,1),所求坐标是(-1,-1),故选B 。

2016年河南省中招数学试题标准答案及解析

2016年河南省中招数学试题标准答案及解析

2016年河南省普通高中招生数学试题及答案解析一、选择题(每小题3分,共24分)1.-13的相反数是( )A . -13 B. 13C.-3 D .3【答案】:B【解析】:根据相反数的定义,很容易得到-13的相反数是13,选B 。

2.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为( )A.9.5×10-7B. 9.5×10-8C.0.95×10-7 D . 95×10-8【答案】:A【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n为整数。

确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。

当原数绝对值>1时,n是正数; 当原数的绝对值<1时,n 是负数。

将0.00000095用科学记数法表示9.5×10-7,选A 。

3.下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )DCBA【答案】:C【解析】:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,C 。

4.下列计算正确的是( )A B.(-3)2=6 C.3a4-2a 2=a 2 D.(-a3)2=a5【答案】:A 【解析】:根据有理数的定义幂的运算性质,运算正确的是A,选A。

5.如图,过反比例函数y=kx(x>0)的图像上一点A 作AB ⊥x 轴于点B,连根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙 C.丙 D.丁【答案】:A【解析】:本题考查了平均数与方差对运动员发挥稳定性的因素,方差越小越稳定,故选A 。

8.如图,已知菱形OABC 的顶点是O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为( )A .(1,-1)B .(-1,-1) C.,0) D.(0,【答案】:B。

2016年河南省中招数学押题试卷(解析版)

2016年河南省中招数学押题试卷(解析版)

2016年河南省中招数学押题试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)﹣2的倒数是()A.﹣2 B.﹣ C.D.22.(3分)下列标志中,可以看作是轴对称图形的是()A.B. C.D.3.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣64.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b25.(3分)有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如表:学生甲乙丙丁第一次月考班级名次1234第二次月考班级名次2468这四位同班同学中,月考班级名次波动最大的是()A.甲B.乙C.丙D.丁6.(3分)若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m 的取值范围是()A.m=3 B.m>3 C.m≥3 D.m≤37.(3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC =7,DE=2,AB=4,则AC长是()于点F.S△ABCA.4 B.3 C.6 D.58.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)|﹣5|+﹣32=.10.(3分)不等式组的最大整数解是.11.(3分)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是.12.(3分)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为.13.(3分)如图,在△ABC中,AB=AC=15,∠B=30°,点D为AB边上一动点,且AD=AE,BD=DF,要使△DEF与△CEF均为直角三角形,则AD的值为.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边上可移动的最大距离为.15.(3分)如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2,则图中阴影部分的面积=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.17.(9分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.18.(9分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?19.(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).20.(9分)如图,函数y=(x>0,k是常数)的图象经过A(1,4),B(a,b),其中a>1,过点B作y轴的垂线,垂足为C,连接AB,AC.(1)若△ABC的面积为4,求点B的坐标.(2)在(1)的条件下,连接OB,求四边形ACOB的面积.21.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B 两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.22.(10分)(1)观察发现:如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,当点C、F、O在同一条直线上,BF和CD的数量关系是.(2)深入探究受(1)中问题启发,小刚同学将图①中的Rt△DEF绕点O旋转得到图②,并猜想BF=CD成立,请你给出证明;(3)拓展延伸如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为点O,此时,BF=CD还成立吗?如果成立,请说明理由;如果不成立,请求出之间的数量关系.23.(11分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.2016年河南省中招数学押题试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)﹣2的倒数是()A.﹣2 B.﹣ C.D.2【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.(3分)下列标志中,可以看作是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.3.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣6【解答】解:将0.000075用科学记数法表示为:7.5×10﹣5.故选B.4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b2【解答】解:A、a+2a=3a,故A选项错误;B、(﹣a3)2=a6,故B选项正确;C、a3•a2=a5,故C选项错误;D、(a+b)2=a2+b2+2ab,故D选项错误,故选:B.5.(3分)有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如表:学生甲乙丙丁第一次月考班级名次1234第二次月考班级名次2468这四位同班同学中,月考班级名次波动最大的是()A.甲B.乙C.丙D.丁【解答】解:根据方差的定义可得:因为丁的方差大于甲、乙、丙的方差,所以月考班级名次波动最大的是丁;故选D.6.(3分)若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m 的取值范围是()A.m=3 B.m>3 C.m≥3 D.m≤3【解答】解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选C.7.(3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC 于点F.S=7,DE=2,AB=4,则AC长是()△ABCA.4 B.3 C.6 D.5【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC 于点F,∴DF=DE=2.=S△ABD+S△ACD,AB=4,又∵S△ABC∴7=×4×2×AC×2,∴AC=3.故选B.8.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.二、填空题(每小题3分,共21分)9.(3分)|﹣5|+﹣32=0.【解答】解:原式=5+4﹣9=0.故答案为:010.(3分)不等式组的最大整数解是x=3.【解答】解:,由①,得x>﹣5,由②,得x≤3,故原不等式组的解集是﹣5<x≤3,即不等式组的最大整数解是x=3,故答案为:x=3.11.(3分)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是.【解答】解:用A表示只会翻译阿拉伯语的翻译,用B表示只会翻译英语的翻译,用C表示两种语言都会翻译的翻译,画树状图得:∵共有20种等可能的结果,该组能够翻译两种语言的有14种情况,∴该组能够翻译上述两种语言的概率是:=.故答案为:.12.(3分)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为y=.【解答】解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为:y=.13.(3分)如图,在△ABC中,AB=AC=15,∠B=30°,点D为AB边上一动点,且AD=AE,BD=DF,要使△DEF与△CEF均为直角三角形,则AD的值为5或6.【解答】解:∵在△ABC中,AB=AC,AD=AE,∴DE∥BC,∵∠B=30°,∴∠EDF=30°,∴当∠DFE=90°时,设AD=x,则BD=DF=15﹣x,DE=x,则15﹣x=×x,解得x=6;当∠DEF=90°时,设AD=x,则BD=DF=15﹣x,DE=x,则×(15﹣x)=x,解得x=5.综上所述,AD=5或6.故答案为:5或6.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边上可移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:215.(3分)如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2,则图中阴影部分的面积=2π﹣4.【解答】解:连接EF、GH,∵AB=4,∴BD===4,∵0为对角线BD的中点,∴O1B=O2B==,∴⊙O1与⊙O2是半径相等的两个圆,∵∠EDF=∠GBH=90°,∴EF、GH分别是⊙O1与⊙O2的直径,∴S阴影=S⊙O1﹣2S△DEF=S⊙O1﹣2S△DEF=S⊙O1﹣2S△GBH=()2π﹣2××2×=2π﹣4.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.【解答】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣时,原式=2+3=5.17.(9分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.18.(9分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?【解答】解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.19.(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).【解答】解:设AB=x米.∵∠AEB=45°,∠ABE=90°,∴BE=AB=x米在Rt△ABD中,tan∠D=,即tan31°=.∴x=≈=24.即AB≈24米在Rt△ABC中,AC=≈=25米.答:条幅的长度约为25米.20.(9分)如图,函数y=(x>0,k是常数)的图象经过A(1,4),B(a,b),其中a>1,过点B作y轴的垂线,垂足为C,连接AB,AC.(1)若△ABC的面积为4,求点B的坐标.(2)在(1)的条件下,连接OB,求四边形ACOB的面积.【解答】解:(1)把A(1,4)代入y=得:4=,解得k=4,则反比例函数的解析式为y=.∵B(a,b)在反比例函数y=的图象上,∴ab=4.∵△ABC的面积为4,∴×a×(4﹣b)=4,∴2a﹣ab=4,∴2a﹣2=4,a=3,∵ab=4,∴b=.则点B的坐标为(3,).(2)∵B在反比例函数y=的图象上,过点B作y轴的垂线,垂足为C,=×4=2,∴S△OBC∴S=S△ABC+S△OBC=4+2=6.四边形ACOB21.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B 两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【解答】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)W与a的函数关系式:W=80a+60(17﹣a)=20a+1020;(3)由题意得:购买9棵A种树苗,8棵B种树苗时,费用最少,W=80×9+60×8=1200,答:购买9棵A种树苗,8棵B种树苗时,费用最少,需要1200元.22.(10分)(1)观察发现:如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,当点C、F、O在同一条直线上,BF和CD的数量关系是BF=CD.(2)深入探究受(1)中问题启发,小刚同学将图①中的Rt△DEF绕点O旋转得到图②,并猜想BF=CD成立,请你给出证明;(3)拓展延伸如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为点O,此时,BF=CD还成立吗?如果成立,请说明理由;如果不成立,请求出之间的数量关系.【解答】解:(1)如图①延长BF与CD交与点G,∵O是等腰直角△DEF斜边EF中点,∴EF⊥AB,OD=OF,∵O是等腰直角△ABC斜边AB中点,∴CO=BO,∵在△BOF和△COD中,,∴△BOF≌△COD,(SAS)∴BF=CD;故答案为:BF=DC;(2)猜想:BF=CD.理由如下:如答图②所示,连接OC、OD.∵△ABC为等腰直角三角形,点O为斜边AB的中点,∴OB=OC,∠BOC=90°.∵△DEF为等腰直角三角形,点O为斜边EF的中点,∴OF=OD,∠DOF=90°.∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,∴∠BOF=∠COD.∵在△BOF与△COD中,,∴△BOF≌△COD(SAS),∴BF=CD.(2)答:(1)中的结论不成立.如答图③所示,连接OC、OD.∵△ABC为等边三角形,点O为边AB的中点,∴=tan30°=,∠BOC=90°.∵△DEF为等边三角形,点O为边EF的中点,∴=tan30°=,∠DOF=90°.∴==.∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,∴∠BOF=∠COD.在△BOF与△COD中,∵==,∠BOF=∠COD,∴△BOF∽△COD,∴=.23.(11分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x 2﹣5x ﹣6=0,解得x 1=(舍去),x 2=,x=时,y=x 2﹣2x ﹣2=, ∴点P 的坐标为(,),综上所述,点P 的坐标为(3,1)或(,).。

2016年河南省中招考试数学试卷

2016年河南省中招考试数学试卷

2016年河南省初中学业水平暨高级中等学校招生考试试卷数 学一、选择题(每小题 分,共 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内..31-的相反数是 (✌)31- ( )31 ( )3- ( )3.某种细胞的直径是 米,将 用科学记数法表示为 (✌)7105.9-⨯ ( )8105.9-⨯ ( )71095.0-⨯ ( )51095-⨯ .下列几何体是由 个相同的小正方体搭成的,其中主视图和左视图相同的是(✌) ( ) ( ) ( ).下列计算正确的是 (✌)228=- ( )()632=-( )22423a a a =- ( )()523a a =-.如图,过反比例函数)0(>=x xky 的图像上一点✌作✌⊥x 轴 于点 ,连接✌,若 △✌ ,则k 的值为(✌) ( ) ( ) ( ).如图,在△✌中,∠✌°,✌,✌ ☜垂直平分✌交✌于点☜,则 ☜的长为(✌) ( ) ( ) ( ).下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(♍❍)    方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【 】 (✌)甲 ( )乙 ( )丙 ( )丁.如图,已知菱形 ✌的顶点 ( ), ( ), 若菱形绕点 逆时针旋转,每秒旋转 °,则第 秒时, 菱形的对角线交点 的坐标为【 】(✌)( , ) ( )( , )( )(2, ) ( )( , 2) 二、填空题(每小题 分,共 分).计算:._________8)2(30=-- 如图,在□✌中, ☜⊥✌交对角线✌于点☜,若∠ °,则∠ 的度数是♉♉♉♉♉♉♉♉♉若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉在“阳光体育”活动期间,班主任将全班同学随机分成了 组进行活动,则该班小明和小亮被分在同一组的概率是♉♉♉♉♉♉♉♉♉已知✌( ), ( )是抛物线c bx x y ++-=2上两点,该抛物线的顶点坐标是♉♉♉♉♉♉♉♉♉如图,在扇形✌中,∠✌°,以点✌为圆心, ✌的长为半径作⌒  交⌒✌ 于点  若 ✌,则阴影部分的面积为♉♉♉♉♉♉♉♉♉♉♉如图,已知✌∥ ,✌⊥ ,✌ 点☜为射线 上一个动点,连接✌☜,将△✌☜沿✌☜折叠,点 落在点 ′处, 过点 ′作✌的垂线,分别交✌, 于点 ,☠ 当点 ′为线段 ☠的三等分点时, ☜的长为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉ 三、解答题(本大题共 个小题,满分 分)  ( 分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。

河南省2016年中考模拟数学试卷(一)含答案

河南省2016年中考模拟数学试卷(一)含答案

河南省2016年中考模拟数学试卷(一)含答案河南省2016年中考模拟数学试卷一一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()A。

3-2 B。

21 C。

- D。

22.以下是我市著名企事业(___、心连心化肥、___、___)的徽标或者商标,其中既是轴对称图形又是中心对称图形的是()AB。

CD3.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为()A。

3.5×106 B。

3.5×107 C。

35×106 D。

0.35×1084.下列各式计算正确的是()A)3-2=1 (B)a6÷a2=a3 (C)x2+x3=x5 (D)(-x2)3=-x65.用6个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A。

B。

C。

D。

6.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A。

8,6 B。

8,5 C。

52,52 D。

52,537.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm,如果点C是OB上一个动点,则PC的最小值为()A)2 (B)23 (C)4 (D)438.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是()。

A.(2011,0)B.(2011,2)C.(2011,1)D.(2010,0)二、填空题(每小题3分,共21分)9.计算:(2+π)-2|1-sin30°|+()=-1.10.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是()。

河南省2016届九年级中考模拟试卷(二)数学试题解析(解析版)

河南省2016届九年级中考模拟试卷(二)数学试题解析(解析版)

一、选择题:每小题3分,共24分.在四个选项中只有一个选项是正确的.1.﹣的相反数是()A.B.6C.﹣6D.【答案】A.【解析】试题分析:﹣的相反数是.故选A.考点:相反数.2.如图所示图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C.【解析】试题分析:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、既是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.考点:①中心对称图形;②轴对称图形.3.在学校举办的“我的中国梦”演讲比赛中,十位评委给其中一位选手现场打出的分数如下:8.8,9.2,9.3,9.4,9.5,9.5,9.6,9.6,9.6,9.8.则这组数据的众数是()A.9.8B.9.6C.9.5D.9.4【答案】B.【解析】试题分析:数据9.6出现了三次最多为众数.故选B.考点:众数.4.如图AB∥CD,AD与BC交于点E,EF平分∠BED交CD延长线于点F,若∠A=110°,∠B=30°,则∠F的度数是()A .20°B.30°C.40°D.50° 【答案】C . 【解析】试题分析:∠BED=∠B+∠A=110°+30°=140°.∵EF 平分∠BED,∴∠DEF=∠BED=70°.∵AB∥CD,∴∠CDE=∠A=110°,又∵∠CDE=∠F+∠DEF,∴∠F=∠CDE﹣∠DEF=110°﹣70°=40°.故选C . 考点:①平行线的性质;②三角形的外角的性质.5.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A .B .C .D .【答案】A . 【解析】试题分析:如图:数轴上表示的不等式组的解集为:﹣1≤x≤2,A 、解得:此不等式组的解集为:﹣1≤x≤2,故本选项正确;B 、解得:此不等式组的解集为:x≤﹣1,故本选项错误;C 、解得:此不等式组的无解,故本选项错误;D 、解得:此不等式组的解集为:x≥2,故本选项错误.故选A . 考点:解一元一次不等式组.6.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A .B .C .D .【答案】C . 【解析】试题分析:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B都不符合,且D折叠后图的位置正好相反,所以能得到的图形是C.故选C.考点:几何体的展开图.7.如图,已知双曲线y=﹣(x<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C,则△AOC的面积为()A.6B.C.3D.2【答案】B.【解析】试题分析:设点D的坐标为(﹣m,)(m>0),则点A的坐标为(﹣2m,).S△AOC=S△ABO﹣S△BOC=×2m×﹣×|﹣3|=.故选B.考点:①反比例函数图象上点的坐标特征;②反比例函数系数k的几何意义;三角形的面积公式.8.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣)B.(﹣4,﹣2+)C.(﹣2,﹣2+)D.(﹣2,﹣2﹣)【答案】D.【解析】试题分析:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示,∵AC=2,∠ABC=30°,∴BC=4,∴AB=2,∴AD===,∴BD===3,∵点B坐标为(1,0),∴A点的坐标为(4,),∵BD=3,∴BD1=3,∴D1坐标为(﹣2,0)∴A1坐标为(﹣2,﹣),∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2),故选D.考点:①直角三角形的性质;②勾股定理;③旋转的性质;④平移的性质.第Ⅱ卷(共96分)二、填空题(本大题共7个小题,每小题3分,共21分,把答案写在题中横线上)9.﹣(2016)0=_______________.【答案】2.【解析】试题分析:﹣(2016)0=3﹣1=2,故答案为:2.考点:①实数的运算;②零指数幂的运算.10.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.【答案】10.【解析】试题分析:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.考点:①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.11.点A(1,m)在函数y=2x的图象上,则关于x轴的对称点的坐标是______________.【答案】(1,﹣2).【解析】试题分析:根据题意可知m=2,所以点A(1,2)关于x轴的对称点的坐标是(1,﹣2).考点:关于x轴、y轴的对称点的坐标.12.二次函数y=ax2+bx+c的图象如图所示,则ac________0.【答案】>.【解析】试题分析:∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∴ac>0.故答案为:>.考点:二次函数的图象与系数的关系.13.在一个不透明的口袋中,有标有数字2,3,4除标号外其余均相同的3个小球,从袋中随机地摸取一个小球后然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是____________.【答案】.【解析】试题分析:列表如下:所有等可能的结果有9种,其中之和为5的情况有2种,则P之和为5=.故答案为:.考点:列表法与树状图法.14.如图,半圆O中,AB为直径,AB=4,C、D为半圆上两点,四边形OACD为菱形,连接BC交OD于点E,则阴影部分面积为______________.【答案】π﹣.【解析】试题分析:∵AB=4,∴AO=BO=2,连接OC,∵四边形OACD为菱形,∴AO=AC,∴△AOC是等边三角形,∴∠A=∠BOE=60°,∴∠COD=60°,∵AB为直径,∴∠ACB=90°,∴∠B=30°,∴BC⊥OD,∴BE=CE=,∴OE=AC=1,∴S阴影=S扇形OCD﹣S△CEO=﹣××1=π﹣,故答案为:π﹣.考点:①菱形的性质;②等边三角形的性质;③扇形面积公式.15.矩形ABCD中,AB=5,BC=6,点E为AD上一个动点,将△ABE沿折线BE折叠后得到△GBE,延长BG交矩形一边于F点,若点F恰好为该边的中点,则此时AE的长为____________.【答案】或.【解析】考点:①矩形的判定与性质;②折叠的性质;③勾股定理的应用.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】10.【解析】试题分析:原式==2x+8,当x=1时,原式=2+8=10.考点:分式的化简求值.17.2016年商丘中招体育加试将跳绳作为必测项目,某中学举行“每天跳绳一分钟”活动,活动开展半年后,该校在七年级中随机抽取部分女生进行跳绳项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第___________小组;(2)若测试七年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校七年级女生“一分钟跳绳”成绩为优秀的人数;(3)若测试七年级女生“一分钟跳绳”次数不低于170次的成绩记为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】(1)三;(2)104人;(3).【解析】试题分析:(1)抽取的总人数是10÷20%=50(人).第四组的人数是50﹣4﹣10﹣16﹣6﹣4=10(人).则中位数在第三组.故答案是:三;(2)计该校七年级女生“一分钟跳绳”成绩为优秀的人数是:260×=104(人);(3)抽测的女生中满分的人数是4人,成绩优秀的人数是10+6+4=20人,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是==.答:从成绩为优秀的女生中任选一人,她的成绩为满分的概率是.考点:①统计图;②统计图表;③用样本估计总体.18.如图,将⊙O的内接矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结BC1,若∠ACB=30°,AB=1,CC1=x.(1)若点O与点C1重合,求证:A1D1为⊙O的切线;(2)①当x=_______时,四边形ABC1D1是菱形;②当x=_______时,△BDD1为等边三角形.【答案】(1)见解析;(2)①1;②2.【解析】试题分析:(1)∵四边形ABCD为矩形,∴∠D=90°∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1D1O=∠D=90°,∴A1D1⊥OD1,∴A1D1为⊙O的切线;(2)①当x=1时,四边形ABC1D1是菱形;理由:∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴AB=AC1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥D1C1,∴四边形ABC1D1是菱形;②如图所示:当x=2时,△BDD1为等边三角形,则可得BD=DD1=BD1=2,即当x=2时,△BDD1为等边三角形.故答案为:1,2.考点:①相似三角形的判定与性质;②矩形的性质;③等边三角形的判定;④解直角三角形.19.关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0.(1)求证:方程有两个不相等的实数根;(2)m为何整数时,此方程的两个根都为正整数.【答案】(1)见解析;(2) m=2或m=3.【解析】试题分析:(1)∵△=b2﹣4ac=(﹣2m)2﹣4(m﹣1)(m+1)=4>0,∴方程有两个不相等的实数根;(2)由求根公式,得x=,∴x1==,x2==1;∵m为整数,且方程的两个根均为正整数,∴x1==1+,必为正整数,∴m﹣1=1或2,∴m=2或m=3.考点:①根的判别式,②求根公式.20.如图,某校八年级(1)班学生利用寒假期间到郊区进行社会实践活动,活动之余,同学们准备攀登附近的一个小山坡,从B点出发,沿坡脚15°的坡面以5千米/时的速度行至D点,用了10分钟,然后沿坡比为1:的坡面以3千米/时的速度达到山顶A点,用了5分钟,求小山坡的高(即AC的长度)(精确到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,≈1.732)【答案】0.34千米.【解析】试题分析:过D作DF⊥BC于F,DE⊥AC于点E,∵沿坡比为1:的坡面以3千米/时的速度达到山顶A点,∴=,∴∠ADE=30°,∵BD=×10=(km),AD=×5=(km),∴AC=AE+EC=AE+DF=ADsin30°+BDsin15°=×+×0.2588≈0.34(千米).答:小山坡的高为0.34千米.考点:解直角三角形的应用.21.2015年12月19日郑州机场T2航站楼正式启用,为了宣传T2航站楼,机场反面要印刷一批宣传材料,经招标,某印务公司中标,该印务公司提出3种方案:方案一:每份材料收印刷费1元;方案二:收制版费1000元,另外每份材料收印刷费m元;方案三:印数在1000份以内时,每份材料收印刷费1.2元,超过1000份时超过部分按每份n元收取.(1)若机场方面选用方案二和方案三各印刷2000份材料需花费3900元,选用方案二和方案三各印刷3000份材料需花费5100元,请求出m和n的值;(2)分别写出各方案的收费y(元)与印刷材料的份数x(份)之间的函数关系式;(3)若机场方面预计要印刷5000份以内的宣传材料,请根据图象求出A、B、C的坐标,并直接写出机场方面应选择哪一种方案更合算?【答案】(1);(2)y=;(3)当0≤x≤1666时,选择方案一费用最低;当1666<x<2500时,选择方案三费用最低;当x=2500时,选择方案二、方案三费用一样;当x>2500时,选择方案二费用最低.【解析】试题分析:(1)根据题意,得:,整理,得:,解得:;(2)方案一:y=x;方案二:y=1000+0.5x;方案三:①当0≤x≤1000时,y=1.2x,②当x>1000时,y=1200+0.7(x﹣1000)=0.7x+500,综上:y=;(3)联立方程组,解得:,故点A的坐标为(1666,1666);联立方程组,解得:,故点B的坐标为(2000,2000);联立方程组,解得:,故点C坐标为(2500,2250);由图象可知,当0≤x≤1666时,选择方案一费用最低;当1666<x<2500时,选择方案三费用最低;当x=2500时,选择方案二、方案三费用一样;当x>2500时,选择方案二费用最低.考点:一次函数的应用.22.如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是_________;②当AP=nPC时(n是正实数),四边形PMCN的面积是__________.(2)猜想论证如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则=_______.(3)拓展探究如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究的值,并说明理由.【答案】(1)①a;②;(2);(3)见解析.【解析】试题分析:(1)①如图2,∵PM⊥BC,AB⊥B,∴△PMC∽△ABC,∴=,又∵AP=2PC,∴=,即=,∴PM=a,即正方形PMCN的边长是a;②当AP=nPC时(n是正实数),=,∴PM=a,∴四边形PMCN的面积=(a)2=;(2)如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°,∵Rt△PEF中,∠FPE=90°,∴∠GPM=∠HPN,∴△PGM∽△PHN,∴=,由PG∥AB,PH∥AD可得,,∵AB=a,BC=b,∴,即=,∴=;(3)如图4,过P作PG∥AB,交BC于G,作PH∥A D,交CD于H,则∠HPG=∠DAB,∵∠EPF=∠BAD,∴∠EPF=∠GPH,即∠EPH+∠HPN=∠EPH+∠GPM,∴∠HPN=∠GPM,∵∠B+∠D=180°,∴∠PGC+∠PHC=180°,又∵∠PHN+∠PHC=180°,∴∠PGC=∠PHN,∴△PGM∽△PHN,∴=①,由PG∥AB,PH∥AD可得,==,即=②,∴由①②可得, =.考点:①相似三角形的应用;②平行线分线段成比例定理.23.如图所示,已知抛物线y=ax2﹣4x﹣5(a>0,a为常数)与一次函数y=x+b(b为常数)交于点M(6,n),直线y=x+b与x轴及y轴交于两点A、B,△AOB的周长是12+4,抛物线y=ax2﹣4x﹣5与y轴交于点C,与x轴交于点D、E(点E在点D的右侧).(1)确定a、b、n及tan∠BAO的值;(2)确定一次函数y=x+b与抛物线y=ax2﹣4x﹣5的另一个交点N的坐标,并计算线段MN的长度;(3)试确定在抛物线及对称轴上是否存在两点P、Q,使得四边形C、E、Q、P是平行四边形?如果存在请直接写出P、Q两点坐标;如果不存在,请说明理由.【答案】(1)1, 4, 7,;(2)N(﹣,);;(3)P1(2,﹣9),Q1(2,4),P2(﹣3,12),Q2(2,17),P3(7,16),Q3(2,12).【解析】(3)如图,点C(0,﹣5),点E(5,0),抛物线顶点(2,﹣9),①当CE为对角线时,点P1与顶点重合时,四边形CP1EQ1是平行四边形,∵P1(2,﹣9),CE与对称轴的交点坐标G(2,﹣2.5),∴GP1=GQ1=6.5,∴Q1(2,4).②当CE为边时,∵CE=2Q2,∴|x Q﹣x P|=|x E﹣x C|=5,|y E﹣y C|=|y Q﹣y P|=5,∴P2、P3的横坐标分别为﹣3,7,∵x=﹣3时,y=12,x=7时,y=16,∴P2(﹣3,12),Q2(2,17),P3(7,16),Q3(2,12).综上所述P1(2,﹣9),Q1(2,4),P2(﹣3,12),Q2(2,17),P3(7,16),Q3(2,12).考点:二次函数综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年河南省中招数学押题试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)﹣2的倒数是()A.﹣2 B.﹣ C.D.22.(3分)下列标志中,可以看作是轴对称图形的是()A.B. C.D.3.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣64.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b25.(3分)有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如表:这四位同班同学中,月考班级名次波动最大的是()A.甲B.乙C.丙D.丁6.(3分)若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m 的取值范围是()A.m=3 B.m>3 C.m≥3 D.m≤37.(3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC =7,DE=2,AB=4,则AC长是()于点F.S△ABCA.4 B.3 C.6 D.58.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)|﹣5|+﹣32=.10.(3分)不等式组的最大整数解是.11.(3分)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是.12.(3分)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为.13.(3分)如图,在△ABC中,AB=AC=15,∠B=30°,点D为AB边上一动点,且AD=AE,BD=DF,要使△DEF与△CEF均为直角三角形,则AD的值为.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边上可移动的最大距离为.15.(3分)如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2,则图中阴影部分的面积=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.17.(9分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.18.(9分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?19.(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).20.(9分)如图,函数y=(x>0,k是常数)的图象经过A(1,4),B(a,b),其中a>1,过点B作y轴的垂线,垂足为C,连接AB,AC.(1)若△ABC的面积为4,求点B的坐标.(2)在(1)的条件下,连接OB,求四边形ACOB的面积.21.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B 两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.22.(10分)(1)观察发现:如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,当点C、F、O在同一条直线上,BF和CD的数量关系是.(2)深入探究受(1)中问题启发,小刚同学将图①中的Rt△DEF绕点O旋转得到图②,并猜想BF=CD成立,请你给出证明;(3)拓展延伸如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为点O,此时,BF=CD还成立吗?如果成立,请说明理由;如果不成立,请求出之间的数量关系.23.(11分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.2016年河南省中招数学押题试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)﹣2的倒数是()A.﹣2 B.﹣ C.D.2【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.(3分)下列标志中,可以看作是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.3.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣6【解答】解:将0.000075用科学记数法表示为:7.5×10﹣5.故选B.4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b2【解答】解:A、a+2a=3a,故A选项错误;B、(﹣a3)2=a6,故B选项正确;C、a3•a2=a5,故C选项错误;D、(a+b)2=a2+b2+2ab,故D选项错误,故选:B.5.(3分)有甲、乙、丙和丁四位同班同学在近两次月考的班级名次如表:这四位同班同学中,月考班级名次波动最大的是()A.甲B.乙C.丙D.丁【解答】解:根据方差的定义可得:因为丁的方差大于甲、乙、丙的方差,所以月考班级名次波动最大的是丁;故选D.6.(3分)若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m 的取值范围是()A.m=3 B.m>3 C.m≥3 D.m≤3【解答】解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选C.7.(3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC 于点F.S=7,DE=2,AB=4,则AC长是()△ABCA.4 B.3 C.6 D.5【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC 于点F,∴DF=DE=2.=S△ABD+S△ACD,AB=4,又∵S△ABC∴7=×4×2×AC×2,∴AC=3.故选B.8.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.二、填空题(每小题3分,共21分)9.(3分)|﹣5|+﹣32=0.【解答】解:原式=5+4﹣9=0.故答案为:010.(3分)不等式组的最大整数解是x=3.【解答】解:,由①,得x>﹣5,由②,得x≤3,故原不等式组的解集是﹣5<x≤3,即不等式组的最大整数解是x=3,故答案为:x=3.11.(3分)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是.【解答】解:用A表示只会翻译阿拉伯语的翻译,用B表示只会翻译英语的翻译,用C表示两种语言都会翻译的翻译,画树状图得:∵共有20种等可能的结果,该组能够翻译两种语言的有14种情况,∴该组能够翻译上述两种语言的概率是:=.故答案为:.12.(3分)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为y=.【解答】解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为:y=.13.(3分)如图,在△ABC中,AB=AC=15,∠B=30°,点D为AB边上一动点,且AD=AE,BD=DF,要使△DEF与△CEF均为直角三角形,则AD的值为5或6.【解答】解:∵在△ABC中,AB=AC,AD=AE,∴DE∥BC,∵∠B=30°,∴∠EDF=30°,∴当∠DFE=90°时,设AD=x,则BD=DF=15﹣x,DE=x,则15﹣x=×x,解得x=6;当∠DEF=90°时,设AD=x,则BD=DF=15﹣x,DE=x,则×(15﹣x)=x,解得x=5.综上所述,AD=5或6.故答案为:5或6.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边上可移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:215.(3分)如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2,则图中阴影部分的面积=2π﹣4.【解答】解:连接EF、GH,∵AB=4,∴BD===4,∵0为对角线BD的中点,∴O1B=O2B==,∴⊙O1与⊙O2是半径相等的两个圆,∵∠EDF=∠GBH=90°,∴EF、GH分别是⊙O1与⊙O2的直径,∴S阴影=S⊙O1﹣2S△DEF=S⊙O1﹣2S△DEF=S⊙O1﹣2S△GBH=()2π﹣2××2×=2π﹣4.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.【解答】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣时,原式=2+3=5.17.(9分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.18.(9分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?【解答】解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.19.(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).【解答】解:设AB=x米.∵∠AEB=45°,∠ABE=90°,∴BE=AB=x米在Rt△ABD中,tan∠D=,即tan31°=.∴x=≈=24.即AB≈24米在Rt△ABC中,AC=≈=25米.答:条幅的长度约为25米.20.(9分)如图,函数y=(x>0,k是常数)的图象经过A(1,4),B(a,b),其中a>1,过点B作y轴的垂线,垂足为C,连接AB,AC.(1)若△ABC的面积为4,求点B的坐标.(2)在(1)的条件下,连接OB,求四边形ACOB的面积.【解答】解:(1)把A(1,4)代入y=得:4=,解得k=4,则反比例函数的解析式为y=.∵B(a,b)在反比例函数y=的图象上,∴ab=4.∵△ABC的面积为4,∴×a×(4﹣b)=4,∴2a﹣ab=4,∴2a﹣2=4,a=3,∵ab=4,∴b=.则点B的坐标为(3,).(2)∵B在反比例函数y=的图象上,过点B作y轴的垂线,垂足为C,=×4=2,∴S△OBC∴S=S△ABC+S△OBC=4+2=6.四边形ACOB21.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B 两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【解答】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)W与a的函数关系式:W=80a+60(17﹣a)=20a+1020;(3)由题意得:购买9棵A种树苗,8棵B种树苗时,费用最少,W=80×9+60×8=1200,答:购买9棵A种树苗,8棵B种树苗时,费用最少,需要1200元.22.(10分)(1)观察发现:如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,当点C、F、O在同一条直线上,BF和CD的数量关系是BF=CD.(2)深入探究受(1)中问题启发,小刚同学将图①中的Rt△DEF绕点O旋转得到图②,并猜想BF=CD成立,请你给出证明;(3)拓展延伸如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为点O,此时,BF=CD还成立吗?如果成立,请说明理由;如果不成立,请求出之间的数量关系.【解答】解:(1)如图①延长BF与CD交与点G,∵O是等腰直角△DEF斜边EF中点,∴EF⊥AB,OD=OF,∵O是等腰直角△ABC斜边AB中点,∴CO=BO,∵在△BOF和△COD中,,∴△BOF≌△COD,(SAS)∴BF=CD;故答案为:BF=DC;(2)猜想:BF=CD.理由如下:如答图②所示,连接OC、OD.∵△ABC为等腰直角三角形,点O为斜边AB的中点,∴OB=OC,∠BOC=90°.∵△DEF为等腰直角三角形,点O为斜边EF的中点,∴OF=OD,∠DOF=90°.∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,∴∠BOF=∠COD.∵在△BOF与△COD中,,∴△BOF≌△COD(SAS),∴BF=CD.(2)答:(1)中的结论不成立.如答图③所示,连接OC、OD.∵△ABC为等边三角形,点O为边AB的中点,∴=tan30°=,∠BOC=90°.∵△DEF为等边三角形,点O为边EF的中点,∴=tan30°=,∠DOF=90°.∴==.∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,∴∠BOF=∠COD.在△BOF与△COD中,∵==,∠BOF=∠COD,∴△BOF∽△COD,∴=.23.(11分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

相关文档
最新文档