第5讲 数列的综合应用

合集下载

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。

通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。

1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。

通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。

第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。

通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。

2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。

通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。

第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。

通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。

3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。

通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。

第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。

通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。

4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。

通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。

第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。

通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。

5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。

通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。

第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。

数列的综合应用【十二大题型】(举一反三)(新高考专用)(原卷版)—2025年新高考数学一轮复习

数列的综合应用【十二大题型】(举一反三)(新高考专用)(原卷版)—2025年新高考数学一轮复习

数列的综合应用【十二大题型】【题型1 等差、等比数列的交汇问题】................................................................................................................3【题型2 数列中的数学文化问题】........................................................................................................................4【题型3 数列的实际应用问题】............................................................................................................................5【题型4 数列中的不等式恒成立、有解问题】....................................................................................................7【题型5 数列中的不等式证明问题】....................................................................................................................8【题型6 子数列问题】............................................................................................................................................9【题型7 数列与函数的交汇问题】......................................................................................................................11【题型8 数列与导数的交汇问题】......................................................................................................................12【题型9 数列与概率统计的交汇问题】..............................................................................................................13【题型10 数列与平面几何的交汇问题】............................................................................................................14【题型11 数列中的结构不良题】........................................................................................................................16【题型12 数列的新定义、新情景问题】............................................................................................................17

数列的综合应用

数列的综合应用

高三数学(人教版)
第六章 ·专题研究二
专 题 讲
nf(n+1) 1 (3)由题知,bn= f n =3n,

1 n(n+1) n(n+1)
1
11

则Tn=3×
2

6

∴பைடு நூலகம்n=
6(n-n+
). 1

111
1
1111 1
11
训 练

T1+T2+
T3+…
+Tn

6(1-
2+2-
3+3

4+…
+n-n+
) 1

1 a=2,f(x)=
(12)x.
高三数学(人教版)
第六章 ·专题研究二
专 题
又点(n-1,
an n2
)(n∈ N*)(在函数f(x)= ax的图象上,
讲 解

而ann2=21n-
1,即
an=
n2 2n-
1.
专 题
(n+ 1)2 n2 2n+ 1 (2)由 bn= 2n -2n= 2n 得,


111
1
Tn,试比较T1+T2+T3+…+Tn与 6的大小.
高三数学(人教版)
第六章 ·专题研究二
专 题
∴f(n+ 1)=
1 3
f(n)(n∈ N*),∴数列{f(n)}(n∈ N*)是以


1
1
f(1)=3为首项,3为公比的等比数列,
专 题
∴f(n)=13×(13)n- 1,即f(n)=(13)n(n∈ N*).
=6(1- 1 ). n+ 1

n∈

数列的综合应用知识点总结、经典例题解析、高考练习题带答案

数列的综合应用知识点总结、经典例题解析、高考练习题带答案

数列的综合应用【考纲说明】1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的 和; 2.能综合利用等差、等比数列的基本知识解决相关综合问题; 3 .理解数列作为函数的特性,能够抽象出数列的模型;【知识梳理】考点一:通项公式的求解技巧1. 归纳、猜想数列的通项.2. 迭代法求一阶递推式的通项公式.3. 用等差(等比)数列的通项公式求数列的通项公式.4. 已知数列{a n }前n 项和S n ,则⎩⎨⎧-=-11n nn S S S a 21≥=n n .5. 已知a n -a n-1=f(n)(n ≥2),则可用叠加法求a n .6. 已知a na n-1=f(n)(n ≥2),则可用叠乘法求a n .7. 已知数列{a n }前n 项之积T n ,一般可求T n-1,则a n =111 n 2n n T n T T -=⎧⎪⎨≥⎪⎩.8. 已知混合型递推式f(a n ,S n )=0,可利用a n =S n -S n-1(n ≥2)将关系式转化为只含有a n 或S n 的递推式,再求a n 或先间接求出S n 再求出a n .9. 已知数列{a n }的递推关系,研究它的特点后,可以通过一系列的恒等变形如:倒数、通分、约分、裂项、等式两边同时乘以或除以同一个式子、因式分解、平方、开方、配方、取对数、辅助数列、待定系数等等构造得出新数列{f(a n )}为等差或等比数列.例如:形如a n+1=Aa n +f(n)或a n+1=Aa n +q n ,均可以两边同时除以A n+1后进行求解,也可以通过待定系数法将其转化为等比数列求解;形如a n =a n-1ka n-1+b 的递推数列可以两边同时倒数来求通项.考点二:数列求和的技巧 一、公式法1、等差数列的前n 项和公式2)1(2)(11dn n na a a n S n n -+=+=2、等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n3、常用几个数列的求和公式 (1))1(213211+=+⋯+++==∑=n n n k S nk n (2))12)(1(61321222212++=+⋯+++==∑=n n n n k S nk n (3)2333313)]1(21[321+=+⋯+++==∑=n n n k S nk n二、错位相减法用于求数列}{n n b a ⨯的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。

高三数学二轮复习数列的综合应用课件

高三数学二轮复习数列的综合应用课件

P2
P1
Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,
求由该折线与直线y=0,x=x1,x=xn+1
所围成的区域的面积Tn.
O
x 1 x2
x3
x4
x
已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,
(1)求S1,S2及数列{Sn}的通项公式;
(2)若数列{bn}满足bn =
1
7
≤|Tn|≤ .
3
9
−1

,且{bn}的前n项和为Tn,求证:当n≥2时,
已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(1)求S1,S2及数列{Sn}的通项公式;
(2)若数列{bn}满足bn =
Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=
xn+1所围成的区域的面积Tn.
y
P4
P3
P2
P1
O
x1 x2
x3
x4
x
数列求和的
基本方法
01
公式法
02
分组求和法
03
错位相减法
04
倒序相加法
05
裂项相消法
考点2:数列与不等式综合问题
已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
1
7
≤|Tn|≤ .
3
9
−1

,且{bn}的前n项和为Tn,求证:当n≥2时,

5-5第五节 数列的综合应用练习题(2015年高考总复习)

5-5第五节 数列的综合应用练习题(2015年高考总复习)

第五节 数列的综合应用时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( ) A.5-12 B.5+12 C.1-52D.5-12或5+12解析 设{a n }的公比为q (q >0),由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.而a 4+a 5a 3+a 4=q =1+52.答案 B2.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d 2=240,即2n +n (n -1)=240,解得n =15.答案 C3.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n解析 由f ′(x )=mx m -1+a =2x +1得m =2,a =1. ∴f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 答案 A4.已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n项和为S n ,则使S n <-5成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值31解析 ∵a n =log 2n +1n +2=log 2(n +1)-log 2(n +2),∴S n =a 1+a 2+…+a n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2).由S n <-5,得log 2(n +2)>6,即n +2>64,∴n >62,∴n 有最小值63. 答案 A5.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64解析 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除,得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列.而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64. 答案 D6.抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交点分别为A n ,B n (n ∈N *),以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|的值是( )A.2 0092 010 B.2 0102 011 C.2 0112 012D.2 0122 013解析 令y =0,则(n 2+n )x 2-(2n +1)x +1=0. 设两根分别为x 1,x 2,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n .解得x 1=1n ,x 2=1n +1.∴|A n B n |=1n -1n +1.∴|A 1B 1|+|A 2B 2|+…+|A n B n |=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. ∴|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|=2 0102 011. 答案 B二、填空题(本大题共3小题,每小题5分,共15分)7.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.解析 由于a 1=1,a 2=-2,a n +2=-1a n ,所以a 3=-1,a 4=12,a 5=1,a 6=-2,…, 所以{a n }是周期为4的数列,故S 26=6×⎝ ⎛⎭⎪⎫1-2-1+12+1-2=-10.答案 -108.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.解析 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[(n -1)+(n -2)+…+1]+33=33+n 2-n ,所以a n n =33n +n -1.设f (x )=33x +x -1,则f ′(x )=-33x 2+1. 令f ′(x )>0,得x >33或x <-33.所以f (x )在(33,+∞)上是增函数,在(0,33)上是减函数. 因为n ∈N *,所以当n =5或n =6时,f (n )取最小值. 因为f (5)=535,f (6)=636=212,535>212, 所以a n n 的最小值为212. 答案 2129.(2013·安徽卷)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1 ,a 2=2,则数列{a n }的通项公式是________.解析 ∵A 1B 1∥A 2B 2∥A 3B 3∥…∥A n B n ,∴A 1A 2A 2A 3=B 1B 2B 2B 3,…,不妨设OA 1=OB 1,OA 2=OB 2,OA 3=OB 3,…,OA n =OB n .梯形A 1A 2B 2B 1,A 2A 3B 3B 2,…,A n -1A n B n B n -1的面积均为S ,∠O =θ.梯形A 1A 2B 2B 1的面积为S ,则S =12a 22·sin θ-12a 21·sin θ=12×22sin θ-12×12sin θ=32sin θ.梯形A 2A 3B 3B 2的面积 S =12a 23·sin θ-12a 22·sin θ=32sin θ,∴可解得a 3=7,同理a 4=10,…,故a n =3n -2. 答案 a n =3n -2三、解答题(本大题共3小题,每小题10分,共30分) 10.已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n ,(n ∈N *).(1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1a n ,且a 1=4,求数列{a n }的通项公式.解 (1)由f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =2n ,16n 2a -4nb =0. 解之得a =12,b =2n ,即f (x )=12x 2+2nx (n ∈N *). (2)由1a n +1=1a n +2n ,∴1a n +1-1a n=2n .由累加得1a n-14=n 2-n ,∴a n =4(2n -1)2(n ∈N *). 11.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a n n ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.解 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n >6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝ ⎛⎭⎪⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎨⎧130-10n ,n ≤6,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n (n -1), A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故 S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6 =780-210×⎝ ⎛⎭⎪⎫34n -6,A n =780-210×⎝ ⎛⎭⎪⎫34n -6n. 因为{a n }是递减数列,所以{A n }是递减数列.又A 8=780-210×⎝ ⎛⎭⎪⎫3428=824764>80,A 9=780-210×⎝ ⎛⎭⎪⎫3439=767996<80.所以须在第9年初对M 更新. 12.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n内的整点个数为a n (n ∈N *)(整点即横坐标和纵坐标均为整数的点).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1.若对于一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.解 (1)由x >0,y >0,3n -nx >0,得0<x <3. ∴x =1,或x =2.∴D n 内的整点在直线x =1和x =2上.记直线y =-nx +3n 为l ,l 与直线x =1,x =2的交点的纵坐标分别为y 1,y 2.则y 1=-n +3n =2n ,y 2=-2n +3n =n . ∴a n =3n (n ∈N *).(2)∵S n =3(1+2+3+…+n )=3n (n +1)2, ∴T n =n (n +1)2n .∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n =(n +1)(2-n )2n +1.∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32. 于是T 2,T 3是数列{T n }中的最大项,故m ≥T 2=32.。

高中数学专题研究课件 数列的综合应用 课件(共36张PPT)

高中数学专题研究课件 数列的综合应用 课件(共36张PPT)

数据:lg2≈0.301 0,lg3≈0.477 1)
第26页
【解析】 当年的绿化面积等于上年被非绿化后剩余面积
加上新绿化面积.
(1)设现有非绿化面积为b1,经过n年后非绿化面积为bn+1.
于是a1+b1=1,an+bn=1.依题意,an+1是由两部分组成,
一部分是原有的绿化面积an,减去被非绿化部分
第11页
4Sn=1·42+2·43+…+(n-1)·4n+n·4n+1.
因此Sn-4Sn=4+42+…+4n-n·4n+1=
4n+1-4 3
-n·4n+1=
(1-3n)4n+1-4
3
.
所以Sn=(3n-1)9 4n+1+4.
【答案】 (1)证明见解析 (2)Sn=(3n-1)9 4n+1+4
第12页
(1)求an关于n的关系式; (2)预计2021年全年共需投资多少万元? (精确到0.01,参考数据:1.22=1.44,1.23≈1.73,1.24≈ 2.07,1.25≈2.49,1.26≈2.99)
第30页
【解析】 (1)设前n个月投资总额为Sn, 则当n≥2时,an=5+15Sn-1,① 所以an+1=5+15Sn.② ①②两式相减,得an+1-an=15(Sn-Sn-1)=15an, 所以an+1=65an. 又因为a1=11,a2=5+15a1=356, 所以an=356×65n-2=6×65n-1(n≥2).
第31页
又因为an≤15,所以6×1.2n-1≤15, 所以n-1≤5,所以n≤6.
所以an=611×,1n.2=n-11,,2≤n≤6, 15,n≥7.
(2)由(1)得,2021年全年的投资额是(1)中数列{an}的前12项 和,所以S12=a1+(a2+…+a6)+(a7+…+a12)=11+6×(1.2+… +1.25)+6×15=101+6×1.2×(1.21-.251-1)≈154.64(万元).

高考北师大版数学总复习课件:6.5数列的综合应用

高考北师大版数学总复习课件:6.5数列的综合应用
1 1×1-24
= a+ a×
ቤተ መጻሕፍቲ ባይዱ1 1- 2
1 23 = 3 a- a= a. 8 8
7.(2012· 苏州联考)已知数列{f(n)}的前 n 项和为 Sn,且 Sn =n2+2n. (1)求数列{f(n)}的通项公式; (2)若 a1=f(1),an+1=f(an)(n∈N+),求证:数列{an+1}是等 比数列,并求数列{an}的前 n 项和 Tn.
[解析] 设至少需要 n 秒钟,则 1+21+22+„+2n 1≥100,

1- 2n ∴ ≥100,∴n≥7.故选 B. 1-2
5.(2012· 安徽合肥模拟)秋末冬初,流感盛行,某医院近 30 天每天入院治疗流感的人数依次构成数列 {an},已知 a1=1,a2 =2,且 an+2-an=1+(-1)n(n∈N+),则该医院 30 天入院治疗流 感的人数共有________.
2.设函数 f(x)=xm+ax 的导函数 f ′(x)=2x+1,则数列 1 { }(n∈N+)的前 n 项和是( fn n A. n+ 1 n C. n- 1
[答案] A
)
n+ 2 B. n+ 1 n+ 1 D. n
[解析] f ′(x)=mxm 1+a=2x+1,∴a=1,m=2,

1 1 1 1 ∴f(x)=x(x+1), = = - , fn nn+1 n n+1
知识梳理 1.数列在实际生活中着广泛的应用,其解题的基本步骤, 可用图表示如下:
2.数列应用题常见模型: (1)等差模型:如果增加(或减少)的量是一个固定量时,该模 型是等差模型,增加(或减少)的量就是公差. (2)等比模型: 如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 数列的综合应用 一、选择题 1.已知{an}为等比数列.下面结论中正确的是 ( ). A.a1+a3≥2a2 B.a21+a23≥2a22 C.若a1=a3,则a1=a2 D.若a3>a1,则a4>a2 解析 设公比为q,对于选项A,当a1<0,q≠1时不正确;选项C,当q=-1时不正确;选项D,当a1=1,q=-2时不正确;选项B正确,因为a21+a23≥2a1a3=2a22. 答案 B 2.满足a1=1,log2an+1=log2an+1(n∈N*),它的前n项和为Sn,则满足Sn>1 025的最小n值是 ( ). A.9 B.10 C.11 D.12 解析 因为a1=1,log2an+1=log2an+1(n∈N*),所以an+1=2an,an=2n-1,Sn

=2n-1,则满足Sn>1 025的最小n值是11.

答案 C 3.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生

产.已知该生产线连续生产n年的累计产量为f(n)=12n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是 ( ). A.5年 B.6年 C.7年 D.8年 解析 由已知可得第n年的产量an=f(n)-f(n-1)=3n2.当n=1时也适合,据题意令an≥150⇒n≥52,即数列从第8项开始超过150,即这条生产线最多生产7年. 答案 C 4.在等差数列{an}中,满足3a4=7a7,且a1>0,Sn是数列{an}前n项的和,若Sn取得最大值,则n= ( ). A.7 B.8 C.9 D.10 解析 设公差为d,由题设3(a1+3d)=7(a1+6d), 所以d=-433a1<0. 解不等式an>0,即a1+(n-1)-433a1>0, 所以n<374,则n≤9, 当n≤9时,an>0,同理可得n≥10时,an<0. 故当n=9时,Sn取得最大值. 答案 C 5.设y=f(x)是一次函数,若f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)等于 ( ). A.n(2n+3) B.n(n+4) C.2n(2n+3) D.2n(n+4) 解析 由题意可设f(x)=kx+1(k≠0), 则(4k+1)2=(k+1)×(13k+1),解得k=2, f(2)+f(4)+…+f(2n)=(2×2+1)+(2×4+1)+…+(2×2n+1)=2n2+3n. 答案 A

6.若数列{an}为等比数列,且a1=1,q=2,则Tn=1a1a2+1a2a3+…+1anan+1的结果可化为( ) A.1-14n B.1-12n

C.231-14n D.231-12n 解析 an=2n-1,设bn=1anan+1=122n-1, 则Tn=b1+b2+…+bn=12+123+…+122n-1

=121-14n1-14=231-14n. 答案 C 二、填空题 7.设关于x的不等式x2-x<2nx(n∈N*)的解集中整数的个数为an,数列{an}的前n项和为Sn,则S100的值为________. 解析 由x2-x<2nx(n∈N*),得0<x<2n+1,因此知an=2n. ∴S100=1002+2002=10 100. 答案 10 100 8.已知a,b,c成等比数列,如果a,x,b和b,y,c都成等差数列,则ax+cy=________. 解析 赋值法.如令a,b,c分别为2,4,8,可求出x=a+b2=3,y=b+c2=6,ax+cy=2.

答案 2 9.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an

=lg xn,则a1+a2+a3+…+a99的值为________.

解析 由y′=(n+1)xn(x∈N*),所以在点(1,1)处的切线斜率k=n+1,故切

线方程为y=(n+1)(x-1)+1,令y=0得xn=nn+1,所以a1+a2+a3+…+a99

=lg x1+lg x2+…+lg x99=lg(x1·x2·…·x99)=lg12×23×…×9999+1=lg 199+1=-2. 答案 -2 10.数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列: 12,13,23,14,24,34,15,25,35,45,…,1n,2n,…,n-1n,…,有如下运算和

结论: ①a24=38; ②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列; ③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=n2+n4; ④若存在正整数k,使Sk<10,Sk+1≥10,则ak=57. 其中正确的结论有________.(将你认为正确的结论序号都填上) 解析 依题意,将数列{an}中的项依次按分母相同的项分成一组,第n组中的数的规律是:第n组中的数共有n个,并且每个数的分母均是n+1,分子由1依次增大到n,第n组中的各数和等于1+2+3+…+nn+1=n2.

对于①,注意到21=66+12<24<77+12=28,因此数列{an}中的第24项应是第7组中的第3个数,即a24=38,因此①正确. 对于②、③,设bn为②、③中的数列的通项,则bn= 1+2+3+…+nn+1=n2,显然该数列是等差数列,而不是等比数列,其前n项和

等于12×nn+12=n2+n4,因此②不正确,③正确. 对于④,注意到数列的前6组的所有项的和等于62+64=1012,因此满足条件的ak应是第6组中的第5个数,即ak=57,因此④正确. 综上所述,其中正确的结论有①③④. 答案 ①③④ 三、解答题 11.已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为13. (1)求an及Sn;

(2)令bn=4a2n-1(n∈N*),求数列{bn}的前n项和Tn. 解 (1)设等差数列{an}的公差为d, 因为S5=5a3=35,a5+a7=26,

所以 a1+2d=7,2a1+10d=26,解得a1=3,d=2, 所以an=3+2(n-1)=2n+1, Sn=3n+nn-12×2=n2+2n. (2)由(1)知an=2n+1, 所以bn=4a2n-1=1nn+1=1n-1n+1, 所以Tn=1-12+12-13+…+1n-1n+1 =1-1n+1=nn+1. 12.设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1的值; (2)求数列{an}的通项公式;

(3)证明:对一切正整数n,有1a1+1a2+…+1an<32. (1)解 当n=1时,2a1=a2-4+1=a2-3, ① 当n=2时,2(a1+a2)=a3-8+1=a3-7, ② 又a1,a2+5,a3成等差数列,所以a1+a3=2(a2+5), ③ 由①②③解得a1=1. (2)解 ∵2Sn=an+1-2n+1+1, ∴当n≥2时,有2Sn-1=an-2n+1,

两式相减整理得an+1-3an=2n,则an+12n-32·an2n-1=1,

即an+12n+2=32an2n-1+2.又a120+2=3,知

an

2n-1+2是首项为3,公比为32的等比数列,

∴an2n-1+2=332n-1, 即an=3n-2n,n=1时也适合此式,∴an=3n-2n. (3)证明 由(2)得1an=13n-2n.

当n≥2时,32n>2,即3n-2n>2n, ∴1a1+1a2+…+1an<1+122+123+…+12n=1+121-12n-1<32. 13.已知各项均不相等的等差数列{an}的前四项和为14,且a1,a3,a7恰为等比数列{bn}的前三项. (1)分别求数列{an},{bn}的前n项和Sn,Tn; (2)记数列{anbn}的前n项和为Kn,设cn=SnTnKn,求证:cn+1>cn(n∈N*).

(1)解 设公差为d,则 4a1+6d=14,a1+2d2=a1a1+6d, 解得d=1或d=0(舍去),a1=2, 所以an=n+1,Sn=nn+32. 又a1=2,d=1,所以a3=4,即b2=4. 所以数列{bn}的首项为b1=2,公比q=b2b1=2, 所以bn=2n,Tn=2n+1-2. (2)证明 因为Kn=2·21+3·22+…+(n+1)·2n, ① 故2Kn=2·22+3·23+…+n·2n+(n+1)·2n+1, ② ①-②得-Kn=2·21+22+23+…+2n-(n+1)·2n+1,

∴Kn=n·2n+1,则cn=SnTnKn=n+32n-12n+1.

cn+1-cn=n+42n+1-12n+2-n+32n-12n+1 =2n+1+n+22n+2>0, 所以cn+1>cn(n∈N*). 14.设数列{an}的前n项和Sn满足Sn+1=a2Sn+a1,其中a2≠0. (1)求证:{an}是首项为1的等比数列;

(2)若a2>-1,求证:Sn≤n2(a1+an),并给出等号成立的充要条件. 证明 (1)由S2=a2S1+a1,得a1+a2=a2a1+a1, 即a2=a2a1.

因a2≠0,故a1=1,得a2a1=a2, 又由题设条件知Sn+2=a2Sn+1+a1,Sn+1=a2Sn+a1, 两式相减得Sn+2-Sn+1=a2(Sn+1-Sn),

相关文档
最新文档