高中数学100个热点问题(三)排列组合中的常见模型
千题百炼——高中数学100个热点问题(三):第90炼 取球问题

第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
高中数学排列组合中几种常见的数学模型-文档资料

高中数学排列组合中几种常见的数学模型排列组合问题是高考中必考的一个类型题,常常单独命题或与概率内容等相结合,一般以较容易题出现,但由于解这类问题时方法灵活,切人点多,且抽象性极强,在解题过程中发生重复或遗漏现象不易被发现,所以又成为高中学生学习的难点之一。
故在解题过程中通过分类、分步把复杂问题分解,找出问题的切入点,建立合理的数学模型,将问题简单化、常规化。
一、特殊元素优先数学模型对于存在特殊元素或特殊位置的排列组合问题,我们可以从这些“特殊”入手,先满足特殊元素或特殊位置,再去满足其他元素或其他位置,这种模型称为“特殊元素优先数学模型”。
例1.用0,1,2,3,4,5这六个数字可组成无重复数字的四位偶数____个。
(用数字作答)解:先安排四位偶数的个位上的数字(优先考虑)。
无重复数字的四位偶数中如果个位数是0共有C■A■个,同时如果个位数是2或4共有C■C■A■=96个,所以,重复数字的四位偶数共有60+96=156个。
点评:特殊元素优先法是比较容易入手的一种方法,在处理此类问题时一是要注意优先考虑有要求的特殊位置的元素,二是要注意与分步计数原理结合运用。
二、捆绑式数学模型对于某些元素要求相邻排列的问题,可先将相邻元素捆绑并看作一个元素再与其它元素进行排列,同时对相邻元素进行自排,这种模型称为“捆绑式数学模型”。
这种模型分为两种,一种是相邻元素要全排列,一种是相邻元素是组合问题,不用排列。
例2.四个工人去住旅店,旅店只剩下三个房间,要求四人中必须有两个住在一个房间,另两个房间各住一人,问共有多少种不同的安排方法?解:第一步:把四个工人中的二个捆绑在一起,共有C■=6种方法;第二步:把四个工人看成三个工人进行排列,共有A■=6种方法。
所以共有36种不同的安排方法。
点评:由于两个工人在同一个房间没有排列问题,所以不能自排。
还有一种典型的错误排法,先在四个人中选出三个工人入住三个房间,有24种方法,再把剩下一个人放下四个房间中的任意一个,共有4种方法,故共有96种方法。
高中数学100个热点问题(三):-排列组合中的常见模型

高中数学100个热点问题(三):-排列组合中的常见模型第80炼 排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =-=(种)3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
高中数学排列组合中的典型例题与分析(三)

排列与组合的八大典型错误、24种解题技巧三大模型一、知识点归纳二、基本题型讲解三、排列组合解题备忘录1.分类讨论的思想2.等价转化的思想3.容斥原理与计数4.模型构造思想四、排列组合中的8大典型错误1.没有理解两个基本原理出错2.判断不出是排列还是组合出错3.重复计算出错4.遗漏计算出错5.忽视题设条件出错6.未考虑特殊情况出错7.题意的理解偏差出错8.解题策略的选择不当出错五、排列组合24种解题技巧1.排序问题相邻问题捆绑法相离问题插空排定序问题缩倍法(插空法)定位问题优先法多排问题单排法圆排问题单排法可重复的排列求幂法全错位排列问题公式法2.分组分配问题平均分堆问题去除重复法(平均分配问题)相同物品分配的隔板法全员分配问题分组法有序分配问题逐分法3.排列组合中的解题技巧至多至少间接法染色问题合并单元格法交叉问题容斥原理法构造递推数列法六.排列组合中的基本模型分组模型(分堆模型)错排模型染色问题七.排列组合问题经典题型与通用方法(一)排序问题1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有()A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合常见模型及解题技巧

排列组合常见模型及解题技巧排列组合常见模型及解题技巧___________________________________排列组合是数学中的一个重要概念,其主要用于解决有关物品数量、顺序、种类等问题,十分重要。
尤其在中考、高考中,排列组合模型非常常见。
因此,想要在考试中取得好成绩,需要对排列组合的相关知识有所了解。
### 一、常见的排列组合模型1. 元素排列模型:当有n个元素时,可以有n!种不同的排列方式。
2. 重复的排列模型:当有n个元素中有m个重复的元素时,可以有$\frac{n!}{m!}$种不同的排列方式。
3. 选择排列模型:当从n个元素中选出m个元素进行排列时,可以有$\frac{n!}{(n-m)!}$种不同的排列方式。
4. 组合模型:当从n个元素中选出m个元素进行组合时,可以有$\frac{n!}{m!(n-m)!}$种不同的组合方式。
5. 组合中出现重复的情况:当从n个元素中选出m个元素进行组合时,若有k个重复的元素,可以有$\frac{n!}{(m-k)!(n-m)!}$种不同的组合方式。
### 二、解题技巧1. 明确问题:排列组合问题一般都是要求出物品的总数量或者某一种情况出现的总次数。
因此,在解决这样的问题之前,要明确问题是要计算出总数量还是总次数。
2. 对物品进行分类:在解决排列组合问题时,要明确物品的数量、重复的情况以及可以选择的情况,将物品分成不同的分类。
3. 认真计算:根据不同的情况,选择对应的模型来计算出总数量或者总次数。
在计算之前一定要仔细地去理解问题,以免出错。
4. 熟悉常用公式:在处理排列组合问题时,要能够准确地使用对应的公式来计算出正确的答案。
因此,对于常用的公式一定要牢记于心,并能够准确地使用。
### 三、总结通过本文,我们可以了解到排列组合常见的几个模型以及如何正确地使用它们来解决问题。
排列组合问题是数学考试中常见的问题之一,因此在备考考试时一定要加强对这方面的学习。
高中数学解题技巧之排列组合问题

高中数学解题技巧之排列组合问题在高中数学中,排列组合是一个重要的概念和考点。
它不仅在数学中有广泛的应用,而且在生活中也有很多实际的应用场景。
掌握排列组合的解题技巧对于高中学生来说非常重要。
本文将介绍一些常见的排列组合问题,并提供解题技巧和实例,帮助读者更好地理解和应用。
一、排列问题排列是指从给定的元素中选取若干个元素按照一定的顺序排列的方式。
在排列中,元素的顺序是重要的。
例题1:某班有5名男生和3名女生,要从中选出3名学生组成一个小组,问有多少种不同的组合方式?解析:这是一个典型的排列问题,要求选出3名学生组成一个小组。
由于男生和女生是区分开的,我们可以分别计算男生和女生的组合方式,然后再将两者相乘得到最终的结果。
男生的组合方式为从5名男生中选出3名,即C(5,3) = 5! / (3! * (5-3)!) = 10种。
女生的组合方式为从3名女生中选出0名,即C(3,0) = 1种。
最终的结果为男生的组合方式乘以女生的组合方式,即10 * 1 = 10种。
例题2:某班有6名学生,要从中选出3名学生组成一个小组,其中2名学生是男生,3名学生是女生,问有多少种不同的组合方式?解析:这个问题相比例题1稍微复杂一些,因为要考虑到男生和女生的区分。
我们可以分别计算男生和女生的组合方式,然后将两者相乘得到最终的结果。
男生的组合方式为从2名男生中选出2名,即C(2,2) = 1种。
女生的组合方式为从3名女生中选出1名,即C(3,1) = 3种。
最终的结果为男生的组合方式乘以女生的组合方式,即1 * 3 = 3种。
二、组合问题组合是指从给定的元素中选取若干个元素,不考虑元素的顺序。
例题3:某班有5名学生,要从中选出3名学生组成一个小组,问有多少种不同的组合方式?解析:这是一个典型的组合问题,要求选出3名学生组成一个小组。
由于不考虑元素的顺序,我们可以直接计算组合的方式。
组合的计算公式为C(5,3) = 5! / (3! * (5-3)!) = 10种。
高中数学中的排列组合问题解析

高中数学中的排列组合问题解析在高中数学中,排列组合是一个重要的概念和工具,用于解决各种实际问题和数学题目。
排列组合问题涉及到对一组元素进行选择、排列或组合的方式和方法。
在本文中,我们将对排列组合问题进行详细解析,包括排列、组合、二项式定理等内容。
一、排列排列是指从一组元素中选取一部分元素按照一定的顺序进行排列的方式。
排列问题可以分为有放回排列和无放回排列两种情况。
有放回排列是指从一组元素中选取若干个元素进行排列,选取的元素在排列过程中可以重复使用。
例如,从1、2、3三个元素中选取两个进行排列,可以得到以下六种排列:12、21、13、31、23、32。
无放回排列是指从一组元素中选取若干个元素进行排列,选取的元素在排列过程中不可重复使用。
例如,从1、2、3三个元素中选取两个进行排列,可以得到以下两种排列:12、21。
二、组合组合是指从一组元素中选取一部分元素按照任意的顺序进行组合的方式。
组合问题也可以分为有放回组合和无放回组合两种情况。
有放回组合是指从一组元素中选取若干个元素进行组合,选取的元素在组合过程中可以重复使用。
例如,从1、2、3三个元素中选取两个进行组合,可以得到以下三种组合:11、12、22。
无放回组合是指从一组元素中选取若干个元素进行组合,选取的元素在组合过程中不可重复使用。
例如,从1、2、3三个元素中选取两个进行组合,可以得到以下三种组合:12、13、23。
三、二项式定理二项式定理是排列组合问题中的一个重要定理,它描述了两个数的幂次展开的规律。
二项式定理可以用于计算排列组合问题中的各种情况。
二项式定理的公式为:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n其中,C(n, k)表示从n个元素中选取k个元素进行组合的方式数,也称为组合数。
排列组合问题的常见模型(详解)

排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。
这类问题有如下一些常见的模型。
模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第80炼 排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =-=(种)3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案 (二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种 2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
所以242542480N C A A =⋅⋅=种 3、错位排列:排列好的n 个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n 个元素的一个错位排列。
例如对于,,,a b c d ,则,,,d c a b 是其中一个错位排列。
3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种。
以上三种情况可作为结论记住例如:安排6个班的班主任监考这六个班,则其中恰好有两个班主任监考自己班的安排总数有多少种?解:第一步先确定那两个班班主任监考自己班,共有26C 种选法,然后剩下4个班主任均不监考自己班,则为4个元素的错位排列,共9种。
所以安排总数为269135N C =⋅= 4、依次插空:如果在n 个元素的排列中有m 个元素保持相对位置不变,则可以考虑先将这m 个元素排好位置,再将n m -个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1+)例如:已知,,,,,A B C D E F 6个人排队,其中,,A B C 相对位置不变,则不同的排法有多少种解:考虑先将,,A B C 排好,则D 有4个空可以选择,D 进入队伍后,E 有5个空可以选择,以此类推,F 有6种选择,所以方法的总数为456120N =⨯⨯=种5、不同元素分组:将n 个不同元素放入m 个不同的盒中6、相同元素分组:将n 个相同元素放入m 个不同的盒内,且每盒不空,则不同的方法共有11m n C --种。
解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这n 个元素排成一列,共有()1n -个空,使用()1m -个“挡板”进入空档处,则可将这n 个元素划分为m 个区域,刚好对应那m 个盒子。
例如:将6个相同的小球放入到4个不同的盒子里,那么6个小球5个空档,选择3个位置放“挡板”,共有3520C =种可能7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。
例如:最多使用四种颜色涂图中四个区域,不同的涂色方案有多少种?解:可根据使用颜色的种数进行分类讨论(1)使用4种颜色,则每个区域涂一种颜色即可:414N A =(2)使用3种颜色,则有一对不相邻的区域涂同一种颜色,首先要选择不相邻的区域:用列举法可得:{},I IV 不相邻所以涂色方案有:324N A =(3)使用2种颜色,则无法找到符合条件的情况,所以讨论终止总计434448S A A =+=种二、典型例题:例1:某电视台邀请了6位同学的父母共12人,请12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,则不同选择的方法种数有多少思路:本题解决的方案可以是:先挑选出一对夫妻,然后在挑选出两个不是夫妻的即可。
第一步:先挑出一对夫妻:16C第二步:在剩下的10个人中选出两个不是夫妻的,使用间接法:2105C - 所以选择的方法总数为()126105240N C C =-=(种)答案:240种例2:某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有( )A. 474种B. 77种C. 462种D. 79种思路:本题如果用直接法考虑,则在安排的过程中还要考虑两节连堂,并且会受到第5,6节课连堂的影响,分类讨论的情形较多,不易求解。
如果使用间接法则更为容易。
首先在无任何特殊要求下,安排的总数为39A 。
不符合要求的情况为上午连上3节:34A 和下午连上三节:33A ,所以不同排法的总数为:333943474A A A --=(种) 答案:A例3:2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 60B. 48C. 42D. 36思路:首先考虑从3位女生中先选中相邻的两位女生,从而相邻的女生要与另一女生不相邻,则可插空,让男生搭架子,因为男生甲不站两端,所以在插空的过程中需有人站在甲的边上,再从剩下的两个空中选一个空插入即可。
第一步:从三位女生中选出要相邻的两位女生:23C第二步:两位男生搭出三个空,其中甲的边上要进入女生,另外两个空中要选一个空进女生,所以共有12C 种选法。
第三步:排列男生甲,乙的位置:22A ,排列相邻女生和单个女生的位置:22A ,排列相邻女生相互的位置:22A所以共有212223222248N C C A A A =⋅⋅⋅⋅=种 答案:B例4:某班班会准备从甲,乙等7名学生中选派4名学生发言,要求甲,乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为( )A. 360B. 520C. 600D. 720思路:因为选人的结果不同会导致安排顺序的不同,所以考虑“先取再排”,分为“甲乙”同时选中和“甲乙只有一人选中”两种情况讨论:若甲乙同时被选中,则只需再从剩下5人中选取2人即可:25C ,在安排顺序时,甲乙不相邻则“插空”,所以安排的方式有:2232A A ⋅,从而第一种情况的总数为:2221532120N C A A =⋅⋅=(种),若甲乙只有一人选中,则首先先从甲乙中选一人,有12C ,再从剩下5人中选取三人,有35C ,安排顺序时则无要求,所以第二种情况的总数为:1342254480N C C A =⋅⋅=(种),从而总计600种 答案:C例5:从单词“equation ”中选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有________种思路:从题意上看,解决的策略要分为两步:第一步要先取出元素,因为“qu ”必须取出,所以另外3个元素需从剩下的6个元素中取出,即36C 种,然后在排列时,因为要求“qu ”相连,所以采用“捆绑法”,将qu 视为一个元素与其它三个元素进行排列:44A ,因为“qu ”顺序不变,所以不需要再对qu 进行排列。
综上,共有:3464480C A ⋅=种 答案:480例6:设有编号1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( )A. 30种B. 31种C. 32种D. 36种思路:本题可按照相同编号的个数进行分类讨论,有两个相同时,要先从5个里选出哪两个相同,有25C 种选法,则剩下三个为错位排列,有2种情况,所以2152N C =⋅,有三个相同时,同理,剩下两个错位排列只有一种情况(交换位置),所以3251N C =⋅,有四个相同时则最后一个也只能相同,所以31N =,从而235521131S C C =⋅+⋅+=(种)答案:B例7:某人上10级台阶,他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步;最多能跨3级台阶,称为三阶步,若他总共跨了6步,而且任何相邻两步均不同阶,则此人所有可能的不同过程的种数为( )A. 6B. 8C. 10D. 12答案:A思路:首先要确定在这6步中,一阶步,二阶步,三阶步各有几步,分别设为,,x y z N *∈,则有62310x y z x y z ++=⎧⎨++=⎩,解得:4320,2,4210x x x y y y z z z ===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩,因为相邻两步不同阶,所以符合要求的只有321x y z =⎧⎪=⎨⎪=⎩,下面开始安排顺序,可以让一阶步搭架子,则二阶步与三阶步必须插入一阶步里面的两个空中,所以共有2种插法,二阶步与三阶步的前后安排共有3种(三二二,三二三,二三三),所以过程总数为236N =⨯=答案:A例8:某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人负责英语导游,另外三人负责日语导游,则不同的选择方法有_______种思路:在步骤上可以考虑先选定英语导游,再选定日语导游。