普通高中数学课程标准
普通高中数学课程标准

普通高中数学课程标准普通高中数学课程标准一、课程目标普通高中数学课程旨在培养学生灵活运用数学方法解决实际问题的能力,提高他们的逻辑思维、分析推理和创造性思维能力。
通过数学学习,学生应当能够熟练掌握数学基本概念、方法和定理,具备良好的数学素养,并能将数学知识运用到实际生活中。
二、课程内容1. 数与代数(1)数系与数的性质:包括自然数、整数、有理数、无理数等数系的概念、性质及运算法则。
(2)代数ic:包括代数式、方程、不等式的概念、运算性质及解法。
(3)函数与方程:包括函数的概念、性质和图像,方程的根与解等内容。
2. 几何与变换(1)平面几何:包括点、线、平面、角度等基本几何概念,以及几何图形的性质和关系,平面几何的证明方法等。
(2)立体几何:包括空间几何的基本概念和性质、多面体、球体等内容。
(3)几何变换:包括平移、旋转、对称、相似等几何变换的概念和性质。
3. 概率与统计(1)概率:包括随机事件、概率的概念和性质、计数原理、组合与排列等内容。
(2)统计:包括统计调查、统计场合与统计分布、统计图和统计分析等内容。
4.数学应用(1)数学建模:培养学生分析和解决实际问题的能力,包括数学模型的建立、推导和评价等内容。
(2)数学思想与方法的应用:将数学知识与其他学科进行交叉应用,推动学生全面发展。
三、教学方法普通高中数学课程应该采用多样化的教学方法,注重培养学生的自主学习能力和合作学习能力。
包括但不限于传统课堂教学、案例教学、探究式学习、实验教学等方法,以培养学生的数学思维和问题解决能力。
四、课程评估普通高中数学课程评估应综合考察学生的知识水平、能力与素养。
采用多样化的评估方式,包括考试、作业、调查、实际操作、数学建模等,既注重考察学生的记忆和应用能力,也注重考察学生的创新和解决问题的能力。
综上,普通高中数学课程通过系统、科学、创新的教学,旨在培养学生的数学素养和问题解决能力,为其未来的学习和工作奠定坚实的数学基础。
普通高中数学课程标准解读

普通高中数学课程标准解读一、引言数学是一门重要的学科,对于学生的思维能力、逻辑推理能力和问题解决能力有着重要的培养作用。
为了提高数学教育的质量和水平,教育部制定了《普通高中数学课程标准》,该标准规范了数学课程的设置、教学内容和教学要求。
本文将对《普通高中数学课程标准》进行解读,以帮助学生和教师更好地理解和应用该标准。
二、数学课程标准的概述《普通高中数学课程标准》是为了适应现代教育改革和学科发展的需要,按照循序渐进、突出基础、培养创新的原则,全面调整和优化数学课程设置而制定的。
该标准由数学学科核心课程、选修课程和其他课程组成。
数学学科核心课程包括:数学分析、数学代数与数理逻辑、数学几何与实变函数、概率与统计和数学建模。
选修课程包括:微积分、线性代数、离散数学和数学思维与方法。
其他课程包括:数学实验、数学考试与评价。
三、数学课程标准的教学内容《普通高中数学课程标准》明确了各层次、各板块的教学内容和教学要求。
数学学科核心课程的教学内容主要包括基本概念、基本原理和基本技能。
例如,数学分析要求学生掌握数集、函数、极限和导数等基本概念和基本技能;数学代数与数理逻辑要求学生掌握矩阵、向量、行列式和逻辑推理等基本原理和基本技能。
选修课程和其他课程的教学内容则根据学生的特长和兴趣进行选择。
数学课程标准还明确了各个教学内容的学习深度和广度要求。
学习深度要求学生能够灵活运用所学的数学知识解决实际问题,培养学生的创新能力和思维能力。
学习广度要求学生能够了解数学的基本原理和基本概念,拓宽数学知识的广度和深度。
四、数学课程标准的教学要求《普通高中数学课程标准》提出了对于教学要求的详细规定,主要包括以下几个方面:1. 培养学生的数学思维能力。
数学思维的培养是数学教学的重要目标之一。
数学教学要求学生能够灵活运用数学知识解决问题,并培养学生的分析和推理能力。
2. 培养学生的应用能力。
数学是一门应用广泛的学科,数学教学要求学生能够将所学的数学知识应用于实际问题的解决中。
普通高中数学课程标准

普通高中数学课程标准1000字普通高中数学是我国高中阶段的一门学科,在整个高中阶段中占有重要的地位。
数学是一门以逻辑推理为基础的科学,是描述客观事物及其规律的数学语言和工具。
在现代社会中,数学广泛应用于经济、工程、计算机科学、物理等领域。
为了适应当前社会和经济的需求,针对高中生的数学学科标准已经几次修订,并定期进行更新。
目前,普通高中数学课程标准包括数学基本概念和基本方法、代数学、几何学、概率与统计学、数学思想方法5个模块。
一、数学基本概念和基本方法这一模块强调基础、基本概念的认识和数学方法的运用能力训练。
具体内容包括:1. 数学概念和符号:数学的基本概念、符号、术语及运算法则的掌握;2. 数学运算和变量:数学的四则运算、比例、百分数、分数等基本运算的运用,代数式及其简化、方程及其应用、不等式的掌握;3. 几何图形与变换:几何图形的基本要素的认识,几何图形的运用、相似性、对称性等常规变换的运用;4. 数学模型和应用:数学建模和应用中的问题分析和求解方法,以及数学模型的建立和求解能力。
二、代数学代数学是普通高中数学中的核心模块,它强调基本代数概念、代数运算法则及其运用能力训练。
具体内容包括:1. 数与式:实数的基本性质、异于、绝对值,代数式的基础表示及加减乘除等运算法则;2. 一次函数和一次不等式:一次函数的基本概念及其表达式、图像、斜率的计算,一次不等式的求解及其应用;3. 二次函数和二次方程:二次函数的基本概念及其表达式、图像、最值、零点及其应用,二次方程求解方法及其应用等。
三、几何学几何学是普通高中数学课程中的另一个核心模块,强调几何概念、性质及其证明方法的学习和掌握。
具体内容包括:1. 几何基本概念:点、线、面、角、三角形、四边形、圆及其部分概念、用符号表示等基础知识;2. 平面几何:平面图形的性质和构造,几何证明方法及其运用;3. 空间几何:空间图形的基本概念、性质及其构造方法;4. 向量几何:向量的基本概念、向量运算及其应用;5. 三角学:三角函数、解三角形以及应用。
普通高中数学课程标准细目表

普通高中数学课程标准细目表
《普通高中数学课程标准》是教育部编写,人民教育出版社出版发行的一本数学教程。
该标准对高中数学课程进行了详细的规定,包括课程目标、课程内容、课程实施等方面的要求。
具体来说,该标准将高中数学课程分为必修课程、选择性必修课程和选修课程三个部分。
必修课程是所有高中学生都必须学习的数学内容,包括数学1、数学2、数学3、数学4、数学5等五个模块。
选择性必修课程是部分学生
可以根据自己的兴趣和未来专业需求选择的数学内容,包括数学6、数学7、数学8等三个模块。
选修课程则是更加灵活的数学课程,学生可以根据自己的兴趣和需求选择,包括数学A、数学B、数学C等三个模块。
在课程内容方面,该标准对每个模块的内容都进行了详细的列举和规定,包括知识点、能力要求、教学建议等方面的内容。
同时,该标准也强调了数学的应用和实践,提倡学生通过数学实验、课题探究等方式来加深对数学的理解和运用。
在课程实施方面,该标准要求教师根据学生的实际情况和教学要求,选择合适的教学方法和手段,注重培养学生的数学思维能力和解决问题的能力。
同
时,该标准也提倡教师采用信息技术手段,如数学软件、计算机模拟等,来辅助教学和提高教学效果。
总之,《普通高中数学课程标准》对高中数学课程进行了全面而详细的规定,旨在提高学生的数学素养和应用能力,为学生未来的学习和工作打下坚实的基础。
2024最新高中数学新课程标准教育部部编版

2024最新高中数学新课程标准教育部部编版一、前言根据教育部《高中数学课程标准(2020年版)》的精神,结合我国教育发展的实际需求,我们进行了充分的研究和论证,制定出2024年最新高中数学新课程标准。
本课程标准旨在培养学生的数学核心素养,提高学生的数学思维能力,使学生在高中阶段掌握必要的数学知识,为大学阶段及未来的发展奠定坚实的基础。
二、课程目标1. 知识与技能:使学生掌握高中阶段必要的数学知识,理解数学概念、原理和方法,提高运用数学知识解决实际问题的能力。
2. 过程与方法:培养学生的数学思维能力,学会用数学的眼光观察世界,提高逻辑推理、数据分析、空间想象等数学素养。
3. 情感态度与价值观:激发学生学习数学的兴趣,树立自信心,认识数学在科学技术、社会经济和文化发展中的重要作用。
三、课程内容1. 必修课程:包括函数与极限、导数与微分、积分与面积、概率与统计、几何、代数等内容。
2. 选择性必修课程:包括概率论、线性代数、离散数学、数学分析、复变函数等内容。
3. 选修课程:包括数学建模、数学竞赛、数学史、应用数学等内容。
四、教学建议1. 重视概念的教学,让学生在理解概念的基础上掌握数学知识。
2. 注重培养学生的数学思维能力,鼓励学生进行自主探究、合作学习。
3. 加强数学应用能力的培养,让学生学会用数学知识解决实际问题。
4. 注重数学文化的传承,让学生了解数学的发展历程,感受数学的美。
5. 合理运用现代信息技术,提高教学效果。
五、评价建议1. 注重过程性评价,关注学生在学习过程中的表现和进步。
2. 强化学业成绩评价,全面、客观地评价学生的数学素养。
3. 提倡多元化评价方式,充分调动学生的积极性。
4. 定期进行课程评价,及时调整教学策略。
六、实施要求1. 教师应具备较强的数学专业素养,熟练掌握课程标准。
2. 教师应关注学生的个体差异,因材施教。
3. 教师应注重教学资源的开发与利用,提高教学质量。
4. 学校应提供良好的数学学习环境,保障教学设施和设备。
普通高中数学课程标准

普通高中数学课程标准普通高中数学课程标准是对普通高中数学教育的总体要求和基本规定,是指导普通高中数学教学和学习的依据。
数学是一门基础学科,它不仅是一种科学的思维方式,更是一种强大的工具,对于培养学生的逻辑思维能力、分析问题和解决问题的能力具有重要的作用。
普通高中数学课程标准的制定,旨在培养学生的数学素养,提高学生的数学素质,为学生的终身学习和发展打下坚实的基础。
首先,普通高中数学课程标准要求学生掌握数学的基本概念和基本方法。
这包括数与代数、几何与图形、函数与方程、数学语言与推理等方面的基本知识。
学生应该具备良好的数学思维和基本的数学技能,能够运用数学的基本概念和基本方法解决生活中的实际问题。
其次,普通高中数学课程标准要求学生具备数学建模和解决实际问题的能力。
数学建模是数学与实际问题相结合的一种重要方式,它要求学生能够将所学的数学知识应用到实际问题中,通过建立数学模型、分析问题、解决问题,培养学生的创新精神和实际应用能力。
再次,普通高中数学课程标准要求学生具备数学思维和数学方法的综合运用能力。
数学思维是指学生在学习和解决问题过程中所表现出来的思维方式和思维能力,包括逻辑推理、数学想象、数学抽象等。
数学方法是指学生在解决问题时所运用的数学原理、数学定理和数学技巧。
学生应该具备综合运用数学思维和数学方法解决问题的能力,培养学生的创新意识和批判性思维。
最后,普通高中数学课程标准要求学生具备数学学科素养和数学学习能力。
数学学科素养是指学生在学习数学的过程中所应具备的数学态度、数学价值观和数学修养,包括数学兴趣、数学信心、数学责任感等。
数学学习能力是指学生在学习数学的过程中所应具备的自主学习、合作学习和终身学习的能力,包括自主思考、自主学习、团队合作、信息获取和信息处理等。
总之,普通高中数学课程标准旨在培养学生的数学素养,提高学生的数学素质,为学生的终身学习和发展打下坚实的基础。
学校和教师应该根据数学课程标准的要求,合理设计教学内容和教学方法,引导学生主动参与学习,培养学生的数学思维和数学能力,促进学生的全面发展。
(2024年汇编)高中数学课程标准(全国版)

(2024年汇编)高中数学课程标准(全国版)一、前言根据《中华人民共和国教育法》和《中华人民共和国普通高中数学课程标准(2017年版)》,结合我国高中数学教育的实际情况,特制定《(2024年汇编)高中数学课程标准(全国版)》(以下简称《课程标准》)。
本《课程标准》旨在进一步明确高中数学课程的性质、目标、内容和实施建议,以期提高我国高中数学教育质量,培养适应新时代要求的创新型人才。
二、课程性质与目标2.1 课程性质高中数学课程是全体学生的基础教育阶段的重要组成部分,具有基础性、发展性和应用性。
课程内容主要包括:必修课程、选择性必修课程和选修课程。
必修课程是全体学生必须研究的课程,选择性必修课程和选修课程是为满足学生个性发展和多样化研究需求而设置的课程。
2.2 课程目标通过高中数学课程的研究,学生能:1. 掌握数学的基本概念、原理、方法和技能;2. 培养逻辑思维、抽象思维、创新思维和批判性思维能力;3. 增强数学应用意识和实践能力;4. 形成良好的研究惯和态度,提高自主研究、合作研究和探究研究的能力;5. 了解数学的历史和文化,增强数学的审美意识。
三、课程内容3.1 必修课程必修课程包括:函数与导数、积分与微分、立体几何、解析几何、概率统计、数列、方程(组)与不等式(式组)。
3.2 选择性必修课程选择性必修课程包括:应用数学、数学思维、数学探究、数学文化。
3.3 选修课程选修课程包括:大学先修课程、竞赛课程、应用课程、拓展课程。
四、实施建议4.1 教学建议1. 注重学生数学素养的培养,充分运用多种教学手段和现代教育技术,提高教学质量;2. 创设问题情境,引导学生开展自主研究、合作研究和探究研究,培养学生的创新能力和批判性思维能力;3. 关注学生的个体差异,实施差异化教学,满足不同学生的研究需求;4. 加强与实际生活和学科领域的联系,提高学生的数学应用意识和实践能力。
4.2 评价建议1. 建立以数学学科核心素养为导向的评价体系,全面评价学生的数学研究过程和结果;2. 采用多元化的评价方式,包括过程性评价、终结性评价和自我评价等;3. 注重评价的反馈作用,及时调整教学策略,促进学生数学素养的提升。
高中数学课程标准(2024年版)

高中数学课程标准(2024年版)高中数学课程标准(2024年版)前言高中数学课程标准(2024年版)是根据我国教育部门的相关要求和教育教学的实际需要制定的,旨在指导高中数学课程的编写、实施和评价,促进学生全面发展,培养学生的数学核心素养。
课程目标总体目标1. 学生会使用数学语言描述现实世界中的现象和问题。
2. 学生能运用数学逻辑进行思考和推理,解决实际问题。
3. 学生会运用数学知识和方法解决生活中的问题,体验数学在生活中的应用。
4. 学生能运用数学知识和方法解决学科间的综合问题。
5. 学生能参与数学探究活动,发展创新思维和团队合作能力。
具体目标1. 知识与技能- 掌握高中阶段必要的数学基础知识。
- 学会使用数学语言描述现实世界中的现象和问题。
- 学会运用数学逻辑进行思考和推理。
- 学会运用数学知识和方法解决实际问题。
2. 过程与方法- 学会通过数学探究活动,发现和提出问题。
- 学会运用数学知识和方法进行解决问题的方法。
- 学会运用数学知识和方法进行学科间的综合。
- 学会通过小组合作和交流,提高解决问题的能力。
3. 情感态度与价值观- 感受数学在生活中的应用,提高学习数学的兴趣。
- 认识数学对于个人和社会发展的价值。
- 培养积极的学习态度和良好的学习习惯。
课程内容1. 必修课程- 集合与函数的概念- 实数与函数- 函数的性质- 方程与不等式- 三角函数- 数列- 空间几何- 解析几何- 统计与概率2. 选择性必修课程- 线性代数- 概率论与数理统计- 数学建模- 数学竞赛实施建议1. 教学建议- 创设情境,激发学生学习兴趣。
- 注重学生基础知识的培养。
- 引导学生参与数学探究活动。
- 注重学科间的综合。
2. 评价建议- 注重过程性评价和终结性评价相结合。
- 关注学生的数学思维能力和创新能力。
- 采用多元化的评价方式,如考试、作业、课堂表现等。
3. 教材编写建议- 符合课程标准的要求。
- 注重知识的系统性和逻辑性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中数学课程标准(实验稿)普通高中数学课程标准研制组2002年11月第一部分前言数学是研究空间形式和数量关系的科学,也是研究模式与秩序的科学。
数学是描述、探索自然和社会规律的科学语言和研究工具,数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。
数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。
数学是人类文化的重要组成部分,数学素质已成为公民所必须具备的一种基本素质。
数学教育应该体现数学的价值和特点,并把当今数学发展所体现的理念适当地反映到新的高中数学课程中。
一、课程性质高中数学课程是义务教育后普通高级中学的一门主要课程。
它是参加社会生产、处理日常生活的基础,也是学习高中物理、化学、技术等课程和进一步学习的基础,对于认识数学的科学和文化价值,形成理性思维、发展智力,培养学生的创新意识和应用意识有积极作用。
高中数学课程有助于培养学生抽取事物的数、形属性的敏锐意识,利用抽象模式、结构研究事物的思维方式,借助符号和逻辑系统进行严密演绎的探索习性;可以对学生进行美感熏陶,培养学生的审美意识;为学生的终生发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要作用。
二、课程的基本理念通过国际比较,剖析我国数学教育发展的历史与现状,从时代需求、国民素质、个性发展、全球意识等各个方面综合思考,形成了《普通高中数学课程标准》(以下简称《标准》)的基本理念。
1.构建共同基础,提供发展平台高中教育属于基础教育。
高中数学课程应具有基础性,它包括两方面的含义:一.在义务教育阶段之后,为我国公民适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;二.为进入高一级学校的学生提供必要的数学准备。
高中数学课程由必修课程和选修课程组成,必修课程应当满足所有学生共同的数学需求;为有不同需求的学生提供了选修课程,它仍然应是学生发展所需要的基础性数学课程。
2.提供多样课程,适应个性选择与义务教育阶段不同,高中数学课程应具有多样性与选择性,使不同的学生在数学上得到不同的发展。
《标准》应为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考。
《标准》应为学生提供选择和发展的空间,学生可以在适当的指导下进行自主选择,初步选择以后还可以进行适当的转换、调整。
同时,高中数学课程也应给学校和教师留有一定的选择空间,他们可以根据自身的条件和学生的基本需求,制定课程发展计划,不断地丰富和完善供学生选择的课程。
3.有利于形成积极主动、勇于探索的学习方式学生对数学概念、结论、技能的学习不应只限于接受、记忆、模仿和练习,《标准》还提倡自主探索、动手实践、合作交流、阅读自学等学习数学的方式。
这些方式有助于发挥学生学习的主观能动性,使学生的学习过程成为在教师引导下的“再创造”过程。
同时,《标准》设立“数学探究”、“数学建模”等学习活动,进一步为学生形成积极主动的、多样的学习方式创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯,发展创新意识。
4.有利于提高学生的数学思维能力提高学生的数学思维能力是数学教育的基本目标之一。
人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、演绎证明、反思建构等思维过程。
这些过程是数学思维能力的具体体现,它们有助于学生对客观事物中蕴涵的数学模式做出思考和判断,数学思维能力在形成理性思维能力中发挥着独特的作用,有助于学生不迷信权威、不感情用事、不含糊马虎。
《标准》自始至终力求体现有利于提高学生数学思维能力这一基本理念。
5.发展学生的数学应用意识20世纪下半叶以来,数学应用的巨大发展是数学发展的显着特征之一。
当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。
我国的数学教育(包括大学数学教育)在很长一段时间里对于数学与实际的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。
近几年来,我国大学、中学数学建模的实践表明,开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识。
高中数学课程应提供一些基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立数学应用的专题课程。
《标准》力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,感受数学的实用价值,促进学生逐步形成和发展数学应用意识,提高实践能力。
6.用发展的眼光认识“双基”我国数学教学具有重视基础知识教学、基本技能训练和能力培养的传统,新世纪的高中数学课程应发扬这种传统。
与此同时,随着时代的发展,特别是数学的广泛应用和现代信息技术的发展对社会各个领域的影响,数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。
例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识作为新的数学基础知识和基本技能。
同时,应删减繁琐计算、人为技巧化的难题和枝微末节的内容。
7.返璞归真,注意适度的形式化形式化是数学的基本特征之一。
在数学教学中,学习形式化的表达是一项基本要求。
但是,数学教学不能过度地形式化,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。
数学的现代发展也表明,全盘形式化是不可能的。
因此,数学教学应该“返璞归真”,根据不同教学内容的要求,努力揭示数学的本质。
数学课程“要讲推理,更要讲道理”,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论的形成过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。
8.体现数学的文化价值数学是人类文化的重要组成部分,不同的民族有不同的数学传统。
数学课程应适当介绍数学的历史、应用和发展趋势;数学对推动社会发展的作用;数学的社会需求;社会发展对数学发展的推动作用;数学科学的思想体系;数学的美学价值;数学家的创新精神。
数学课程应帮助学生了解数学在人类文明发展中的作用;逐步形成正确的数学观。
为此,《标准》提倡在高中数学课程内容中体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,设立“数学史选讲”、“现实社会中的数学”等专题选修课程。
9.注重信息技术与数学课程的整合现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等产生深刻的影响。
《标准》提倡实现信息技术与课程内容的有机整合,注意把算法融入到数学课程的各个相关部分。
提倡利用信息技术来呈现以往教学中难以呈现的课程内容,尽可能使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合。
鼓励学生运用计算机、计算器等进行探索和发现。
10.建立合理、科学的评价机制数学课程的重大改变必将引起评价体系的深刻变化,评价改革应当与数学课程改革同步进行,包括评价理念、评价体制、评价内容、评价形式的改革。
评价应在公平、公正的原则下,既要关注学生学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感态度的变化。
评价应建立多元化的目标,关注学生个性与潜能的发展。
例如,过程性评价应关注对学生理解数学概念、数学思想等过程的评价,关注对学生提出、分析、解决问题等过程的评价,特别对于数学建模、数学探究等学习活动,建立相应的过程评价内容和方法。
评价的改革是这次基础教育改革的重要组成部分,应进一步解放思想,创建适合高中课程改革需要的新的评价制度。
三、课程设计思路在《标准》制定的过程中,力求将数学课程改革的基本理念与课程框架设计、课程内容确定、课程实施建议有机地结合起来。
高中数学课程框架1.课程框架高中数学课程由6个系列课程构成,分别是A,B,C,D,E,F系列。
A,B,C系列由若干个模块组成,每个模块2个学分(36学时);D,E,F系列由专题组成,每个专题1学分(18学时),每2个专题组成1个模块。
课程结构如图所示:注:上图中代表专题,其中2个专题组成1个模块。
6个系列的高中数学课程分为必修课程和选修课程两部分。
2.必修课程必修课程是每个学生都必须学习的数学内容,包括A1,A2,A3,A4,A5五个模块。
A1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数);A2:空间几何初步、解析几何初步;A3:算法初步、统计、概率;A4:基本初等函数II(三角函数)、解三角形、数列;A5:平面向量、三角恒等变换、不等式。
3.选修课程对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。
选修课程由B,C,D,E,F系列课程组成。
◆B系列课程:由B1,B2两个模块组成。
B1:常用逻辑用语、圆锥曲线与方程、导数及其应用;B2:统计案例、推理与证明、数系扩充与复数的引入、框图。
◆C系列课程:由C1,C2,C3三个模块组成。
C1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何;C2:导数及其应用、数系的扩充与复数的引入;C3:计数原理、统计、概率。
◆D系列课程(文化系列课程):由D1,D2,D3,D4等4个专题组成。
D1:数学史选讲;D2:现实社会中的数学;D3:中学数学思想方法;D4:数学问题集锦。
◆E系列课程(应用系列课程):由E1,E2,E3,E4等4个专题组成。
E1:优选法与实验设计;E2:统筹法与图论;E3:风险与决策;E4:数字电路设计与代数运算。
◆F系列课程(拓展系列课程):由F1,F2,F3,F4,F5,F6,F7,F8,F9,F10等10个专题组成。
F1:几何证明; F2:不等式;F3:参数方程与极坐标;F4:矩阵与变换;F5:数列与差分; F6:尺规作图与数域扩充;F7:欧拉公式与闭曲面分类; F8:初等数论初步;F9:对称变换与群;F10:球面几何与非欧几何。
4.关于课程设置的说明◆课程设置的原则与意图必修课程内容确定的原则是:满足未来公民的基本数学需求;为学生进一步的学习提供必要的数学准备。
选修课程内容确定的原则是:为学生进一步学习、获得较高数学修养奠定基础;满足学生的兴趣和对未来发展的愿望。
B系列课程是为那些希望在人文、社会科学等方面发展的学生而设置的,C系列课程则是为那些希望在理工、经济等方面发展的学生设置的。
B,C系列是选修课中的基础性内容。
D系列课程是数学文化系列课程。
是为扩展学生的数学视野,提高学生对数学文化价值的认识,并借此向社会普及数学科学而设计的。