《概率论与数理统计》第五章 数理统计的基本概念n
概率论与数理统计的基本概念和原理简介

概率论与数理统计的基本概念和原理简介概率论和数理统计是数学中重要的分支学科,它们在现代科学和生活中扮演着重要角色。
本文将对概率论和数理统计的基本概念和原理进行简要介绍。
一、概率论的基本概念和原理1. 随机试验随机试验是指具有以下特点的试验:在相同条件下可以重复进行,每次试验的结果不确定,但所有可能结果都是事先确定的且互不相容。
2. 随机事件与样本空间试验的每个可能结果称为基本事件,基本事件的集合称为样本空间。
样本空间中的子集称为随机事件。
3. 概率的定义一般来说,事件发生的概率是指该事件发生的可能性大小。
概率的定义可以通过频率的概念来解释:事件A发生的概率等于在多次重复试验中,事件A发生的频率趋近于一个常数。
4. 概率的性质概率具有以下性质:- 0 ≤ P(A) ≤ 1,概率值的取值范围在0到1之间。
- P(Ω) = 1,样本空间发生的概率为1。
- 对于任意的事件序列 {Ai},若相互不相容,则有 P(A1 ∪ A2 ∪ ... ∪ An) = P(A1) + P(A2) + ... + P(An)。
5. 概率的计算方法计算概率的常用方法有古典概型法、几何概率法、频率概率法和叠加原理等。
二、数理统计的基本概念和原理1. 总体与样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
通过对样本的统计分析,可以推断总体的性质。
2. 统计量统计量是样本的函数,用于刻画样本的某种性质。
常见的统计量有样本均值、样本方差等。
3. 参数估计参数估计是通过样本统计量推断总体参数的值。
常用的参数估计方法有点估计和区间估计。
4. 假设检验假设检验是指对于总体参数提出一个假设,并通过对样本进行统计推断来判断是否拒绝假设。
假设检验分为单侧检验和双侧检验。
5. 相关与回归分析相关分析用于刻画两个变量之间的线性关系,回归分析用于建立一个变量与其他变量之间的函数关系。
三、概率论与数理统计的应用领域概率论和数理统计广泛应用于各个领域:1. 金融风险管理概率论和数理统计对金融领域的风险管理起着关键作用,可以通过建立数学模型对金融市场进行预测和评估。
第五章《概率论与数理统计教程》课件

试决定常数 3.
X ,Y
C
使得随机变量 cY 服从分布
2
分布。
相互独立,都与 N ( 0 , 9 ) 有相同分布, X 分别是来自总体
X ,Y
1
, X 2 , , X 9和
Y1 ,Y 2 , ,Y 9
的样本,
Z
9
X
i
i1
6 - 23
Y
i1
9
则Z 服从—— ,自由度为——。
2 i
4.
X1, X 2, X 3, X 4
是来自总体
X ~ N ( , )
2
的样本,则随机变
量 Y
X3 X4
服从——分布,其自由度为———。
2
(X i )
i1
2
5.
设
X 1 , X 2 , , X 10
是来自总体 X
~ N ( ,4 )
2
的样本, ( S 2 P
a ) 0 .1
一. 单个正态总体的统计量的分布
X 1 , X 2 , X n是来自正态总体 ~ N ( , 2 )的样本, X
X , S 分别是样本均值和样本 方差
2
定理1
X
n
1
n
X i ~ N ( ,
n
2
);
i1
定理2 U
1
X
/
~ N ( 0 ,1 );
n
定理3
6 - 18
定理7
当 1
2
2 2
2 2 时, 令 S w
( n1 1) S 1 ( n 2 1) S 2
2
《概率论与数理统计》习题第五章数理统计的基本概念

第五章 数理统计的基本概念一. 填空题1. 设X 1, X 2, …, X n 为来自总体N(0, 2), 且随机变量)1(~)(221χ∑==ni iX C Y , 则常数C=___.解.∑=ni iX1~ N(0, n 2),)1,0(~1N n Xni iσ∑=所以21,1σσn c n c ==.2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且243221)43()2(X X b X X a Y -+-=,则a = ______, b = ______时, Y 服从2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100))1,0(~20221N X X -, )1,0(~1004343N X X -201,201==a a ; 1001,1001==b b . Y 为自由度2的2分布.3. 设X 1, X 2, …, X n 来自总体2(n)的分布,则._____)(______,)(==X D X E解. 因为X 1, X 2, …, X n 来自总体2(n), 所以E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n),)(n X E = 22)()(221=⋅==∑=nnn nX D X D ni i二. 单项选择题1. 设X 1, X 2, …, X n 为来自总体N(0, 2)的样本,则样本二阶原点矩∑==n i i X n A 1221的方差为 (A)2 (B) n 2σ (C) n 42σ (D) n4σ 解. X 1, X 2, …, X n 来自总体N(0, 2), 所以,1)(),1(~)(222=σχσiiX E X 2)(2=σiX Dnn nn X D nX D A D ni ini i4242214212222))(()()(σσσσ=⋅===∑∑==. (C)是答案.2. 设X 1, X 2为来自正态总体N(,2)的样本, 则X 1 + X 2与X 1-X 2必 (A) 线性相关 (B) 不相关 (C) 相关但非线性相关 (D) 不独立 解. 假设 Y 1 = X 1 + X 2, Y 2 = X 1-X 2 所以 E(Y 2) = E(X 1)-E(X 2) = 0.cov(Y 1, Y 2) = E(Y 1Y 2)-E(Y 1)E(Y 2) = E(0)()()22212221=-=-X E X E X X . (B)是答案.3. 设X 服从正态分布N(0, 22), 而X 1, X 2, …, X 15为来自总体X 的简单随机样本, 则随机变量)(221521121021X X X X Y ++=所服从的分布为 (A) 2(15) (B) t(14) (C) F(10, 5) (D) F(1, 1)解.)10(~4221021χX X +, )5(~42215211χX X + 所以 )5,10(~204021521121021F X X X X ++++ , 即 )5,10(~)(221521121021F X X X X Y ++= (C)是答案.三. 计算题1. 设X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本,求∑=>1012)44.1(i iXP .解. 因为X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本, 所以)10(~3.0101222∑=i i X χ ()44.1(1012P X P i i=>∑=1.0)16)10(()09.044.13.0101222=>=>∑=i i P X χ 2. 从一正态总体中抽取容量为10的一个样本, 若有2的样本均值与总体均值之差的绝对值在4以上, 试求总体的标准差. 解. 因为总体X 服从N(,2),所以)1,0(~10/N X σμ-. 由02.0)4|(|=>-μX P 知 02.0)104|10/(|=>-σσμX P即 99.0)104(,01.0)104(=Φ=-Φσσ查表得.43.533.2104,33.2104===σσ3. 设总体X ~N(72, 100), 为使样本均值大于70的概率不小于0.95 , 问样本容量至少应取多大?解. 假设样本容量为n, 则)1,0(~1072),100,72(~N nX nN X -由 95.0)70(≥>X P 得P(n X 1072->95.0)107270≥-n 所以 0625.68,65.15,95.0)5(≥≥≤Φn nn.4. 设总体X 服从N(, 4), 样本(X 1, X 2, …, X n )来自X, X 为样本均值. 问样本容量至少应取多大才能使i. 1.0)|(|2≤-μX E ii. 95.0)1.0|(|2≥≤-μX P解. i. 1.04)(1)()|(|2≤===-nX D n X D X E μ 所以 n ≥ 40. ii. )1,0(~2),4,(~N nX nN X μμ-. 所以 P X P =≤-)1.0|(|μ(95.0)21.0|2|≥≤-nnX μ975.0)201(≥Φn , 查表得 ,96.1201≥n n ≥ 1537 5. 设∑==ni i X n X 11, 证明:i.∑=-ni iX12)(μ=∑=---ni i X n X X 122)()(μ;ii.∑∑==-=-ni ni i iX n X X X12122)()(.解. i.=-∑=ni iX12)(μ∑=-+-ni iX X X12)(μ=2)(12+-∑=ni iX X∑=+--ni i X X X 1))((μ∑=-ni X 12)(μ=2)(12+-∑=ni iX X∑=+--ni i X n X X 1))((μ2)(μ-X n=∑=---ni iX n X X122)()(μii.=-∑=ni i X X 12)(21121222)2(X n X X X X X X X ni i ni ini i i+-=+-∑∑∑====22122X n X n Xni i+-∑==212)(X n X ni i ∑=-。
概率论与数理统计第五章数理统计的基础知识

习题5-17、设总体X 的分布函数为()F x ,密度函数为()f x ,12,,,n X X X 为来自总体X 的样本,记(1)1min()i i nX X ≤≤=,()1max()n i i nX X ≤≤=,求(1)(),n X X 各自的分布函数与密度函数。
解:记(1)X 的分布函数和密度函数分别为(1)(1)(),()F x f x ,()n X 的分布函数和密度函数分别为()()(),()n n F x f x ,则(1)12(){min()}1{min()}1{,,...}i i n F x P X x P X x P X x X x X x =≤=->=->>>1[1()]n F x =--,所以1(1)(1)()[()][1()]()n f x F x n F x f x -'==-。
()12(){max()}{,,...}[()]n n i n F x P X x P X x X x X x F x =≤=≤≤≤=,所以1()()()[()][()]()n n n f x F x n F x f x -'==。
8、设总体X 服从指数分布()E λ,12,X X 是容量为2的样本,求(1)X ,(2)X 的概率密度。
解:由于总体X 服从指数分布()E λ,故X 的概率密度函数与分布函数分别为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩,1,0()0,0x e x F x x λ-⎧->=⎨≤⎩ 所以,(1)X 的概率密度为2121(1)2[1(1)],02,0()[1()]()0,00,0x x x n e e x e x f x n F x f x x x λλλλλ-----⎧⎧-->>=-==⎨⎨≤≤⎩⎩, (2)X 的概率密度为211(2)2(1),02(1),0()[()]()0,00,0x x x x n e e x e e x f x n F x f x x x λλλλλλ------⎧⎧->->===⎨⎨≤≤⎩⎩。
第五章数理统计的基础知识

第五章数理统计的基础知识在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。
知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。
在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。
但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。
例如:1、某种电子元件的寿命服从什么分布是完全不知道的。
2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0—1)分布,但其中的参数p 未知。
对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数.数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数.数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。
数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料.二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。
第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。
总体中所包含的个体的个数称为总体的容量. 容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系。
在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X .例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体.但在实际问题中,我们仅仅关心灯泡的使用寿命(记X 表示该批灯泡的寿命)。
概率论数理统计基础知识第五章

C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}
Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1
第五章数理统计的基本概念和抽样分布精品PPT课件

n
pn(x1,x2, ,xn)
p(xi)
n
xi
en
i1
,
xi 0
i1
0,
其它
Байду номын сангаас
例2 设总 X服 体从两B(点 1,p)分 其 , 0 布 中 p1, (X1,X2, ,Xn)是来自总 ,求 体样 的 (X1本 ,X 样 2, 本 ,Xn)的分.布律
解 总体X的分布律为 P {X i} p i(1 p )1 i (i0,1)
设 x1,x2, ,xn是 相 应X于 1,X2,样 ,Xn 本 的 样,则 本称 f值 (x1,x2, ,xn)是f(X1,X2, ,Xn) 的 观.察 值
例1 设X1,X2,X3是来自N 总 (体 ,2)的一个 样本 ,其中 为已,知 2为未,判 知断下列各式
些是统,计 哪量 些不 ? 是
T1X1,
函数F(x)称为一个总体.
定义5.2
设X是 具 有 分F布 (x)函 的数 随 机,若 变X量 , X,, Xn是 具 有 同 一 F 分(x)布 、函 相数 互 独 立 的 随 机 变 ,则量称 X, X,, Xn为 从 总 X(或 体总 体
F(x))中 抽 取 的n容 的量 简为 单 随,机 简样 称 样本本 .
其 x 1 ,x 中 2 , ,x n 在{ 0 集 ,1 }中 合 .取值
三、统计量
由样本推断总体特征,需要对样本进行 “加工”,“提炼”.这就需要构造一些样本的 函 数1,它. 统把计样量本的中定所义含5的.3 信息集中起来.
设X1,X2,,Xn是来自X 总的体一个,样本 f(X1,X2,,Xn)是X1,X2,,Xn的函,若 数f中 不含未知, 则 参称 数 f(X1,X2,,Xn)是一个统 计量 .
《概率论与数理统计》笔记

《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率的稳定值
统计推断与概率论的区别
• 在概率论中,我们研究的随机变量的分布都是假设已 知的,在这一前题下去研究它的性质、特点和规律性。 例如求出它的数字特征,讨论随机变量函数的分布, 介绍常用的各种分布等。
• 统计推断以概率论为理论基础,根据试验或观察得到 的数据,来研究随机现象,对研究对象的客观规律性 作出种种合理的估计和判断。
(1)若总体X的分布函数为F(x),则样本( X1X 2,L , X n )
n
的分布函数为 F(xi ) i 1
(2)若X为离散型随机变量,概率分布律为P( X xk )
n
pk ,则样本( X1X 2,L , X n )的联合分布律为 pki i 1
(3)若X为连续型随机变量,概率分布律为f (x),则
于总体 X 的未知参数; 3º 统计量是样本的函数,它是一个随机变
量,统计量的分布称为抽样分布.
2020/4/7
P135 例5.4 31
•几个常用统计量的定义 (1) 样本矩
设 X1, X2, , Xn 是来自总体的一个样本, x1, x2, , xn 是这一样本的观察值.
试验设计
数理统计
统计推断
参数估计 假设检验
统计推研断究:如何加工、处理数据,从而
对所考察对象的性质做出尽可能精确和可靠的 推断.
2020/4/7
8
统计学的研究内容
• 研究如何用有效的方法收集和整理数据的抽样调查、试 验设计和描述性统计;
• 研究如何用有效的方法对所得的数据进行分析、研究, 从而对所研究的对象的性质 、特点作出推断的统计推 断(“样本”推断“总体”)。
2020/4/7
12
• 统计学中组成总体的个体不仅可以是人、物、 组织单位等实体,也可以是现象、事件、活动 过程等非实体。但在个体是非实体时,总体通 常不是有形的,而是概念性的。
• 例如,要判断一枚硬币是否均匀,先对这枚硬 币进行100次投掷试验,然后根据这100次投掷 试验的结果做出这枚硬币是否均匀的结论。这 个统计问题的个体是对这枚硬币的每次投掷试 验,这种个体显然是个活动过程。这个统计问 题的总体是所有可能的对这枚硬币的投掷试验, 这个总体显然是概念性的。
• 随机样本与样本值
样本的定义: 从总体X中,随机地抽取n个个体:X1, X2, , Xn
称为总体X的一个样本,记为 ( X1, X2 ,L , Xn ) 样本中所包含个体的总数n称为样本容量.
样本值: 每一次抽取所得到的n个具体数值:( x1 , x2 ,L , xn )
称为一个样本值(观察值)。
样本与抽样分布
• 统计推断就是通过从总体中抽取一部分个体, 根据获取的数据来对总体分布得出推断的。
• 被抽出的部分个体叫做总体的一个样本。
• 显然,样本就是总体的一个有限子集。
• 若将总体定义为随机变量 X ,总体分布就是 随机变量 X的概率分布,总体数量特征就是随 机变量 X 的数字特征。
• 这时,从总体中抽取一个个体,就是对总体X 进行一次观察并记录其结果。
• 依据推断形式不同,统计推断可分为估计和假设检验两 种,它们构成了统计学的基础 。
• 依据不同的理论模型,统计推断可分为许多不同的分支 学科。比如,参数和非参数、线性和非线性、方差分析、 回归分析、时间序列分析、多元统计分析等等。
• 依据对概率的不同解释,统计推断可分为频率统计和贝
叶斯统计。对某件事情发
• 通过上面的例子大家对统计问题应该有了初步的了解。 下面我们将介绍上面例子中涉及到的几个统计学的基 本概念,这些概念是对统计学的本质和特征的概括和 反映,是统计思维网络上的结点。掌握了这些基本概 念后,大家对统计问题会有更深刻的认识和理解。
2020/4/7
7
概括地讲,数理统计研究以有效的方式 采集、 整理和分析受到随机因素影响的数据,并对所考 察的问题做出推断和预测,直至提供依据和建议.
2020员搜集一个消费者的样本,
要求样本中每个人回答对某商品的观点。 从得到的这些样本数据中,市场分析人员 必须做出这种商品有无足够需求量的决定。 若存在足够需求,分析人员还要选择包括 设计、价格及市场范围。所有这些问题都 可以从调查的样本数据所提供的信息中得 到回答。
2020/4/7
30
设( x1, x2 , , xn )是样本( X1, X 2 , , X n ) 的观察值 则称f ( x1, x2 , , xn )是 f ( X1, X2, , Xn ) 的观察值
注 1统计量 f ( X1, X2, , Xn )是随机变量; 2°统计量用于统计推断,故不应含任何关
11
§5.1 总体与样本
• 总体与个体
总体: 在数理统计中研究对象的全体 个体: 组成总体的每个单元
例如在研究某批灯泡的平均寿命时,该批灯泡的全 体就组成了总体,而其中每个灯泡就是个体。但是在 统计里,由于我们关心的不是每个个体的种种具体特 性,而仅仅是它的某一项或某几项数量指标X和该数 量指标X在总体中的分布情况。在上述例子中X是表 示灯泡的寿命,就此数量指标X而言,每个个体所取 的值是不同的。
总体、样本、样本观察值的关系
总体
理论分布
样本
样本观察值
统计是从已有的资料——样本的观察值,去推断 总体的情况——总体分布。
样本是联系两者的桥梁。
总体分布决定了样本取值的概率规律,可以用样
本观察值去推断总体
2020/4/7
19
简单随机样本
若来自总体 X的样本( X1, X2, , Xn )具有下列 两个特征:
x 355
2020/4/7
27
注 1° k为样本中不超过x的样本的最大个数,
即在n次重复独立试验中,事件 { X x}
发生的次数.
( x(1) x(2) x(k) x,有k个样品的取值 x)
2 Fn( x)为事件{X x}的频率.
n
事实上,令 n( x) Ii,其中
i 1
Ii
分析:这是一个容量为5的样本,经排序可得有序样本:
x(1)= 344, x(2)= 347, x(3)= 351, x(4)= 351, x(5)= 355 经验分布函数
Fn(x) =
0,
0.2, 0.4, 0.8, 1,
x < 344 344 x < 347 347 x < 351 351 x < 355
1, 0,
{Xi {Xi
xx}}不 发发 生生, 则
Fn( x)
n( x).
n
2020/4/7
28
2020/4/7
29
§5.2 统计量
由样本推断总体情况,需要对样本值进行 “加工”,这就需要构造一些样本的函数,它把样 本中所含的信息集中起来. • 统计量
来自总体X的样本X1,X2, …,Xn的函数g (X1,X2, …,Xn) ,若是连续的且不含任何未知 参数,则称为一个统计量。
1
π3 (1 x12 )(1 x22 )(1 x32 ) , x1 , x2 , x3 R
2020/4/7
P133 例5.2 23
• 直方图与经验分布函数
2020/4/7
24
2020/4/7
25
2020/4/7
26
例 某食品厂生产听装饮料,现从生产线上随机抽取5听 饮料,称得其净重(克)为: 351 347 355 344 351
例2 • 某百货公司对购买的一批电灯泡进行抽样
检验。在检验的基础上决定是否接受这批 灯泡。这种检验可能从这批灯泡中抽取15 只作为样本,检验样本的废品数和平均使 用寿命。是否接受的决定建立在观察到的 废品数和平均使用寿命上。
• 在以上两个例子中,都需要在不确定情况下对总体状 态进行预测或决策,之所以产生不确定性,是因为我 们无法拥有进行预测或决策所需的全部信息(总体数 据)。在使用不完全信息(样本数据)进行预测和决策 时,必须借助于一种叫做统计推断的统计方法。
( X1, X2 , X3 )的联合概率密度.
解 因为Xi自于柯西分布,所以Xi 的密度函数是
pXi
(
xi
)
1 π
1
1 xi2
,
xi (i 1,2,3)
所以
(
X1
,
X
2
,
X
3
)
的联合概率密度是:
3
p( X1,X2,X3 )( x1, x2 , x3 ) pXi ( xi )
i 1
1
数理统计研究内容十分广泛,其中一类重要的问题便 是统计推断.统计推断是利用试验数据对研究对象的性质 作出推断,其中有两个重要方面:参数估计和假设检验。
2020/4/7
1
• 例如,要了解全班同学的身高情况,先 要测量并记录班上每个同学的身高,然 后用记录下来的身高数据计算全班同学 的平均身高。这里的第一步就是搜集数 据,第二步就是从搜集到的数据集中获 取信息。平均身高正是反映全班同学身 高状况的重要信息。
n
样本( X1X 2,L , X n )的联合密度函数为 f (xi )
2020/4/7
i 1
21
例:设Xk来自于参数为k的指数分布,k 1, 2,L , n,
且相互独立,求(X1, X 2,L
,
X
)的联合分布函数
n
解 由于Xk来自于参数为k的指数分布,
所以 FXk ( xk ) 1 ek xk , xk 0
为什么要学数理统计
数理统计是运用概率论的基础知识,更侧重于应用随 机现象本身的规律性来考虑资料的收集整理和分析,建 立有效的数学方法,从而找出相应的随机变量的分布律 或它的数字特征,对所关心的问题作出估计与检验。
概率论中的一个最基本的假设就是:研究对象的分布 已知。而在实际中,我们往往不知道随机变量,的确切 分布,这就是数理统计所讨论问题的应用背景,它需要 用已有的部分信息去推断整体情况。