5 应用二元一次方程组——里程碑上的数 教学设计
北师大版初二数学上册第五章二元一次方程组:应用二元一次方程组里程碑上的数教案

北师大版初二数学上册第五章二元一次方程组:5教学过程一、课前预备1.假如一个两位数的个位数字为a,十位上的数字为b,那么那个两位数可表示为___________;假如交换个位和十位数字,得到的新两位数为________.2.一个两位数,个位数字为x,十位上的数字为y,假如在它们的中间加一个零,变成一个三位数,那么那个三位数可表示为___________.3.有两个两位数a和b,假如将a放在b的左边,就得到一个四位数,那么那个四位数用代数式表示为___________ ;假如将a放在b的右边,将得到一个新的四位数,那么那个四位数用代数式可表示为___________.设计意图:通过复习及展现学生中可能显现的错误,为本节课的连续学习做好铺垫.二、情境引入探究活动:小明12:00时看到里程碑上的数是多少?小明的爸爸骑着摩托车带着小明在公路上匀速行驶.小明在12∶00时看到的里程碑上的数是一个两位数,它的两个数字之和是7;在13∶00时看到的里程碑上的数十位与个位数字与12∶00时看到的正好颠倒了;在14∶00时小明看到的里程碑上的数比12∶00时看到的两位数中间多个0.试确定小明12∶00时看到里程碑上的数.假如设小明在12∶00时看到的数十位数字是x,个位数字是y,那么(1)小明12∶00时看到的里程碑上的数能够表示为;依照两个数字之和是7,可列出方程为。
(2)13∶00时看到的里程碑上的数可表示为;12∶00~13∶00间摩托车行驶的路程是。
(3)14∶00时看到的里程碑上的数可表示为;13∶00~14∶00间摩托车行驶的路程是。
(4)12:00~13:00与13:00~14:00两段时刻内摩托车的行驶路程有什么关系?你能列出相应的方程吗?写出完整的解答过程.三、合作学习内容:例1两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.二备记录:四、学法小结 1. 解决这类数字问题的关键是什么?2.用二元一次方程组解决实际问题的一样步骤是什么?3.关于这类实际问题,你有什么疑问?五、达标测试1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数. 设甲数为x ,乙数为y ,由题意可得方程组 ( )⎩⎨⎧=-=+⎪⎩⎪⎨⎧==-⎩⎨⎧==+⎩⎨⎧==+04342.4342.4342.3442.y x xy D y x yx C y x y x B y x y x A2.一个三位数,三个数位上的数字和为17,百位上的数字与十位上的数字和比个位数字大3,若把百位上的数字与个位数字对调,得到的新数比原先数小198,则原数为( ).(A )971 (B )917 (C )719 (D )7913.一个两位数,减去它的各位数字之和的3倍,结果是23;那个两位数除以它的各位数字之和,商是5,余数是1.那个两位数是多少?六、课堂小结(1)本节课你学会了什么?谈谈你的学习体会.(2)本节课运用了那些数学思想?七、作业布置习题5.6板书设计:5.5里程碑上的数一、列方程解应用题的一样步骤: 探究一: 例1:1、审- -审题2、找--找等量关系3、设--设未知数(直截了当、间接)4、列--列方程(组)5、解--解方程组。
北师大初中数学八年级上册《5.5应用二元一次方程组——里程碑上的数》word教案 (2)

7.4 里程碑上的数教学设计一、学生起点分析学生在本章前几节已经学习了二元一次方程组的解法,通过学习了“鸡兔同笼”、“增收节支”两节应用问题,学生已经初步体会到列方程组解决实际问题的一般步骤,学生已初步具有一定的数学应用能力.二、教学任务分析本节课的教学内容是义务教育课程标准北师大版实验教科书八年级(上) 第七章《二元一次方程组》第5节.在前两节的基础上,进一步让学生体会列方程组解决实际问题的一般步骤.“里程碑上的数”既是一个数字问题,又是行程问题,有一定的难度.为此,教材通过填空的形式将问题进行了分解.教学时,应鼓励学生将有难度的问题分解转化几个小问题,从而逐步找出解决问题的关键所在:找等量关系.学会用方程(组)刻画现实世界,进一步培养学生的数学应用能力.三、教学目标分析●知识与技能目标用二元一次方程组解决有趣场景中的数字问题和行程问题,归纳用方程(组)解决实际问题的一般步骤.●过程与方法目标1.通过设置问题串,让学生体会分析复杂问题的思考方法.2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型.●情感与态度目标在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气,树立自信心,并鼓励学生合作交流,培养学生的团队精神.四、教学过程设计本节课设计了七个教学环节:第一环节:复习提问;第二环节:情境引入;第三环节:合作学习;第四环节:巩固练习;第五环节:课堂小结;第六环节:布置作业.第一环节:复习提问内容:填空:(1)一个两位数,个位数字是a ,十位数字是b ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为 .(2)一个两位数,个位上的数为x ,十位上的数为y ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 .(3)有两个两位数a 和b ,如果将a 放在b 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将a 放在b 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为 .意图:通过以上三个问题,让学生学会已知一个数各位上的数字,如何用代数式表示这个数的方法,为后面的学习打下基础.效果:由于三个问题由浅入深,学生容易回答,从而激发兴趣进入新课.第二环节:情境引入内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能确定小明在12:00时看到的里程碑上的数吗?意图:1.创设问题情境,激发学生的学习兴趣.如果设小明在12:00时看到的数的十位数字是x ,个位数字是y ,那么(1)12:00时小明看到的数可表示为 ,根据两个数字和是7,可列出方程 ;(2)13:00时小明看到的数可表示为 ,12:00~13:00间摩托车行驶的路程是 ;(3)14:00时小明看到的数可表示为 ,13:00~14:00间摩托车行驶的路程是 ;(4)12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程有什么关系? 你能列出相应的方程吗?2.让学生体会将一个复杂问题化为几个简单问题的思维方法.效果:把这个复杂的数字、行程问题,分解成几个简单的问题串,学生通过对这几个问题的分析,使解题思路清晰,从而顺利地解决这个较复杂问题.第三环节:合作学习内容:例1两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.意图:1.让学生再次经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型,培养学生的数学应用能力.2.培养学生独立思考的能力和与人合作的意识.效果:学生进一步学习数字问题的解决办法,体会列方程组解应用问题的方法.并在交流中体验到合作学习的乐趣.第四环节:巩固练习内容:练习1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这个两位数.意图:进一步巩固本课知识与方法.效果:学生通过练习检验自己对本节知识的掌握情况.第五环节:课堂小结内容:1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.2.师生互相交流总结出列方程(组)解决实际问题的一般步骤.意图:通过交流与总结,培养学生口头表达和交流的能力,增强不断反思总结的意识.效果:学生积极大胆发言,增进了师生、生生之间的交流互动,并在这种氛围下,回顾总结了本节课的知识与方法.第六环节:布置作业内容:习题7.6 问题解决:第2,3,4题.意图和效果:学生进一步加深对本课知识的理解和掌握.五、教学设计反思(1)设计理念“学生是学习的主体”,本节课教师以导为主,学生对教师提出的各种问题,灵活采用独立思考、自主探索,或与同伴进行合作交流等方式进行学习.这种学习方式既培养了学生独立思考的习惯和能力,又培养了学生与人合作的能力和意识.(2)突出重点、突破难点的策略本节课,教师由浅入深层层设问,将复杂问题分解为几个简单问题.学生通过独立思考和合作学习,在和谐的氛围中学习并掌握了数字问题的解决方法,进一步总结出列方程组解应用问题的步骤和方法.(3)分层教学根据本班学生实际情况可在教学过程中选择下述内容补充或拓展.基础训练1.一个三位数,三个数位上的数字和为17,百位上的数字与十位上的数字和比个位数字大3,若把百位上的数字与个位数字对调,得到的新数比原来数小198,则原数为().(A)971 (B)917 (C)719 (D)7912.一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.设这个两位数的十位数字为x,个位数字为y,根据题意得方程组,这个两位数是.提高训练3.某铁路桥长1000米,一列火车从桥上通过,从上桥到离开桥共用1分钟,整列火车全在桥上的时间为40秒,求火车的长度和速度.4.有大小两个两位数,在大数的右边写上一个0之后再写上小的数,得到一个五位数;在小数的右边写上大数,然后再写上一个0,也得到一个五位数,第一个五位数除以第二个五位数得到的商为2,余数为590.此外,二倍大数与三倍小数的和是72.求这两个两位数.知识拓展5.一个正整数,分别加上100与168,可得到两个完全平方数,求这个正整数.意图:由于学生在知识和能力上有一定的差异,为了满足不同学生的需求,教师可根据实际教学情况,适当选择上述题目让学生达到知识巩固、能力迁移、思维拓展的目的.既可作为课堂补充内容,也可留作课后练习.效果:让不同层次的学生获得对数学的不同需求.参考答案:1.B.2.⎩⎨⎧+=++=+;104510,7x y y x y x 16. 3.火车长为200m ,速度为20m/s.4.这两个两位数分别为21和10.5.156.(4)评价方式根据新课标的评价理念,教师既要关注学生学习的结果,又要关注他们学习的过程,还要关注学生数学学习的水平和学生在数学活动中所表现出来的情感与态度.在教学过程中尊重学生的个体差异,对于学生的回答教师应给予恰当的评价与鼓励,并帮助学生树立学习数学的自信,充分发挥教育的价值.。
北师大版八年级数学上册:5.5 应用二元一次方程组——里程碑上的数 学案设计

应用二元一次方程组【学习目标】1.用二元一次方程式组解决“里程碑上的数”这一有趣场景中的数字问题和行程问题2.用二元一次方程组解决实际问题的一般步骤。
【学习过程】一、学习准备1.解二元一次方程组的基本思路是通过“”把“”化为“”。
2.解二元一次方程组的基本方法是和3.一个两位数,个位数字是a,十位数字是b,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为.4.一个两位数,个位上的数为x,十位上的数为y,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为.5.有两个两位数a和b,如果将a放在b的左边,就得到一个四位数,那么这个四位数用代数式表示为;如果将a放在b的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为.二、教材精读6.小明爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一小时看到的里程碑上的数字情况如下:12∶00时,这是两位数,它的两个数字之和为7,13∶00时,十位与个位数字与12∶00时看到的正好颠倒了;14∶00时,比12∶00时看到的两位数中间多了个0,你能确定小明在12∶00时看到的里程碑上的数字吗?如果设小明在12∶00时看到的十位数字是x,个位数字是y,那么(1)12:00时小明看到的数可表示为,根据两个数字和是7,可列出方程;(2)13:00时小明看到的数可表示为,12:00~13:00间摩托车行驶的路程是;(3)14:00时小明看到的数可表示为,13:00~14:00间摩托车行驶的路程是;(4)12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程有什么关系?你能列出相应的方程吗?7.一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.设这个两位数的十位数字为x,个位数字为y,根据题意得方程组.三、合作探究8.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。
北师大版八年级数学上册 第五章 二元一次方程组:5.5 应用二元一次方程组--里程碑上的数 教案

集体备课教案教学过程一、课前准备1.如果一个两位数的个位数字为a,十位上的数字为b,那么这个两位数可表示为___________;如果交换个位和十位数字,得到的新两位数为________.2.一个两位数,个位数字为x,十位上的数字为y,如果在它们的中间加一个零,变成一个三位数,那么这个三位数可表示为___________.3.有两个两位数a和b,如果将a放在b的左边,就得到一个四位数,那么这个四位数用代数式表示为___________ ;如果将a放在b的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为___________.设计意图:通过复习及展示学生中可能出现的错误,为本节课的继续学习做好铺垫.二、情境引入探究活动:小明12:00时看到里程碑上的数是多少?小明的爸爸骑着摩托车带着小明在公路上匀速行驶.小明在12∶00时看到的里程碑上的数是一个两位数,它的两个数字之和是7;在13∶00时看到的里程碑上的数十位与个位数字与12∶00时看到的正好颠倒了;在14∶00时小明看到的里程碑上的数比12∶00时看到的两位数中间多个0.试确定小明12∶00时看到里程碑上的数.如果设小明在12∶00时看到的数十位数字是x,个位数字是y,那么(1)小明12∶00时看到的里程碑上的数可以表示为;根据两个数字之和是7,可列出方程为。
(2)13∶00时看到的里程碑上的数可表示为;12∶00~13∶00间摩托车行驶的路程是。
(3)14∶00时看到的里程碑上的数可表示为;13∶00~14∶00间摩托车行驶的路程是。
(4)12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程有什么关系?你能列出相应的方程吗?写出完整的解答过程.三、合作学习内容:例1两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.意图:二备记录:教学过程四、学法小结1. 解决这类数字问题的关键是什么?2.用二元一次方程组解决实际问题的一般步骤是什么?3.对于这类实际问题,你有什么疑问?五、达标测试1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数. 设甲数为x,乙数为y,由题意可得方程组()⎩⎨⎧=-=+⎪⎩⎪⎨⎧==-⎩⎨⎧==+⎩⎨⎧==+4342.4342.4342.3442.yxxyDyxyxCyxyxByxyxA2.一个三位数,三个数位上的数字和为17,百位上的数字与十位上的数字和比个位数字大3,若把百位上的数字与个位数字对调,得到的新数比原来数小198,则原数为().(A)971(B)917(C)719(D)7913.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?六、课堂小结(1)本节课你学会了什么?谈谈你的学习体会.(2)本节课运用了那些数学思想?七、作业布置习题5.6板书设计:5.5里程碑上的数一、列方程解应用题的一般步骤:探究一:例1:1、审- -审题2、找--找等量关系3、设--设未知数(直接、间接)4、列--列方程(组)5、解--解方程组二备记录:。
第5节 应用二元一次方程组——里程碑上的数 导学案

子洲三中“双主”高效课堂导学案2014-2015学年第一学期姓名:组名:使用时间2014年月日年级科目课题主备人备课方式负责人(签字)审核领导(签字)序号八(3)数学§第5节应用二元一次方程组——里程碑上的数乔智一、教学目标1、用二元一次方程式组解决“里程碑上的数”这一有趣场景中的数字问题和行程问题2、用二元一次方程组解决实际问题的一般步骤。
二、教学过程(一)、学习准备1、解二元一次方程组的基本思路是通过“”把“”化为“”。
2、解二元一次方程组的基本方法是和3、一个两位数,个位数字是a,十位数字是b,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为.4、一个两位数,个位上的数为x,十位上的数为y,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为.5、有两个两位数a和b,如果将a放在b的左边,就得到一个四位数,那么这个四位数用代数式表示为;如果将a放在b的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为.(二)、教材精读7、例1 小明爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一小时看到的里程碑上的数字情况如下:12∶00时,这是两位数,它的两个数字之和为7,13∶00时,十位与个位数字与12∶00时看到的正好颠倒了;14∶00时,比12∶00时看到的两位数中间多了个0,你能确定小明在12∶00时看到的里程碑上的数字吗?如果设小明在12∶00时看到的十位数字是x,个位数字是y,那么(1)12:00时小明看到的数可表示为,根据两个数字和是7,可列出方程;(2)13:00时小明看到的数可表示为,12:00~13:00间摩托车行驶的路程是;(3)14:00时小明看到的数可表示为,13:00~14:00间摩托车行驶的路程是;(4)12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程有什么关系?你能列出相应的方程吗?解:实践练习:一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.设这个两位数的十位数字为x,个位数字为y,根据题意得方程组.三、合作探究8、两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。
初二数学八年级上册《5.5 应用二元一次方程组——里程碑上的数》教案

5.5 应用二元二次方程组——里程碑上的数一、选择题1.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x,乙数为y,由题意可得方程组( )A.⎩⎨⎧==+y x y x 3442B.⎩⎨⎧==+y x y x 4342 C.⎪⎩⎪⎨⎧==-443420y y x D.⎩⎨⎧=-=+04342y x x y 2.甲、乙两条绳共长17 m,如果甲绳减去51,乙绳增加1 m,两条绳长相等,求甲、乙两条绳各长多少?若设甲绳长x m,乙绳长y m,则得方程组( ) A.⎪⎩⎪⎨⎧+=-=+15117y x y x B.⎪⎩⎪⎨⎧-=+=+1511y x y x C.⎪⎩⎪⎨⎧+=-=+15117y x x y x D.⎪⎩⎪⎨⎧-=+=+15117y x x y x 3.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )A.3∶1B.2∶1C.1∶1D.5∶24.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.如果甲数为x,乙数为y,则得方程组是( )A.⎩⎨⎧=+++=+xx y y x y x 2011001188100100B.⎩⎨⎧++=+=+1188100100201100y x x y x y xC.⎩⎨⎧=+-+=+y x y y x y x 2011001188100100D.⎩⎨⎧-+=+=+1188100100201100y x x y y y x 5.学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺.结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为( )A.150,100B.125,75C.120,70D.100,150 二、填空题6.两数之差为7,又知此两数各扩大3倍后的和为45,则这样的两个数分别为________.7.武炜购买8分与10分邮票共16枚,花了一元四角六分,购买8分和10分的邮票的枚数分别为_________.8.在1996年全国足球甲级A 组的前11轮(场)比赛中,大连万达队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.9.某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应分配______人生产螺栓,____人生产螺母,才能使螺栓与螺母恰好配套.10.已知甲、乙两人从相距18千米的两地同时出发,相向而行,154小时相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x=________,y=________.三、解答题11.(我国古代问题)有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛(斛,音hu,是古代的一种容积单位)米,1个大桶加上5个小桶可以盛2斛米.那么1个大桶、1个小桶分别可以盛多少斛米?12.去年甲、乙两人总收入之比是8∶7,总支出之比是18∶17,已知在这一年里甲结余了1200元,乙结余了800元,求甲、乙两人去年的总收入各是多少?13.一个两位数的十位上的数与个位上的数的和是5,如果这个两位数减去27,则恰好等于十位上的数与个位上的数对调后组成的两位数,求这个两位数.14.据报道,2000年一季度我国对外贸易进出口总额达980亿美元,比1999年同期增长40%,其中出口增长39%,进口增长41%.1999年一季度我国对外贸易出口多少亿美元?进口多少亿美元?5.里程碑上的数一、1.B 2.C 3.B 4.D 5.A二、6. 11,4 7. 7,9 8. 6 9. 12,16 10. 4.5,5.5 三、11.2413 247 12.4800 4200 13.41 14.350 350。
最新版初中数学教案《应用二元一次方程组——里程碑上的数》精品教案(2022年创作)

5.5 应用二元一次方程组——里程碑上的数1.利用二元一次方程组解决数字问题和行程问题;(重点) 2.进一步经历和体验列方程组解决实际问题的过程. 一、情境导入小刚的爸爸开车带着小刚出去玩,他们匀速行驶在公路上.10:00时,小刚看到里程碑上是一个两位数,它的两个数字之和是8;11:00时,他又看到里程碑上是一个两位数,它的两个数字与第一次看到的两位数的数字刚好互换了位置;14:00时他看到里程碑上的数变成了三位数,它的百位数字比第一次看到的两位数的十位数字少1,十位数字比第一次看到的两位数的个位数字多1,个位数字是0.你能算出小刚第一次看到的里程碑上的数是多少吗?二、合作探究探究点一:利用二元一次方程组解决数字问题 【类型一】 年龄问题父亲给儿子出了一道题,要儿子猜出答案:有一对母女,5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍只多6岁.那么现在这对母女的年龄分别是多少?解析:先分别设出现在这对母女的年龄,再用它们表示出5年前母女的年龄和15年后母女的年龄,那么根据①5年前,母亲的年龄是女儿年龄的15倍;②15年后,母亲的年龄是女儿年龄的2倍再加6,列出方程组.母亲 女儿 现在年龄/岁 x y 5年前的年龄/岁 x -5 y -5 15年后的年龄/岁x +15y +15解:设现在这对母女的年龄分别是x 岁和y 岁,由题意,得⎩⎪⎨⎪⎧x -5=15〔y -5〕,x +15=2〔y +15〕+6.解得⎩⎪⎨⎪⎧x =35,y =7.答:现在这对母女的年龄分别是35岁和7岁.方法总结:解答年龄问题的关键是年龄差不变及增长岁数相同.【类型二】 数字问题一个两位数,个位上的数字与十位上的数字之和为9,把这个两位数的十位数字和个位数字对调所得新两位数比原两位数大9,求这个两位数.解析:假设个位上的数字为x ,十位上的数字为y ,“数字之和为9〞及“新两位数比原两位数大9〞可列方程组.解:设这个两位数的个位上的数字为x ,十位上的数字为y.根据题意,得⎩⎪⎨⎪⎧x +y =9,〔10x +y 〕-〔10y +x 〕=9.解得⎩⎪⎨⎪⎧x =5,y =4,那么10y +x =45.故这个两位数是45.方法总结:数字问题中所求的未知量一般是原数,解题时,一般先设原数数位上的数字为未知数,再写出这个数.探究点二:利用二元一次方程组解决行程问题 【类型一】 相遇问题某体育场的一条环形跑道长400m.甲、乙两人从跑道上同一地点出发,分别以不变的速度练习长跑和骑自行车.如果背向而行,每隔12min 他们相遇一次;如果同向而行,每隔113min 乙就追上甲一次.问甲、乙每分钟各行多少米?解析:题中的两个相等关系为:①乙骑车的路程+甲跑步的路程=400m(背向);②乙骑车的路程-甲跑步的路程=400m(同向).解:设乙骑车每分钟行xm ,甲每分钟跑ym ,由题意,得⎩⎪⎨⎪⎧12x +12y =400,43x -43y =400.解得⎩⎪⎨⎪⎧x =550,y =250.答:甲每分钟跑250m ,乙每分钟骑550m.方法总结:环路上的等量关系:假设同时同地出发,当背向而行,第一次相遇时,二者路程之和=环路的周长;假设同时同地出发,同向而行,第一次相遇时,快者的路程-慢者的路程=环路的周长.【类型二】 行程问题A 、B 两码头相距140km ,一艘轮船在其间航行,顺水航行用了7h ,逆水航行用了10h ,求这艘轮船在静水中的速度和水流速度.解析:设这艘轮船在静水中的速度为xkm/h ,水流速度为ykm/h ,列表如下,解:设这艘轮船在静水中的速度为xkm/h ,水流速度为ykm/h.由题意,得⎩⎪⎨⎪⎧7〔x +y 〕=140,10〔x -y 〕=140.解得⎩⎪⎨⎪⎧x =17,y =3. 答:这艘轮船在静水中的速度为17km/h ,水流速度为3km/h.方法总结:此题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间〞列方程组.三、板书设计“里程碑上的数〞问题⎩⎪⎨⎪⎧数字问题行程问题数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.圆周角 教学目标(1)通过本节的教学使学生理解圆周角的概念,掌握圆周角的性质; (2)准确地运用圆周角性质进行简单的证明计算。
北师大版八年级数学上册 第五章 二元一次方程组:5.5 应用二元一次方程组里程碑上的数 教案

集体备课教案第1页/共4页第2页/共4页 一、课前准备 1. 如果一个两位数的个位数字为a ,十位上的数字为b ,那么这个两位数可表示为___________;如果交换个位和十位数字,得到的新两位数为________.2. 一个两位数,个位数字为x ,十位上的数字为y ,如果在它们的中间加一个零,变成一个三位数,那么这个三位数可表示为___________.3. 有两个两位数a 和b ,如果将a 放在b 的左边,就得到一个四位数,那么这个四位数用代数式表示为___________ ;如果将a 放在b 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为___________.设计意图:通过复习及展示学生中可能出现的错误,为本节课的继续学习做好铺垫.二、情境引入探究活动:小明12:00时看到里程碑上的数是多少?小明的爸爸骑着摩托车带着小明在公路上匀速行驶.小明在12∶00时看到的里程碑上的数是一个两位数,它的两个数字之和是7;在13∶00时看到的里程碑上的数十位与个位数字与12∶00时看到的正好颠倒了;在14∶00时小明看到的里程碑上的数比12∶00时看到的两位数中间多个0.试确定小明12∶00时看到里程碑上的数.如果设小明在12∶00时看到的数十位数字是x ,个位数字二备记录:第3页/共4页四、学法小结 1. 解决这类数字问题的关键是什么?我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章二元一次方程组
5. 应用二元一次方程组——里程碑上的数
本节课的重点是教学生会用图表分析数字问题。
难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。
第一环节知识回顾
1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.
2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.
3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.
4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:1000a+b.
第二环节情境引入
1.Flash动画,情景展示。
小明星期天开车出去兜风,他在公路上匀速行驶,根据动画中的情景,你能确定他在12:00看到的里程碑上的数吗?
12:00是一个两位数,它的两个数字之和为7;
13:00十位与个位数字与12:00所看到的正好颠倒了;
14:00比12:00时看到的两位数中间多了个0.
分析:设小明在12:00看到的数十位数字是
,个位数字是,那么
2.路程差:
12:00-13:00:(10y+x)-(10x+y),
13:00-14:00:(100x+y)-(10y+x),
路程差相等:
(10y+x)-(10x+y)=(100x+y)-(10y+x).
根据以上分析,得方程组
x+y=7,
(10y+x)-(10x+y)=(100x+y)-(10y+x).
解方程组
x+y=7,
(10y+x)-(10x+y)=(100x+y)-(10y+x).
整理得
x+y=7,x = 1,
y=6x.解得y =6.
因此,小明在12:00时看到的里程碑上的数是16.
提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。
2.Flash动画,情景再现.
3.学法小结:
(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.
(2)借助方程组解决实际问题.
4.变式训练
师生共同研究下题:
有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.
分析:数字问题中,设未知数也很有技巧,此问题中由十位数字和个位数字组成的两位数是一个“整体”,可设为一个未知数y,百位数设为x:
相等关系:1.原三位数-45=新三位数
2.9 百位数字=两位数-3
解:设百位数字为x,由十位数字与个位数字组成的两位数为y,
根据题意的得:
100x+y=10y+x,
9x=y-3.
解得x=4,
y=39.
答:原来的三位数是439.
第三环节练习提高
1.李刚骑摩托车在公路上高速行驶,早晨7:00时看到里程碑上的数是一个两位数,它的数字之和是9;8:00时看里程碑上的两位数与7:00时看到的个位数和十位数颠倒了;9:00时看到里程碑上的数是7:00时看到的数的8倍,李刚在7:00时看到的数字是18 。
分析:设李刚在7:00看到的数十位数字是x,个位数字是y,那么
2.选一选
小颖家离学校4800米,其中有一段为上坡路,另一段为下坡路。
她跑步去学校共用了30分。
已知小颖在上坡时的平均速度是6千米/时,下坡时的平均速度是12千米/时。
问小颖上、下坡各多少千米?
A.1.2,3.6;
B.1.8,3; C.1.6,3.2.
分析:本题间接设未知数更简洁.
解:设上坡x 时,下坡y 时,据题意得:
6x+12y=4.8 ,
x +y =0.5. 解之得 x =0.2, y =0.3.
选A。
3.列方程 CIN 公司第二季度进出口总额是980万元,第二季度进口额比一季度增长了39%,出口额增长了41%,进出口总额增长了40%,第二季度的进,出口额分别是多少? 分析:设第二季度的进口额为x 万元,出口额为y 万元: %391++%411+=%
401+,
x + y =980.
若设第一季度的进口额为x 万元,出口额为y 万元,则:
x +y = 980÷(1+40%),
(1+39%)x +(1+41%)y =980.
根据学生设不同未知数出现不同的方程组,若没有考虑到另一种设法,教师给予补充。
第四环节 合作学习
现实生活和数学学习中,有许多问题可以借助二元一次方程组解决.试编制一个可以用下面的二元一次方程组解决的应用题.
x +y =2, 5x -y =10.
学生分组进行编题和互评,然后每组请一个同学将本组评选出的编的最好的应用题向全班同学汇报。
(评选方法:切合实际、联系生活、有想象力并且正确无误)
6.3123.0,2.162.0=⨯=⨯
1.在很多实际问题中,都存在着一些等量关系,因此我们往往可以借助列方程或方程组的方法来处理这些问题.
2.这种处理问题的过程可以进一步概括为:
分析求解
问题解答
抽象检验
3.要注意的是,处理实际问题的方法是多种多样的,图表分析是一种直观简洁的方法,设间接未知数可帮助转化问题,还可运用化归等数学思想方法,应根据具体问题灵活选用.
第六环节布置作业
1.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.
2.某车间每天能生产甲种零件600个,或者乙种零300个,或丙种零件500个,甲、乙、丙三种零件各1个就可以配成一套,要在63天内生产中,使生产的零件全部成套,问甲、乙、丙三种零件各应生产几天?
3.请你寻找一个利用化归的思想方法解决数学问题的实例.
教学反思
本节用生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。
动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组。