七年级数学下册期中测试卷(一)(新版)华东师大版

合集下载

华东师大版七年级数学下册期中试卷及答案【一套】

华东师大版七年级数学下册期中试卷及答案【一套】

华东师大版七年级数学下册期中试卷及答案【一套】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.2 2.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°4.一5的绝对值是()A.5 B.15C.15-D.-55.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,下列条件:①,②,③,④,⑤中能判∠=∠∠+∠=∠=∠∠=∠∠=∠+∠13241804523623 l l的有()断直线12A.5个B.4个C.3个D.2个7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.实数a、b在数轴上的位置如图所示,则化简|a-b|﹣a的结果为()A.-2a+b B.b C.﹣2a﹣b D.﹣b9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.若()2320m n -++=,则m+2n 的值是________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程(组):(1)321126x x -+-= (2)2.解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、A5、C6、B7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、203、(3,7)或(3,-3)4、-15、316、5三、解答题(本大题共6小题,共72分)1、(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩2、x≥3 53、(1)35°;(2)36°.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)30;(2)①补图见解析;②120;③70人.6、A型粽子40千克,B型粽子60千克.。

最新华东师大版七年级数学下册期中考试试题

最新华东师大版七年级数学下册期中考试试题

华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.下列由等式的性质进行的变形,错误的是()A.如果a=b,那么a+2=b+2 B.如果a=b,那么a﹣2=b﹣2C.如果a=2,那么a2=2a D.如果a2=2a,那么a=22.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A.B.4 C.12 D.23.关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<4.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣36.不等式4﹣x≤2(3﹣x)的正整数解有()A.1个B.2个C.3个D.无数个7.不等式组的解集在数轴上表示为()A.B.C.D.8.如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤8 9.若﹣2a m b4与5a n+2b2m+n是同类项,则mn的值是()A.2 B.0 C.﹣1 D.110.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196二、填空题(每小题3分,共15分)11.将方程4x+3y=6变形成用y的代数式表示x,则x=.12.关于x的方程(k﹣4)x|k|﹣3+1=0是一元一次方程,则k的值是.13.若x≥﹣5的最小值为a,x≤5的最大值是b,则a+b=.14.关于x,y的二元一次方程组的解满足x+y>2,则a的范围为.15.某人在解方程=﹣1去分母时,方程右边的﹣1忘记乘以6,算得方程的解为x=2,则a的值为.三、解答题(55分)16.(5分)解方程:3(2x﹣1)﹣2(1﹣x)=0.17.(5分)解不等式﹣1<,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18.(6分)用加减消元法解方程组:.19.(6分)已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20.(7分)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21.(8分)小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22.(8分)阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x =;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣.所以原方程的解是x=或x=﹣.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23.(10分)某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.方程3x﹣1=5的解是()A.x=B.x=C.x=18 D.x=2 2.下列方程变形中属于移项的是()A.由2x=﹣1得x=﹣B.由=2得x=4C.由5x+b=0得5x=﹣b D.由4﹣3x=0得﹣3x+4=0 3.由,可以得到用x表示y的式子是()A.y=B.y=C.y=﹣2 D.y=2﹣4.解方程2x=3x时,两边都除以x,得2=3,其错误原因是()A.方程本身是错的B.方程无解C.两边都除以了0 D.2x小于3x5.下列说法正确的是()A.方程4+x=8和不等式4+x>8的解是一样的B.x=2不是不等式4x>5的解C.x=2是不等式4x>15的一个解D.不等式x﹣2<6的两边都减去3,则此不等式仍成立6.把方程的分母化成整数后,可得方程()A.﹣1=B.﹣1=C.﹣10=D.﹣1=7.不等式≤﹣1的解集表示在数轴上是()A.B.C.D.8.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x﹣1)=139.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.10.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.二、填空题(每小题3分,共15分)11.若2x﹣3与1互为相反数,则x=.12.在公式S=n(a+b)中,已知S=5,n=2,a=3,那么b的值是.13.一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是.14.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.15.如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是.三、解答题(本大题共8小题,共75分)16.(10分)解下列方程:(1)3x ﹣2(x﹣1)=4 (2).17.(10分)按要求解下列方程组:(1)用代入法解方程组:;(2)用加减法解方程组:.18.(7分)解下列不等式,并把解集在数轴上表示出来:<﹣1.19.(8分)把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?20.(10分)已知关于x,y的方程组与有相同的解,求a,b 的值.21.(10分)求不等式组的整数解.22.(10分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?23.(10分)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.。

2022年华东师大版七年级数学下册期中考试及答案【完美版】

2022年华东师大版七年级数学下册期中考试及答案【完美版】

2022年华东师大版七年级数学下册期中考试及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A.0 B.1 C.2 D.37.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩9.如图,a,b,c在数轴上的位置如图所示,化简22()a a c c b-++-的结果是()A.2c﹣b B.﹣b C.b D.﹣2a﹣b 10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.因式分解:2218x -=______.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5)243x x x ⎡⎤--=+⎢⎥⎣⎦.2.解不等式组:()41710853x x x x ⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;x 时,求S的值.(3)当2004.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、C6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、-4π3、2(x +3)(x ﹣3).4、50°5、316、±3三、解答题(本大题共6小题,共72分)1、1x =2、不等式组的所有非负整数解为:0,1,2,3.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、36平方米5、(1)40;(2)72;(3)280.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

华东师大版七年级数学下册期中考试卷【及参考答案】

华东师大版七年级数学下册期中考试卷【及参考答案】

华东师大版七年级数学下册期中考试卷【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x y x y -=+= (2)414{3314312x y x y +=---=2.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、D5、A6、D7、C8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、83、70.4、(4,2)或(﹣2,2).5、①③④⑤.6、2或-8三、解答题(本大题共6小题,共72分)1、(1)43xy=⎧⎨=⎩;(2)3114xy=⎧⎪⎨=⎪⎩.2、m=4,n=﹣1.3、74、∠BOE的度数为60°5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。

华东师大版七年级数学下册期中测试卷及答案【新版】

华东师大版七年级数学下册期中测试卷及答案【新版】

华东师大版七年级数学下册期中测试卷及答案【新版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5 二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.因式分解:2218x-=______.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15(2)212 32x x-+-=-2.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、C2、C3、C4、C5、B6、C7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、20°.3、2(x +3)(x ﹣3).4、-405、40°6、48三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、﹣1≤x <2.3、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、(1)∠1+∠2=90°;略;(2)(2)BE ∥DF ;略.5、(1)50;72;(2)详见解析;(3)330.6、10个家长,5个学生。

【华东师大版】初一数学下期中第一次模拟试题含答案(1)

【华东师大版】初一数学下期中第一次模拟试题含答案(1)
(2)迁移应用:
请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.
①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.
②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小.
17.计算:(1)
(2)
18.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到 ,连接 ,则 的周长为________.
4.C
解析:C
【分析】
观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.
【详解】
解:由题意得:
……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故 的纵坐标为1,则点 的横坐标为 ,所以 .
故选C.
【点睛】
本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.
15.已知 .
(1)已知 的算术平方根为3,求a的值;
(2)如果 都是同一个数的平方根,求这个数.
16.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).
(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;
A.∠1+∠2=180°B.∠2=∠4C.∠2+∠3=180°D.∠1=∠3
12.如图,下列条件: 中能判断直线 的有( )
A.5个B.4个C.3个D.2个
二、填空题

华东师大版七年级数学下册期中考试(完整版)

华东师大版七年级数学下册期中考试(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.一5的绝对值是( )A .5B .15C .15-D .-55.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4D .﹣26.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .437.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5 二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)9221163x x +--≥- (2)()328134x x x x ⎧+>+⎪⎨-≤⎪⎩①②2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、B6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、60°3、5404、-405、316、7三、解答题(本大题共6小题,共72分)1、(1)2x ≥-,画图见解析;(2)14x <≤,画图见解析2、(1)7x 2﹣x+2;(2)﹣14x 2+2x ﹣1;(3)﹣5773、(1)见解析(2)35°4、(1)详略;(2)70°.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

华东师大版七年级下册数学期中测试卷(含答案)

七年级下册数学期中检测题(时间120分钟,满分150分)班级: 姓名: 得分:一、选择题(每小题3分,共36分)1.已知下列方程:①x x 12=-②12.0=x ③33-=x x④x x 342=-⑤x=0 ⑥6=y -x .其中一元一次方程有()A.2个B.3个C.4个D. 5个2.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-33.若n m >,则下列不等式中成立的是()A.n a m a -<-B.bn am <C. 22nb ma >D. b n a m +<+4.不等式组⎩⎪⎨⎪⎧x +2>0,2x -1≤0的所有整数解是( ) A .-1,0 B .-2,-1 C .0,1 D .-2,-1,05.不等式组⎩⎪⎨⎪⎧-x <3,2x -1≤3的解集在数轴上表示正确的是( )6.已知⎩⎪⎨⎪⎧x =1,y =2和⎩⎪⎨⎪⎧x =2,y =5是方程ax +by =2的两组解,则( ) A .a =6,b =-2 B .a =-6,b =-2C .a =6,b =2D .a =-6,b =27.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m -1,x -y =5的解满足x +y =3,则m 的值为( ) A .-2 B .2 C .-1 D .18.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.已知a 2+3a =1,则代数式2a 2+6a -1的值为( )A .0B .1C .2D .310.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂( )A .5块B .4块C .3块D .2块11.一元一次方程0.2x−10.5−3x−0.40.02=1可化为( ) A .0.2x−15−3x−0.42=1B .2x−15−3x−42=1 C .2x−105−300x−402=1 D .2x−105−300x−402=1012.已知方程组的解x 为正数,y 为非负数,给出下列结论: ①﹣3<a ≤1;②当时,x=y ;③当a =﹣2时,方程组的解也是方程x+y=5+a的解;④若x≤1,则y≥2.其中正确的是( )A .①②B .②③C .③④D .②③④二、填空题(每小题3分,共30分)13.若关于x 、y 的方程x m-1-2y 3+n=5是二元一次方程,则m =,n =14.方程732=-y x 用含x 的代数式表示y 为.15.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为____.16.若⎩⎪⎨⎪⎧x =1,y =2是方程组⎩⎪⎨⎪⎧ax +by =4,bx -ay =7的解,则a +b 的值为____. 17.已知关于x 的方程x +2k =4(x +k)+1的解是负数,则k 的取值范围是 ___.18.方程组⎩⎪⎨⎪⎧ax +2y =2,2x +3y =0的解是⎩⎪⎨⎪⎧x =3,y =b ,则关于x 的不等式bx +2a ≥0的非负整数解是___.19.幼儿园分给“豆豆班”小朋友们零食,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则老师准备了零食____袋.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_. 21.定义运算“*”,规定x*y=ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3= .22.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边____上.三、解答题(共68分)23.(10分)解下列方程(组):(1)x 6-30-x 4=5; (2)⎩⎪⎨⎪⎧2x +3y =1,3x +2y =4.24.(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)1-2-x 3<x +12; (2)⎩⎪⎨⎪⎧3x -7<2,2x +3≥1.25.(8分)方程组⎩⎪⎨⎪⎧3x -2y =7,5x +2y =1的解满足方程2x -ky =10,求k 的值.26. (8分)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,求m 的取值范围.26.(8分)4月23日是世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?27.(8分)若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x -12-1≤x的解,求m 的取值范围.28.(10分)阅读下列材料:求不等式(2x −1)(x +3)>0的解集。

七年级数学下册期中测试卷一新版华东师大版含答案

期中测试卷(一)总分120 120分钟一.选择(共8小题,每题3分)1.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分比农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元2.如果x=2是方程x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣63.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.4.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=1445.不等式组的解集在数轴上表示正确的是()A. B.C. D.6.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>47.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.38.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15二.选择题(共6小题,每题3分)9.请写出一个二元一次方程组_________ ,使它的解是.10.若|m﹣n|+(m+2)2=0,则m n的值是_________ .11.不等式2x+9≥3(x+2)的正整数解是_________ .12.若不等式的解集为x>3,则a的取值范围是_________ .13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为_________ 元.14.如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为_________ .三.解答题(共11小题)15.(6分)已知关于x的方程2x=8与x+2=﹣k的解相同,求代数式的值.16.(6分)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.17(6分).已知关于x,y的方程组的解为,求m,n的值.18.(6分)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A 区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:_________ 分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?19.(6分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.20.(8分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 271 …0.9x+10在乙商场126 278 …0.95x+2.5(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?21.(8分)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.22.(8分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?23.(8分)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?24.(8分)某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?25.(8分)某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?新华师版七年级下期中测试卷(一)参考答案与试题解析一.选择题(共8小题)1.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分比农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元考点:一元一次方程的应用.分析:设购买一套小货仓农户实际出资是x元,根据政府补贴是农户实际出资的三倍还多30元后,每套小粮仓的定价是350元,可列方程求解.解答:解:设购买一套小货仓农户实际出资是x元,依题意有x+3x+30=350,4x=320,x=80.答:购买一套小货仓农户实际出资是80元.故选A.点评:本题考查理解题意的能力,设出购买一套小货仓农户实际出资,以每套小粮仓的定价作为等量关系列方程求解.2.如果x=2是方程x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣6考点:一元一次方程的解.专题:计算题.分析:此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.解答:解:将x=2代入方程x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.点评:此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.3.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:同类项;解二元一次方程组.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:解:由同类项的定义,得,解得.故选C.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144考点:由实际问题抽象出二元一次方程组.专题:几何图形问题;压轴题.分析:能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.解答:解:A、根据大正方形的面积求得该正方形的边长是12,则x+y=12,正确;B、根据小正方形的面积可以求得该正方形的边长是2,则x﹣y=2,正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4xy=144﹣4=140,xy=35,正确;D、错误.故选D.点评:此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集再求出其公共解集.解答:解:该不等式组的解集为1<x≤2,故选C.点评:本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.6已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4考点:解一元一次不等式;一元一次方程的解.分析:把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.解答:解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C..点评:本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.7.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.3考点:解二元一次方程组.专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.解答:解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.二.填空题(共6小题)9.请写出一个二元一次方程组此题答案不唯一,如:,使它的解是.考点:二元一次方程组的解.专题:压轴题;开放型.分析:根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=﹣1列一组算式,然后用x,y代换即可列不同的方程组.答案不唯一,符合题意即可.解答:解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.点评:本题主要考查了二元一次方程组的解的定义.此题属于开放题,注意正确理解定义是解题的关键.10.若|m﹣n|+(m+2)2=0,则m n的值是.考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质,可列方程组求出m、n的值,再代值计算即可.解答:解:由题意,得:,解得.故m n=(﹣2)﹣2=.点评:本题主要考查了非负数的性质以及负整数指数幂的运算方法;非负数的性质:非负数的和为0,则每个非负数必为0;负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.11.不等式2x+9≥3(x+2)的正整数解是1,2,3 .考点:一元一次不等式的整数解.专题:计算题.分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.12.若不等式的解集为x>3,则a的取值范围是a≤3.考点:不等式的解集.分析:首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.解答:解:化简不等式组可知∵解集为x>3∴a≤3点评:主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500 元.考点:一元一次方程的应用.分析:首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.解答:解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.点评:此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为20 .考点:一元一次方程的应用.专题:数字问题;压轴题.分析:设最大的一个数为x,则最小的数是(x﹣14),中间的数是(x﹣7),相等关系是:三个数的和为39,则可列出方程求解.解答:解:设最大的一个数为x,根据题意列方程得:(x﹣14)+(x﹣7)+x=39,解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.需注意日历上竖列相邻的两个数相隔7.三.解答题(共13小题)15.已知关于x的方程2x=8与x+2=﹣k的解相同,求代数式的值.考点:同解方程.分析:根据同解方程的解相同,第一个方程的解,可得第二个方程的解,根据第二个方程的解,可得k的值,根据k值,可得代数式的值.解答:解:2x=8,x=4,关于x的方程2x=8与x+2=﹣k的解相同,把x=4代入x+2=﹣k,k=﹣6,==﹣.点评:本题考查了同解方程,先解出第一个方程的解,把第一个方程的解代入第二个方程,得出k的值,再求出代数式的值.16.(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.考点:一元一次方程的解;两点间的距离.专题:计算题;解题方法.分析:(1)将x=﹣3代入原方程2k﹣x﹣k(x+4)=5整理即可求得k的值;解答:解:(1)将x=﹣3代入原方程2k﹣x﹣k(x+4)=5整理得2k+3﹣k=5,移项,合并同类项,得k=2;点评:此题主要涉及一元一次方程的解和两点间的距离这两个知识点,17.已知关于x,y的方程组的解为,求m,n的值.考点:二元一次方程组的解.分析:将x=1,y=2代入方程中得到关于m与n的方程组,求出方程组的解得到m与n的值即可.解答:解:将代入方程组中得:,解得:.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.18.在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:?分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?考点:二元一次方程组的应用.分析:(1)首先设掷到A区和B区的得分分别为x、y分,根据图示可得等量关系:①掷到A区5个的得分+掷到B区3个的得分=77分;②掷到A区3个的得分+掷到B区5个的得分=75分,根据等量关系列出方程组,解方程组即可得到掷中A区、B区一次各得多少分;(2)由图示可得求的是掷到A区4个的得分+掷到B区4个的得分,根据(1)中解出的数代入计算即可.解答:解:(1)设掷到A区和B区的得分分别为x、y分,依题意得:,解得:,答:掷中A区、B区一次各得10,9分.(2)由(1)可知:4x+4y=76,答:依此方法计算小明的得分为76分.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.19.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.考点:二元一次方程组的应用;二元一次方程的应用.分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.解答:解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.点评:本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.20.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 271 …0.9x+10在乙商场126 278 …0.95x+2.5(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)根据已知得出100+(290﹣100)×0. 9以及50+(290﹣50)×0.95进而得出答案,同理即可得出累计购物x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.解答:解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(x﹣100)×0.9=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(x﹣50)×0.95=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.21.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.考点:一元一次不等式组的整数解;二元一次方程组的解.专题:压轴题.分析:首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.解答:解:①×2得:2x﹣4y=2m③,②﹣③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.点评:此题主要考查了一元一次不等式组的整数解,以及二元一次方程的解,关键是掌握消元的方法,用含m的式子表示x、y.22.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?考点:一元一次不等式的应用.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分>90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则:10x﹣5(20﹣x)>90解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.23.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B 两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?考点:一元一次不等式组的应用.专题:应用题;图表型.分析:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可.(2)计算出每种方案的花费,然后即可判断出答案.解答:解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一种方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算四种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低为70000元.点评:此题考查了一元一次不等式组的应用,是一道实际问题,有一定的开放性,(1)根据图表信息,利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.24.某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?考点:一元一次方程的应用;分段函数.专题:应用题.分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解答:解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故可得小华家5月份的用电量在第二档,设小华家5月份的用电量为x度,则210×0.52+(x﹣210)×(0.52+0.05)=138.84,解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当0<a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,小华家的用电量在第三档;点评:此题考查了一元一次方程的应用级分段函数的知识,解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断,有一定难度.25.某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?考点:一元一次方程的应用.专题:方案型.分析:由题意可知方案一可直接列算式计算;在方案二中,可设x天制成奶粉,则(4﹣x)天制成酸奶.首先根据4天内全部加工完成,可求出时间,从而进一步算出奶粉和酸奶的吨数.最后算出利润.解答:解:方案一:4×2000+6×500=11000(元)方案二:设制奶粉x天,则:1×x+(4﹣x)×3=10,解得:x=1(天),故:1×1×2000+3×3×1200=12800>11000,故选方案二.点评:该题文字比较多,主要是理解题意比较困难.理解题意后就可依等量关系列方程求解.。

华东师大版七年级数学下册期中试卷及答案【新版】

华东师大版七年级数学下册期中试卷及答案【新版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是________.5.2的相反数是________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x yx y+=⎧⎨-=-⎩(2)()45113812x y yx y⎧+=+⎪⎨+=⎪⎩2.已知关于x的方程9x3kx14-=+有整数解,求满足条件的所有整数k的值.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、D5、B6、C7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、203、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、2m≤-5、﹣2.6、±3三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)14xy⎧=⎪⎨⎪=⎩2、k=26,10,8,-8.3、(1)证明见解析;(2)75.4、(1)略;(2)略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中测试卷(一)总分120 120分钟一.选择(共8小题,每题3分)1.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分比农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元2.如果x=2是方程x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣63.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.4.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=1445.不等式组的解集在数轴上表示正确的是()A. B.C. D.6.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>47.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.38.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15二.选择题(共6小题,每题3分)9.请写出一个二元一次方程组_________ ,使它的解是.10.若|m﹣n|+(m+2)2=0,则m n的值是_________ .11.不等式2x+9≥3(x+2)的正整数解是_________ .12.若不等式的解集为x>3,则a的取值范围是_________ .13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为_________ 元.14.如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为_________ .三.解答题(共11小题)15.(6分)已知关于x的方程2x=8与x+2=﹣k的解相同,求代数式的值.16.(6分)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.17(6分).已知关于x,y的方程组的解为,求m,n的值.18.(6分)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A 区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:_________ 分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?19.(6分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.20.(8分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 271 …0.9x+10在乙商场126 278 …0.95x+2.5(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?21.(8分)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.22.(8分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?23.(8分)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?24.(8分)某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?25.(8分)某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?新华师版七年级下期中测试卷(一)参考答案与试题解析一.选择题(共8小题)1.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分比农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元考点:一元一次方程的应用.分析:设购买一套小货仓农户实际出资是x元,根据政府补贴是农户实际出资的三倍还多30元后,每套小粮仓的定价是350元,可列方程求解.解答:解:设购买一套小货仓农户实际出资是x元,依题意有x+3x+30=350,4x=320,x=80.答:购买一套小货仓农户实际出资是80元.故选A.点评:本题考查理解题意的能力,设出购买一套小货仓农户实际出资,以每套小粮仓的定价作为等量关系列方程求解.2.如果x=2是方程x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣6考点:一元一次方程的解.专题:计算题.分析:此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.解答:解:将x=2代入方程x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.点评:此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.3.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:同类项;解二元一次方程组.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:解:由同类项的定义,得,解得.故选C.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144考点:由实际问题抽象出二元一次方程组.专题:几何图形问题;压轴题.分析:能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.解答:解:A、根据大正方形的面积求得该正方形的边长是12,则x+y=12,正确;B、根据小正方形的面积可以求得该正方形的边长是2,则x﹣y=2,正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4xy=144﹣4=140,xy=35,正确;D、错误.故选D.点评:此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集再求出其公共解集.解答:解:该不等式组的解集为1<x≤2,故选C.点评:本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.6已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4考点:解一元一次不等式;一元一次方程的解.分析:把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.解答:解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C..点评:本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.7.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.3考点:解二元一次方程组.专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.解答:解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.二.填空题(共6小题)9.请写出一个二元一次方程组此题答案不唯一,如:,使它的解是.考点:二元一次方程组的解.专题:压轴题;开放型.分析:根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=﹣1列一组算式,然后用x,y代换即可列不同的方程组.答案不唯一,符合题意即可.解答:解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.点评:本题主要考查了二元一次方程组的解的定义.此题属于开放题,注意正确理解定义是解题的关键.10.若|m﹣n|+(m+2)2=0,则m n的值是.考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质,可列方程组求出m、n的值,再代值计算即可.解答:解:由题意,得:,解得.故m n=(﹣2)﹣2=.点评:本题主要考查了非负数的性质以及负整数指数幂的运算方法;非负数的性质:非负数的和为0,则每个非负数必为0;负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.11.不等式2x+9≥3(x+2)的正整数解是1,2,3 .考点:一元一次不等式的整数解.专题:计算题.分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.12.若不等式的解集为x>3,则a的取值范围是a≤3.考点:不等式的解集.分析:首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.解答:解:化简不等式组可知∵解集为x>3∴a≤3点评:主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500 元.考点:一元一次方程的应用.分析:首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.解答:解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.点评:此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为20 .考点:一元一次方程的应用.专题:数字问题;压轴题.分析:设最大的一个数为x,则最小的数是(x﹣14),中间的数是(x﹣7),相等关系是:三个数的和为39,则可列出方程求解.解答:解:设最大的一个数为x,根据题意列方程得:(x﹣14)+(x﹣7)+x=39,解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.需注意日历上竖列相邻的两个数相隔7.三.解答题(共13小题)15.已知关于x的方程2x=8与x+2=﹣k的解相同,求代数式的值.考点:同解方程.分析:根据同解方程的解相同,第一个方程的解,可得第二个方程的解,根据第二个方程的解,可得k的值,根据k值,可得代数式的值.解答:解:2x=8,x=4,关于x的方程2x=8与x+2=﹣k的解相同,把x=4代入x+2=﹣k,k=﹣6,==﹣.点评:本题考查了同解方程,先解出第一个方程的解,把第一个方程的解代入第二个方程,得出k的值,再求出代数式的值.16.(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.考点:一元一次方程的解;两点间的距离.专题:计算题;解题方法.分析:(1)将x=﹣3代入原方程2k﹣x﹣k(x+4)=5整理即可求得k的值;解答:解:(1)将x=﹣3代入原方程2k﹣x﹣k(x+4)=5整理得2k+3﹣k=5,移项,合并同类项,得k=2;点评:此题主要涉及一元一次方程的解和两点间的距离这两个知识点,17.已知关于x,y的方程组的解为,求m,n的值.考点:二元一次方程组的解.分析:将x=1,y=2代入方程中得到关于m与n的方程组,求出方程组的解得到m与n的值即可.解答:解:将代入方程组中得:,解得:.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.18.在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:?分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?考点:二元一次方程组的应用.分析:(1)首先设掷到A区和B区的得分分别为x、y分,根据图示可得等量关系:①掷到A区5个的得分+掷到B区3个的得分=77分;②掷到A区3个的得分+掷到B区5个的得分=75分,根据等量关系列出方程组,解方程组即可得到掷中A区、B区一次各得多少分;(2)由图示可得求的是掷到A区4个的得分+掷到B区4个的得分,根据(1)中解出的数代入计算即可.解答:解:(1)设掷到A区和B区的得分分别为x、y分,依题意得:,解得:,答:掷中A区、B区一次各得10,9分.(2)由(1)可知:4x+4y=76,答:依此方法计算小明的得分为76分.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.19.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.考点:二元一次方程组的应用;二元一次方程的应用.分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.解答:解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.点评:本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.20.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 271 …0.9x+10在乙商场126 278 …0.95x+2.5(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)根据已知得出100+(290﹣100)×0. 9以及50+(290﹣50)×0.95进而得出答案,同理即可得出累计购物x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.解答:解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(x﹣100)×0.9=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(x﹣50)×0.95=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.21.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.考点:一元一次不等式组的整数解;二元一次方程组的解.专题:压轴题.分析:首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.解答:解:①×2得:2x﹣4y=2m③,②﹣③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.点评:此题主要考查了一元一次不等式组的整数解,以及二元一次方程的解,关键是掌握消元的方法,用含m的式子表示x、y.22.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?考点:一元一次不等式的应用.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分>90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则:10x﹣5(20﹣x)>90解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.23.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B 两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?考点:一元一次不等式组的应用.专题:应用题;图表型.分析:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可.(2)计算出每种方案的花费,然后即可判断出答案.解答:解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有,解得37≤x≤40,所以x=37或38或39或40.第一种方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算四种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低为70000元.点评:此题考查了一元一次不等式组的应用,是一道实际问题,有一定的开放性,(1)根据图表信息,利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.24.某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?考点:一元一次方程的应用;分段函数.专题:应用题.分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解答:解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故可得小华家5月份的用电量在第二档,设小华家5月份的用电量为x度,则210×0.52+(x﹣210)×(0.52+0.05)=138.84,解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当0<a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,小华家的用电量在第三档;点评:此题考查了一元一次方程的应用级分段函数的知识,解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断,有一定难度.25.某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?考点:一元一次方程的应用.专题:方案型.分析:由题意可知方案一可直接列算式计算;在方案二中,可设x天制成奶粉,则(4﹣x)天制成酸奶.首先根据4天内全部加工完成,可求出时间,从而进一步算出奶粉和酸奶的吨数.最后算出利润.解答:解:方案一:4×2000+6×500=11000(元)方案二:设制奶粉x天,则:1×x+(4﹣x)×3=10,解得:x=1(天),故:1×1×2000+3×3×1200=12800>11000,故选方案二.点评:该题文字比较多,主要是理解题意比较困难.理解题意后就可依等量关系列方程求解.。

相关文档
最新文档