人教版数学七年级下教案 6.2 立方根 2
人教版七年级数学下册6.2《立方根》说课稿

人教版七年级数学下册6.2《立方根》说课稿一. 教材分析《立方根》是人教版七年级数学下册第六章第二节的内容。
本节课的主要内容是让学生理解立方根的概念,掌握求立方根的方法,以及能够运用立方根解决一些实际问题。
教材通过引入立方根的概念,让学生通过观察、思考、操作、交流等活动,体验数学的探索过程,培养学生的数学思维能力和解决问题的能力。
二. 学情分析七年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。
但是,学生对立方根的概念可能还比较陌生,需要通过实例和操作来帮助理解。
此外,学生可能对求立方根的方法不够熟悉,需要通过练习和指导来提高。
三. 说教学目标1.知识与技能目标:学生能够理解立方根的概念,掌握求立方根的方法,能够运用立方根解决一些实际问题。
2.过程与方法目标:通过观察、思考、操作、交流等活动,学生能够体验数学的探索过程,培养数学思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与数学学习,对数学产生兴趣和信心,培养良好的学习习惯和合作意识。
四. 说教学重难点1.教学重点:学生能够理解立方根的概念,掌握求立方根的方法。
2.教学难点:学生能够运用立方根解决一些实际问题,理解并应用立方根的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,激发学生的学习兴趣,引导学生主动参与数学学习。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果和学生的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引入立方根的概念,激发学生的兴趣。
2.探究:学生通过观察、操作、思考等活动,理解立方根的概念,掌握求立方根的方法。
3.练习:学生进行一些练习题,巩固对立方根的理解和运用。
4.应用:学生通过解决一些实际问题,运用立方根的知识,提高解决问题的能力。
5.总结:教师引导学生总结立方根的概念和求法,加深对知识的理解。
七. 说板书设计板书设计要清晰、简洁,能够突出立方根的概念和求法。
最新人教版七年级数学下册6.2立方根(教案)

-在实际应用中,如计算一个立方体木块的体积,已知边长为2米,通过立方根计算得出体积为8立方米。
2.教学难点
-立方根的求法:对于一些复杂的数,学生可能难以直接得出其立方根。
-立方根的近似计算:在解决实际问题时,需要估算立方根的值,学生可能对近似计算方法掌握不足。
三、教学难点与重点
1.教学重点
-立方根的定义:理解立方根的概念,明确正数、负数和零的立方根的求法。
-立方根的计算方法:掌握计算立方根的基本方法,如分解因数法、近似计算法等。
-立方根的应用:学会将立方根应用于解决实际问题,如体积、密度等计算。
举例解释:
-通过立方根的定义,让学生明白一个数的立方根是什么,例如:2的立方根是8,-2的立方根是-8,0的立方根是0。
然而,我也注意到,在小组讨论过程中,部分学生过于依赖同学,缺乏独立思考。为了培养学生的独立思考能力,我打算在接下来的教学中,增加一些个人任务,让学生在学习过程中学会独立分析问题和解决问题。
同时,我也在思考如何更好地关注到每一个学生的学习情况。在今天的课堂上,我尽量让每个学生都有发言的机会,但仍然担心有些学生可能没有完全掌握知识点。我计划在课后对这部分学生进行个别辅导,以确保他们能够跟上教学进度。
最后,我认为在今后的教学中,要更加注重培养学生的逻辑推理能力和数学建模能力。这两项能力对于学生理解立方根以及解决相关问题具有重要意义。我会通过设计更多有针对性的问题和案例,引导学生运用所学知识进行推理和建模。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版七年级数学下册教案 6-2 立方根

6.2 立方根一、教学目标【知识与技能】1.了解立方根的概念,会用开立方运算求一个数的立方根.2.了解立方根的性质,并学会用计算器计算一个数的立方根或立方根的近似值.3.分清一个数的立方根与平方根的区别.【过程与方法】1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.【情感态度与价值观】1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】立方根的概念、求法和性质.【教学难点】立方根的求法,立方根与平方根的联系及区别.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?(二)探索新知1.出示课件4-7,探究立方根的概念和性质教师问:如图所示,二阶魔方由几个小立方体构成呢?学生答:二阶魔方由8个小立方体构成.教师问:三阶魔方由几个小立方体构成呢?学生答:三阶魔方由27个小立方体构成.教师问:四阶魔方由几个小立方体构成呢?学生答:四阶魔方由64个小立方体构成.教师问:如果一个魔方由27个小立方体构成,它应该是几阶魔方?学生答:解:设这个魔方为x 阶,则: x3 =27. 因为33 =27, 所以x =3.即这个魔方为3阶魔方.教师问:因为3的立方等于27,那么3就叫做27的立方根.想一想:什么数的立方等于-27?学生答:(-3)3=-27,因为-3的立方等于-27,那么-3就叫做-27的立方根.总结点拨:(出示课件8)立方根的定义一般地,如果一个数的立方等于a,这个数就叫做a的立方根或三次方根.教师问:如何表示一个数的立方根?师生一起解答:一个数a的立方根可以表示为:根指数被开方数读作:三次根号 a其中a是被开方数,3是根指数,3不能省略.教师出示问题:完成下表:填一填:教师依次展示学生答案:如下表所示:总结点拨:(出示课件10)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.教师强调:1.立方根是它本身的数有1, -1, 0;2.平方根是它本身的数只有0.考点1:求一个数的立方根求下列各数的立方根.(出示课件11)(1) 27 (2)-27 (3) 1(4)-0.064 (5) 027师生共同讨论后解答: 教师依次展示学生解答过程:学生1解:(1)∵33=27,∴27的立方根是3,即 √273=3 . 学生2解:(2)∵(-3)3=-27,∴-27的立方根是-3,即 √−273=-3 . 学生3解:(3)∵(13)3=127,∴127的立方根是13,即 √1273=13.学生4解:(4)∵(-0.4)3=-0.064,∴-0.064的立方根是-0.4,即 √−0.0643=-0.4 . 学生5解:(5)∵03=0,∴0的立方根是0,即 √03=0 . 出示课件13,学生自主练习后口答,教师订正. 2.出示课件14-15,探究立方根的性质 教师出示问题:完成下面的问题: 因为√−83= _______;-√83=_________. 学生答:√−83= __-2_____;-√83=____-2_____. 教师问:所以可以得到:√−83和-√83有何关系呢? 学生答:√−83= -√83. 教师问:完成下面的问题:因为√−273= _______;-√273=_________. 所以√−273______ -√273.学生答:因为√−273= __-3_____;-√273=___-3______. 所以√−273___=___ -√273.教师问:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗? 学生答:互为相反数的数的立方根也互为相反数.即:√−a 3= -√a 3. 教师问:完成下面的问题:√233= _______;√(−2)33=_________. √433= _______;√(−3)33=_________.√033= _______.教师依次展示学生答案: 学生1答:√233= ___2____;√(−2)33=___-2______. 学生2答:√433= ___4____;√(−3)33=___-3______.学生3答:√033= ___0____.教师总结如下:√233= ___2____;√(−2)33=___-2______.√433= ___4____;√(−3)33=___-3______. √033= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有√a 33=a. 教师出示问题:完成下面的问题:(√83)3= _______;(√−83)3==_________. (√273)3= _______;(√−273)3==_________. (√03)3= _______. 教师依次展示学生答案:学生1答:(√83)3= ___8____;(√−83)3=___-8______. 学生2答:(√273)3= __27_____;(√−273)3==___-27____. 学生3答:(√03)3= ___0____. 教师总结如下:解答如下:(√83)3= ___8____;(√−83)3=___-8______. (√273)3= __27_____;(√−273)3==___-27______. (√03)3= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有(√a 3)3=a. 3.出示课件16,探究立方根的有关计算教师问:类似开平方运算,求一个数的立方根的运算叫作“开立方”.观察下面的问题,开立方和立方是什么关系呢?学生答:“开立方”与“立方”互为逆运算. 考点2:立方根的计算求下列各式的值:(出示课件17) (1)√643;(2)-√183;(3)√−27643学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√643=4; 学生2解:(2)-√183 =-12; 学生3解:(3)√−27643=-34.出示课件18,学生自主练习后口答,教师订正.教师总结:平方根与立方根的区别和联系(出示课件19)4.出示课件20,探究利用计算器求立方根教师问:由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.请同学们完成下面的题目:用计算器求下列各数的立方根:343,-1.331.教师依次展示学生解答过程: 学生1显示:7所以:√3433=7.学生1显示:-1.1所以:√−1.3313=-1.1.教师强调:不同的计算器的按键方式可能有所差别! 出示课件21,学生自主练习,教师给出答案。
人教版七年级数学下“6.2立方根”说课稿(优秀篇)

因为 , ,所以 ;
因为 , ,所以
由两个例子可归纳出:一般地, ,探讨了一个数的立方根与它的相反数的立方根之间的关系,由此可以将求负数的立方根的问题转化为求正数得出立方根的出问题,引导学生体会这种转化的思想。
(四)典例讲解
例1:求下列各式的值:
(1) (2) (3)
分析:此题的本质还是求立方根.(请三明同学在黑板上板演,其他同学在练习本上完成,并充分利用错误资源,及时给于指导和帮助)
(六)回顾交流,课堂小结
1.本节课你学到了哪些知识,获得了哪些数学思想方法?
2.你认为本节课的易错知识点有哪些?
(1)立方根的根指数不能省略;(2)一个数的立方根只有一个,不能跟平方根相混淆;(3)表示一个负数的立方根时不能直接将负号提前。
(选做题)教材52页第6题
设计意图:检测学生对于课堂知识的理解与掌握程度,从而更好地调整课堂教学。
九、教学评价设计
1.你对于本节课的掌握情况是( )
A.非常好 B.比较好 C.一般
2.谈谈你本节课的收获和不足?
3.通过本节课的学习你对老师有哪些建议?
十、板书设计
主板
副板
1.立方根的概念:
2.立方根的表示方法:
3.开立方的概念:
4.探索立方根的特点:
例题讲解和板演
六、教学方法分析
本节课主要采用通过创设问题情境—启发学生独立思考-引导学生自主探究-发挥小组合作交流—鼓励学生归纳、总结的学习方式,启发学生深度思考,以实现学生对于知识的主动建构!整堂课注意留给学生足够探索和交流的空间,关注数学思想方法的引导和渗透!
七、教学准备:ppt
八、教学过程分析
(一)学前温故
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。
本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。
但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。
2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。
2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。
3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。
4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。
3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。
七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。
新人教版初中七年级数学下册《6.2 用计算器求立方根、用有理数估计一个数立方根的大小》优质课教学设计_4

有两个立方根;(2)漏写根指数(3)符号问题。
2、“立方根”与“平方根”在内容安排上有很多类似的地方,所以在
教 学
教学设计中应突出利用类比的方法,让学生通过类比旧知识联系起来,又
反 有利于复习巩固平方根,利于立方根的理解和掌握。在探究立方根性质的
思
过程中,本节课采用独立思考,小组讨论,合作交流等形式,让学生在“自
了解学生的学习情况。 -0.064(5)0
示。
2、求下列各式的 4、互相评价指正。
过
值:(1)3 64
(2)3 0.001
六、当堂检测
(3) 3 64 ( 4 ) 4
125
55
1.出示与本节课相关的练习 练习:
1、学生独立完成检测
题实行课堂检测。
1.判断下列说法是
练习。
2.在学生完成练习的同时实 否准确,并说明理
教学设计
具体内容 材 分 析
学 情 分 析
教 学 目 标
教学重点
教学难点 教学方法 教具准备
教
立方根的概念和特征
课型
新授
本章内容能够看成是以后学习代数内容的起始章,是学习二次根式、
一元二次方程以及解三角形的基础,所以在中学数学教学中占有很重要的
地位。通过本章的学习,学生对数的理解就由有理数扩大到实数,而无理
3(.2想)一(想 )3 125,
过
立的方数3 1根有25是哪它些__?本__身_
平方根是它本身
的数呢?
程
算术平方根是它
本身的数呢?
七、梳理归纳及课堂小结
1.引导学生回顾本节课的主 1.立方根定义,性
要内容,并对相关内容实行 质,及表示方法. 1.在老师指导评价后及
(最新)数学七年级下册《第6章第2节 立方根》省优质课一等奖教案

问题3:根据平方根的概念你能给立方根下定义吗?
预设:学生能自己给出立方根的定义及什么是开立方.
【设计意图】:对有些相近或相似关系的概念,我们可以使用类比的方法去研究,所以我们可以借助平方根的概念来实现对立方根概念的理解和建构,学生从中体会到类比这一思想方法.
(三)探索新知归纳特征
问题4:你能举例说明怎样求一个数的立方根吗?
《6.2立方根》教学设计
学校学科数学Fra bibliotek年级七年级
人数
课题
6.2立方根
课时
1
执教者
日期
一、教材分析
(一)内容解析
数是数学最基本的研究对象,人类对数的认识是在生产、生活和数学自身矛盾的发展中不断加深和完善的.关于数的内容,第三学段主要学习有理数和实数,七年级上学期学生经历了从自然数和分数到有理数的扩充,本章在有理数的基础上,通过研究平方、立方运算的逆运算引入了新的运算——开平方和开立方运算,以及开方运算产生的新数——无理数,将数的范围扩充到实数.
(新人教版)数学七年级下册:6.2《立方根》教案(3份)

《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下教案 6.2 立方根
【教学目标】
1、 使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;
2、 能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;
3、经历运用计算器探求数学规律的过程,发展合情推理能力。
【学难点与重点】
用有理数估计一个无理的大致范围。
【教学过程】
一、 复习引新
1. 判断题:
4的平方根是2( )
1的立方根是1( )
-0.125的立方根是-0.5( )
278-的立方根是3
2±( ) -6是216的立方根( )
2.求下列各式的值 327102-;()331.0--;()25-
问题:350有多大呢?
(这里可以让学生回忆前面学习过程中讨论2有多大时的方法)。
学生小组讨论,并交流学方法。
因为2733=,6443=
所以45033<<
因为656.466.33=,653.507.33=
所以7.3506.33<<
因为836032.4968.33=,24349.5069.33=
所以69.35068.33<< ……
如此循环下去,可以得到更精确的350的近似值,它是一个无限不循环小数,350=一
3.684 031 49……事实上,很多有理数的立方根都是无限不循环小数.我们用有理数近似地表示它们.
二、 自主学习
1、利用计算器来求一个数的立方根,并完成课本上的练习。
(学生利用计算器的说明书独立学习.对于一些暂时还没有学会的学生,可以采用同学之间互帮互学的方式解决.)
2、学生解决上节课未解决的一个问题,简单回忆:如果要生产这种容积为50L的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?(结果保留两个有效数字)
三、应用新知
30001
.0,31.0,3100000的近似值。
四、课堂小结
五、布置作业。