2018-2019学年八年级上期中考试数学试卷含答案 (7)

合集下载

2018-2019学年重庆市沙坪坝区南开中学八年级(上)期中数学试卷(含解析)

2018-2019学年重庆市沙坪坝区南开中学八年级(上)期中数学试卷(含解析)

2018-2019 学年重庆市沙坪坝区南开中学八年级(上)期中数学试卷(考试时间:120 分钟一、选择题(每小题 3 分,共 36 分)满分:150 分)1.下面四个标志是中心对称图形的是( ) A . C .B .D . 2.二次根式A .﹣3 的值是( )B .3 或﹣3C .9D .3 ) 3.若面积为 27 的正方形的边长为 x ,那么 x 的取值范围是(A .2<x <3B .3<x <4C .4<x <5 4.某正多边形的每个外角均为 60°,则此多边形的边数为( A .3 B .4 C .55.在梯形 ABCD 中,AD∥BC ,AD =1,BC =3,AB =1.5,则 CD 的长可能是( A .0.5 B .2 C .4 D .66.在平面直角坐标系中,点 P (2m+3,3m ﹣1)在第一三象限角平分线上,则点 P 的坐标为( A .(4,4) B .(3,3) C .(11,11) D .(﹣11,﹣11)7.如图,等腰梯形 ABCD 中,AB∥CD ,点 E 、F 、G 、H 分别为各边中点,对角线 AC =5,则四边形 EFGH 的周 长为( D .5<x <6)D .6 )))A .2.5 8.在平面直角坐标系中,若一束光线从点A (0,2)发出,经 x 轴反射,过点B (5,3),则这束光从点 A 到点 B 所经过的路径的长为(A .B . B .5C .10D .20) C . D .9.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第503 个图案中阴影小三 角形的个数是( )A .2010B .2012C .2014D .201610.如图,在梯形 ABCD 中,AD∥BC ,∠B =45°,AB⊥AC ,AD =1,BC =4,则 CD 的长为( )A . 11.如图,在菱形 ABCD 中,对角线长度分别为 6 和 8,P 为直线 AB 、CD 之间的任一点,分别连接 PA 、PB 、 PC 、PD ,则△PAB 和△PCD 的面积之和为( B .3 C . D .)A .10B .12C .14D .4812.如图,在正方形 ABCD 中,点 P 是 AB 的中点,BE⊥DP 的延长线于点 E ,连接 AE ,过点 A 作 FA⊥AE 交 DP 于点 F ,连接 BF 、FC .下列结论中:①△ABE≌△ADF ;②PF =EP+EB ;③△BCF 是等边三角形;④∠ADF =∠DCF ;⑤S =S .其中正确的是( △APF △CDF )A .①②③ 二、填空题(每小题 3 分,共 36 分)13.在平面直角坐标系中,点 P (2,5)位于第 B .①②④ C .②④⑤ D .①③⑤象限.14.函数y=中,自变量x的取值范围是.15.若实数x、y满足+|3﹣y|=0,则代数式x+y的值为.16.矩形ABCD的对角线AC、BD交于点O,AB=5,BC=12,则△ABO的周长为.17.已知等腰三角形的周长为20厘米,其中一腰长为y厘米,底边长为x厘米,则y与x的函数关系式是(不写自变量的取值范围).18.如图,平行四边形ABCD中,∠BCD的平分线CE交AD于点E,∠ABC的平分线BG交AD于点G,若AB =6,AD=8,则EG的长为.19.已知点M(﹣4,7),MN∥x轴,且MN=5,则点N的坐标为.20.如图,在梯形ABCD中,AD∥BC,O为CD中点,OA=6,AD+BC=AB=10,则OB长为.21.在菱形ABCD中,∠BAD=50°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF 的度数为.22.如图是放在地面上的一个长方体盒子,其中AB=9,BB=5,B C=6,在线段AB的三等分点E(靠近点111A)处有一只蚂蚁,B C中点F处有一米粒,则蚂蚁沿长方体表面爬到米粒处的最短距离为1.123.图,在梯形ABCD中,AD∥BC,AD=6,BC=18,E是BC的中点,点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.当点P停止运动时,点Q也随之停止运动.当运动时间为秒时,以点P、Q、E、D为顶点的四边形是平行四边形.24.现有一张矩形纸片ABCD(如图),其中AB=4,BC=6,点E是BC中点,将纸片沿AE折叠,点B落在四边形ABCD内,记为点F,则线段CF长是.三、解答题(共78分)25.(5分)()+(π﹣)+|5﹣|+(﹣1)﹣10201226.(5分).27.(5分).28.(5分)计算:(3﹣2+)÷2.29.(6分)化简,求值:(2x﹣y)2﹣(y﹣2x)(﹣y﹣2x)+y(x﹣2y),其中.30.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标为;(2)将△ABC平移,使点B移动后的坐标为B′(﹣5,﹣5),画出平移后的图形△A′B′C′;(3)将△ABC绕坐标原点O顺时针旋转90°,画出旋转后的图形△A″B″C″.31.(10分)已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.求证:BE=DG.32.(10分)如图,在平面直角坐标系中,O为坐标原点,正方形OABC的边长是2,且∠COx=30°,求点A、B、C的坐标.33.(10分)如图1,在等腰△ABO中,AB=AO,分别延长AO、BO至点C、点D,使得CO=AO、BO=BO,连接AD、BC.(1)如图1,求证:AD=BC;(2)如图2,分别取边AD、CO、BO的中点E、F、H,猜想△EFH的形状,并说明理由.34.(12分)在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,AD=CD.(1)如图1,连接AC,求证:AC是∠BCD的角平分线;(2)线段BC上一点E,将△ABE沿AE翻折,点B落到点F处,射线EF与线段CD交于点M.①如图2,当点M与点D重合时,求证:FM=AB;②如图3,当点M不与点D重合时,求证:FM﹣DM=A B.1.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.2.【解答】解:=﹣(﹣3)=3.故选:D.3.【解答】解:∵面积为27的正方形的边长为x,∴x=,∴5<<6,故选:D.4.【解答】解:360÷60=6.则此多边形的边数为6.故选:D.5.【解答】解:过D作DE∥AB交BC于E,∴四边形ABED是平行四边形,∴CE=3﹣1=2,即0.5<DC<3.6,A、0.5不在0.5<DC<7.5内,故本选项错误;B、2在0.5<DC<3.5内,故本选项正确;C、4不在4.5<DC<3.5内,故本选项错误;D、6不在0.5<DC<8.5内,故本选项错误;故选:B.6.【解答】解:第一三象限角平分线的解析式为y=x,将点P(2m+3,3m﹣1)代入y=x,可得:2m﹣1=2m+3,故点P的坐标为(11,11).故选:C.7.【解答】解:连接BD,∵E、F、G、H是等腰梯形ABCD各边中点,∵等腰梯形ABCD,∴四边形EFGH的周长=4EF=2AC=10m.故选:C.8.【解答】解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(5,3),根据题意得:∠ACO=∠BCD,∴△AOC∽△BDC,∴OC=5×=2,∴AC==6,BC==3,故选:B.9.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形3+8=10个,则第503个图案中阴影小三角形的个数是:4×503﹣2=2010,故选:A.10.【解答】解:延长AD,过C作AD的延长线,垂足为E.过A作BC的垂线,垂足为F.∵∠B=45°,AB⊥AC,∵BC=4,∴CE=AF=2,AE=2,∴DE=AE﹣AD=1,故选:D.11.【解答】解:∵菱形ABCD的对角线分别6和8,∴菱形的面积=×6×8=24,∴△PAB和△PCD的面积之和=S 故选:B.=×24=12.菱形ABCD12.【解答】解:在正方形ABCD中,AB=AD,∠DAF+∠BAF=90°,∵FA⊥AE,∴∠BAE=∠DAF,∴∠ABE+∠BPE=90°,∴∠ABE=∠ADF,,∴AE=AF,BE=DF,过点A作AM⊥EF于M,则AM=MF,∴AP=BP,,∴BE=AM,EP=MP,∵BE=DF,FM=AM=BE,又∵∠ADM+∠DAM=90°,∠ADM+∠CDF=90°,∵在△ADM和△DCF,∴△ADM≌△DCF(SAS),在Rt△CDF中,CD>CF,∴CF≠BC,∵CF=DM=DF+FM=EM+FM=EF≠FP,∴S<S,故⑤错误;△APF△CDF故选:B.13.【解答】解:∵点P的横坐标为2>0,点P的纵坐标为5>0,∴点P位于第一象限,故答案为:一.14.【解答】解:由题意得,2x+1≠0,解得x≠﹣.故答案为x≠﹣.15.【解答】解:根据题意得:,解得:,故答案是:4.16.【解答】解:∵四边形ABCD是矩形,在Rt△ABC中,AB=5,BC=12,由勾股定理得:AC==13,∴△ABO的周长为OA+OB+AB=6.5+6.2+5=18,故答案为:18.17.【解答】解:∵等腰三角形的周长为20cm,其中一腰长为y厘米,底边长为x厘米,∴x+2y=20,故答案为y=10﹣x.18.【解答】明:∵四边形ABCD是平行四边形(已知),∴AD∥BC,AB=CD(平行四边形的对边平行,对边相等)又∵BG平分∠ABC,CE平分∠BCD(已知),∴∠ABG=∠AGB,∠ECD=∠CED.∴AG=DE,即AE=DG,∴AG=6,DG=AE=2,故答案为4.19.【解答】解:∵点M(﹣4,7),MN∥x轴,且MN=5,∴①点N在点M的左边时,点N的横坐标为﹣2﹣5=﹣9,②点N在点M的右边时,点N的横坐标为﹣4+5=6,综上,点N的坐标为(﹣9,7)或(1,7).故答案为:(﹣9,2)或(1,7).20.【解答】解:如图,过点O作OE∥AD,∵O为CD中点,∴AD+BC=2OE,∴AB=2OE,∵OA=5,AB=10,故答案为:8.21.【解答】解:如图,连接BF,在△BCF和△DCF中,∴△BCF≌△DCF(SAS)∵FE垂直平分AB,∠BAF=×50°=25°∵∠ABC=180°﹣50°=130°,∠CBF=130°﹣25°=105°故答案为:105°.22.【解答】解:如图1,∵AB=9,BB=5,B C=2,在线段AB的三等分点E(靠近点A)处有一只蚂蚁,111B C中点F处有一米粒,11∴BE=6,BF=5+2=8,如图2,∵AB=9,BB=3,B C=6,在线段AB的三等分点E(靠近点A)处有一只蚂蚁,B C中点F处有一11111米粒,∴EF==.∴蚂蚁沿长方体表面爬到米粒处的最短距离为10.故答案为:10.23.【解答】解:由已知梯形,当Q运动到E和B之间,设运动时间为t,则得:解得:t=5,解得:t=3,故答案为:3或524.【解答】解:连接BF交AE于点O,由折线法及点E是BC的中点,∴EB=FE=EC,又∵△BFC三内角之和为180°,∵点F是点B关于直线AE的对称点,在Rt△AOB和Rt△BOE中,BO=AB﹣AO=BE﹣(AE﹣AO)22227∴BO===,∴在Rt△BFC中,FC===.故答案为:.25.【解答】解:原式=3+1+5﹣+1=10﹣.26.【解答】解:原式=[(2﹣)(2+)]4=(4﹣5)2=1.27.【解答】解:原式=×(3﹣)+,=6﹣1+﹣1,=4+.28.【解答】解:(3﹣2+)÷2=(6﹣+4)÷2=.29.【解答】解:原式=4x﹣4xy+y﹣(4x﹣y)+xy﹣2y22262=4x﹣4xy+y﹣4x+y+xy﹣2y22228当x=,y=时,原式=﹣3×2=﹣3.30.【解答】解:(1)点A(﹣2,3)关于y轴对称的点的坐标为(2,3);(2)如图所示,△A′B′C′即为所求作的三角形;31.【解答】证明:∵四边形ABCD与四边形CEFG是菱形,∴CD=CB,CG=CE,∠ACD=∠ACB,∠ECF=∠GCF,∴∠DCG=∠BCE,,∴BE=DG.32.【解答】解:作AM⊥x轴于M,CF⊥x轴于F,BE⊥x轴于E,则∠AMO=∠CFO=∠CFD=∠BED=90°.∴AO=OC=CB=AB=2,∠AOC=∠OCB=∠OAB=∠ABC=90°.∴∠AOM=60°,CF=OC=1,OM=OA=4,∴DF=∴DE=,CD=,,BE=﹣4,∴A(1,),B(+1,﹣1),C(,﹣1).33.【解答】(1)证明:在△AOD和△COB中,,∴AD=BC;∵AB=AO,H是BO的中点,∵F、H分别是CO、BO的中点,∴FH=BC,∴△EFH是等腰三角形.34.【解答】(1)证明:连接AC,∵AD=CD,∵AD∥BC,∴∠2=∠3,(2)解:①过点D作DN⊥BC于点N,∵将△ABE沿AE翻折,点B落到点F处,∴AF=DN,,∴∠5=∠C=60°,∴=tan30°=,∴FM=AB;②过点A作AG⊥CD,交CD的延长线于点G,连接AM ∵AD∥BC,∵AD=CD,∴∠ACB=∠ACD,∵AB=AF,又∵AM=AM,∴FM=GM,∵∠ADG=∠BCD=60°∴FM﹣DM=AB.31.【解答】证明:∵四边形ABCD与四边形CEFG是菱形,∴CD=CB,CG=CE,∠ACD=∠ACB,∠ECF=∠GCF,∴∠DCG=∠BCE,,∴BE=DG.32.【解答】解:作AM⊥x轴于M,CF⊥x轴于F,BE⊥x轴于E,则∠AMO=∠CFO=∠CFD=∠BED=90°.∴AO=OC=CB=AB=2,∠AOC=∠OCB=∠OAB=∠ABC=90°.∴∠AOM=60°,CF=OC=1,OM=OA=4,∴DF=∴DE=,CD=,,BE=﹣4,∴A(1,),B(+1,﹣1),C(,﹣1).33.【解答】(1)证明:在△AOD和△COB中,,∴AD=BC;∵AB=AO,H是BO的中点,∵F、H分别是CO、BO的中点,∴FH=BC,∴△EFH是等腰三角形.34.【解答】(1)证明:连接AC,∵AD=CD,∵AD∥BC,∴∠2=∠3,(2)解:①过点D作DN⊥BC于点N,∵将△ABE沿AE翻折,点B落到点F处,∴AF=DN,,∴∠5=∠C=60°,∴=tan30°=,∴FM=AB;②过点A作AG⊥CD,交CD的延长线于点G,连接AM ∵AD∥BC,∵AD=CD,∴∠ACB=∠ACD,∵AB=AF,又∵AM=AM,∴FM=GM,∵∠ADG=∠BCD=60°∴FM﹣DM=AB.。

江苏省扬州中学教育集团树人学校2018-2019学年八年级上学期期中考试数学试题(解析版)

江苏省扬州中学教育集团树人学校2018-2019学年八年级上学期期中考试数学试题(解析版)

江苏省扬州中学教育集团树人学校2018-2019学年八年级上学期期中考试数学试题一、选择题(每小题3分,共24分)1.下列四个图案中,不是轴对称图形的是()A.B.C.D.2.下列各组长度的线段中,可以组成直角三角形的是()A.1,2,3 B.1,,3 C.5,6,7 D.5,12,13 3.若△MNP≌△NMQ,且MN=5cm,NP=4cm,PM=2cm,则MQ的长为()A.5cm B.4cm C.2cm D.3cm4.在实数0,﹣2,,2中,最大的是()A.0 B.﹣2 C.D.25.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=10,BC=12,则AD等于()A.6 B.7 C.8 D.96.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=2AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个7.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半8.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠CBA=50°,则∠ABE的度数为()1A.15°B.20°C.25°D.30°二、填空题(每小题3分,共30分)9.把3.2968按四舍五入精确到0.01得.10.的值等于.11.若(2x﹣5)2+=0,则x+2y=.12.已知的小数部分是a,的整数部分是b,则a+b=.13.已知直角三角形的两直角边长分别是6,8,则它的周长为.14.如图,△ABC中,∠C=90°,CD是AB上的中线,AB=10,则CD=.15.已知P(﹣a,b)在第一象限,则B(a﹣b,b+1)在第象限.16.在△ABC中,AB=AC,∠ABC=75°,AD⊥BC于点D,点D关于AB、AC对称的点分别为E、F,连结EF分别交AB、AC于点M、N,分别连结DM、DN,若AD=6,则△DMN的周长为.17.如图,AB=12cm,∠CAB=∠DBA=60°,AC=BD=9cm.点P在线段AB上以3cm/s 的速度由点A向点B匀速运动,同时,点Q在线段BD上由点B向点D匀速运动,设点Q的运动速度为xcm/s.当△BPQ与△ACP全等时,x的值为.18.已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH =.三.解答题(本大题共96分)19.(10分)计算题.(1)﹣+(2)+(3﹣π)0﹣()﹣120.(10分)求出下列x的值.(1)4x2﹣9=0;(2)(x+1)3=﹣27.21.(10分)如图所示的正方形网格中,每个小正方形的边长均为1.(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,﹣1)、B(1,﹣4);(2)请作出△ABC关于x轴对称的△A′B′C';(3)点C′的坐标是.22.(10分)如图在四边形ABCD中,∠BAD=90°,∠CBD=90°,AD=4,AB=3,BC =12,求以DC为边的正方形面积.23.(10分)如图,△ABC中,AB=AC,∠C=70°,作AB的垂直平分线交AB于E,交AC于D,求∠DBC的度数.24.(10分)如图,AC∥EG,BC∥EF,直线GE分别交BC、BA于P、D,且AC=GE,BC=FE.求证:∠A=∠G.25.(12分)如图,在△ABC中,AD⊥BC于D,M、N分别是AB、AC的中点,连接DM、DN.(1)若AB+AC=10,求四边形AMDN的周长;(2)连接MN,观察并猜想,线段AD与线段MN有何位置关系?试说明你的猜想正确性.26.(12分)如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.27.(12分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案一、选择题1.下列四个图案中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.解:A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各组长度的线段中,可以组成直角三角形的是()A.1,2,3 B.1,,3 C.5,6,7 D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.解:A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.若△MNP≌△NMQ,且MN=5cm,NP=4cm,PM=2cm,则MQ的长为()A.5cm B.4cm C.2cm D.3cm【分析】根据全等三角形的对应边相等得出MQ=NP即可.解:∵△MNP≌△NMQ,NP=4cm,∴MQ=NP=4cm,故选:B.【点评】本题考查了全等三角形的性质的应用,能正确运用全等三角形的性质定理进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.4.在实数0,﹣2,,2中,最大的是()A.0 B.﹣2 C.D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:根据实数比较大小的方法,可得>2>0>﹣2,故实数0,﹣2,,2其中最大的数是.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=10,BC=12,则AD等于()A.6 B.7 C.8 D.9【分析】根据等腰三角形的性质得到BD=DC=AB=5,AD⊥BC,根据勾股定理计算即可.解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴BD=DC=AB=5,AD⊥BC,∴AD==8,故选:C.【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=2AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=S△ABD+S△BDC=AC•BD,故③错误;故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.7.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.8.如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D1处.若∠CBA=50°,则∠ABE的度数为()1A.15°B.20°C.25°D.30°【分析】根据折叠前后对应角相等可知.解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题3分,共30分)9.把3.2968按四舍五入精确到0.01得 3.30 .【分析】根据近似数的精确度求解.解:把3.2968按四舍五入精确到0.01得3.30.故答案为:3.30.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.10.的值等于 6 .【分析】根据算术平方根的定义解答即可.解:的值等于6,故答案为:6.【点评】本题考查了算术平方根,熟记定义是解题的关键.11.若(2x﹣5)2+=0,则x+2y= 2 .【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解:根据题意得,2x﹣5=0,4y+1=0,解得x=,y=﹣,所以,x+2y=+2×(﹣)=﹣=2.故答案为:2.【点评】本题考查了平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.12.已知的小数部分是a,的整数部分是b,则a+b=.【分析】求出2<<3,得出a、b的值,代入求出即可.解:∵2<<3,∴的小数部分a=﹣2,的整数部分b=2,∴a+b=﹣2+2=.故答案是:.【点评】本题考查了估算无理数的性质和二次根式的加减的应用,解此题的关键是求出a、b的值.13.已知直角三角形的两直角边长分别是6,8,则它的周长为24 .【分析】根据勾股定理求出斜边长,根据三角形的周长公式计算即可.解:直角三角形的斜边长==10,则直角三角形的周长=6+8+10=24,故答案为:24.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.如图,△ABC中,∠C=90°,CD是AB上的中线,AB=10,则CD= 5 .【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解:∵∠C=90°,CD是AB上的中线,∴CD=AB=×10=5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.已知P(﹣a,b)在第一象限,则B(a﹣b,b+1)在第二象限.【分析】根据已知条件可以判断a、b的符号,从而求得a﹣b、b+1的符号,即可以确定点B所在的象限.解:∵P(﹣a,b)在第一象限,∴﹣a>0,b>0,∴b﹣a>0,b+1>1>0,∴a﹣b<0,b+1>0,∴点B(a﹣b,b+1)在第二象限;故答案是:二.【点评】本题考查了各象限内点的坐标的符号特征.记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.在△ABC中,AB=AC,∠ABC=75°,AD⊥BC于点D,点D关于AB、AC对称的点分别为E、F,连结EF分别交AB、AC于点M、N,分别连结DM、DN,若AD=6,则△DMN的周长为 6 .【分析】连接AE,AF,依据轴对称的性质,即可得到△AEF是等边三角形,进而得出AE =EF=6,依据EM=DM,FN=DN,即可得到△DMN的周长=DM+MN+DF=EM+MN+NF=6.解:如图,连接AE,AF,∵点D关于AB、AC对称的点分别为E、F,∴AB垂直平分DE,AC垂直平分DF,∴AE=AD=AF=6,AB⊥DE,AC⊥DF,∴∠EAB=∠DAB,∠CAF=∠CAD,∵AB=AC,∠ABC=75°,∴∠BAC=30°,∴∠EAF=60°,∴△AEF是等边三角形,∴AE=EF=6,∴EM+MN+NF=6,∵AB垂直平分DE,AC垂直平分DF,∴EM=DM,FN=DN,∴△DMN的周长=DM+MN+DF=EM+MN+NF=6,故答案为:6.【点评】本题主要考查了轴对称的性质以及等腰三角形的性质,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.17.如图,AB=12cm,∠CAB=∠DBA=60°,AC=BD=9cm.点P在线段AB上以3cm/s 的速度由点A向点B匀速运动,同时,点Q在线段BD上由点B向点D匀速运动,设点Q的运动速度为xcm/s.当△BPQ与△ACP全等时,x的值为3或.【分析】由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,当x=3或时,△ACP与△BPQ全等.故答案为3或.【点评】本题主要考查了全等三角形的判定与性质,解题的关键是注意分类讨论思想的渗透.18.已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH =.【分析】连结GE,根据折叠的性质和矩形的性质可得△EFG与△EDG是直角三角形,DE =AE=FE,再根据HL即可证明△EFG≌△EDG.根据全等三角形的性质可得DG=FG =16,可设AB=BF=DC=x,在Rt△BCG中,根据勾股定理可求BF的长,再在Rt△BFH中,根据勾股定理可求FH=BH的长.解:连结GE.∵E是边AD的中点,∴DE=AE=FE,又∵四边形ABCD是矩形,∴∠D=∠A=∠BFE=90°,∴∠D=∠EFG=90°.在Rt△EFG与Rt△EDG中,,∴Rt△EFG≌Rt△EDG(HL);∴DG=FG=16,设DC=x,则CG=16﹣x,BG=x+16 在Rt△BCG中,BG2=BC2+CG2,即(x+16)2=(16﹣x)2+242,解得x=9,∵AD∥BC,∴∠AEB=∠CBE,∵∠AEB=∠FEB,∴∠CBE=∠FEB,∴BH=EH,设BH=EH=y,则FH=12﹣y,在Rt△BFH中,BH2=BF2+FH2,即y2=92+(12﹣y)2,解得y=,∴12﹣y=12﹣=.故答案为:.【点评】考查了翻折变换(折叠问题),涉及的知识点有:折叠的性质,矩形的性质,全等三角形的判定和性质以及勾股定理,综合性较强,有一定的难度,关键是作出辅助线构造全等三角形.三.解答题(本大题共96分)19.(10分)计算题.(1)﹣+(2)+(3﹣π)0﹣()﹣1【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用二次根式的性质以及负指数幂的性质和零指数幂的性质分别化简得出答案.解:(1)﹣+=5+3+=;(2)+(3﹣π)0﹣()﹣1=4+1﹣2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(10分)求出下列x的值.(1)4x2﹣9=0;(2)(x+1)3=﹣27.【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.解:(1)4x2﹣9=0;4x2=9x2=x=±.(2)(x+1)3=﹣27x+1=﹣3x=﹣4.【点评】本题考查了平方根、立方根的定义,解决本题的关键是熟记立方根、平方根的定义.21.(10分)如图所示的正方形网格中,每个小正方形的边长均为1.(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,﹣1)、B(1,﹣4);(2)请作出△ABC关于x轴对称的△A′B′C';(3)点C′的坐标是(1,4).【分析】(1)根据A,B两点坐标确定平面直角坐标系如图所示;(2)作出A,B,C,关于x轴的对称点A′,B′,C′即可;(3)根据点C′的位置写出坐标即可;解:(1)平面直角坐标系如图所示.(2)△A′B′C′即为所求.(3)点C′的坐标是(1,4),故答案为(1,4).【点评】本题考查作图﹣轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)如图在四边形ABCD中,∠BAD=90°,∠CBD=90°,AD=4,AB=3,BC =12,求以DC为边的正方形面积.【分析】根据勾股定理分别求出BD、CD,根据正方形的面积公式计算即可.解:∵∠BAD=90°,∴AD2+AB2=DB2∴32+42=DB2,∴DB=5,∵∠CBD=90°,∴BD2+BC2=DC2∴52+122=DC2∴DC=13,∴S正方形DCEF=132=169.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23.(10分)如图,△ABC中,AB=AC,∠C=70°,作AB的垂直平分线交AB于E,交AC于D,求∠DBC的度数.【分析】根据等腰三角形的性质求出∠A的度数,根据线段的垂直平分线的性质得到DA=DB,求出∠DBA的度数,结合图形计算即可.解:∵AB=AC,∠C=70°,∴∠A=40°,∵DE是AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.(10分)如图,AC∥EG,BC∥EF,直线GE分别交BC、BA于P、D,且AC=GE,BC=FE.求证:∠A=∠G.【分析】根据两直线平行,内错角相等可得∠C=∠CPG,再根据两直线平行,同位角相等可得∠CPG=∠FEG,从而得到∠C=∠FEG,然后利用“边角边”证明△ABC和△GFE全等,根据全等三角形对应角相等即可得证.证明:∵AC∥EG,∴∠C=∠CPG,∵BC∥EF,∴∠CPG=∠FEG,∴∠C=∠FEG,在△ABC和△GFE中,,∴△ABC≌△GFE(SAS),∴∠A=∠G.【点评】本题考查了全等三角形的判定与性质,平行线的性质,准确识图,求出相等的两组对应边的夹角∠C=∠FEG是解题的关键.25.(12分)如图,在△ABC中,AD⊥BC于D,M、N分别是AB、AC的中点,连接DM、DN.(1)若AB+AC=10,求四边形AMDN的周长;(2)连接MN,观察并猜想,线段AD与线段MN有何位置关系?试说明你的猜想正确性.【分析】(1)根据直角三角形斜边上中线性质得出AM=DM=AB,DN=AN=AC,根据AB+AC=10即可得出答案;(2)根据AM=DM和AN=DN得出M、N都在AD的垂直平分线上,即可得出答案.解:(1)∵在△ABC中,AD⊥BC于D,M、N分别是AB、AC的中点,AB+AC=10,∴AM=DM=AB,DN=AN=AC,∴AM+DM+DN+AN=2AM+2AN=2×(AB+AC)=10,所以四边形AMDN的周长为10;(2)MN⊥AD,理由是:∵AM=DM,AN=DN,∴M、N都在A D的垂直平分线上,∴MN⊥AD.【点评】本题考查了直角三角形斜边上的中线性质,线段垂直平分线性质的应用,能正确利用地理进行推理是解此题的关键.26.(12分)如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,再证明△ADB≌△ADC,推出∠ADB=∠ADC即可解决问题.(2)结论:△ABE是等边三角形.只要证明△ABD≌△EBC即可.(3)首先证明△DEC是含有30度角的直角三角形,求出EC的长,理由全等三角形的性质即可解决问题.(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°,在△ADB和△ADC中,,∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB=(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE,在△ABD和△EBC中,,∴△ABD≌△EBC,∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=DE=4,∵△ABD≌△EBC,∴A D=EC=4.【点评】本题考查全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.27.(12分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB =AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,t+2t﹣3=6;当P 点在AB上,Q在AC上,则AC=t﹣4,AQ=2t﹣8,t﹣4+2t﹣8=6.解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.。

2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析

2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析

2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。

2018-2019学年河南省驻马店市泌阳县八年级(上)期中数学试卷(解析版)

2018-2019学年河南省驻马店市泌阳县八年级(上)期中数学试卷(解析版)

2018-2019学年河南省驻马店市泌阳县八年级第一学期期中数学试卷一、选择题(共10小题).1.四个数0,1,,中,无理数的是()A.B.1C.D.02.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=13.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>257.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.12.计算:已知:a+b=3,ab=1,则a2+b2=.13.若x2+kx+81是完全平方式,则k的值应是.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是(填上所有正确答案的序号).三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣920.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.参考答案一、选择题(每小题3分,共30分)1.四个数0,1,,中,无理数的是()A.B.1C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0,1是整数,属于有理数;是分数,属于有理数;无理数有,共1个.故选:B.2.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.3.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.【分析】根据绝对值的定义即可得出答案.解:∵在数轴上,一个数的绝对值指的是这个数到原点的距离,∴表示1﹣的点到原点的距离为|1﹣|=,故选:B.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±【分析】先利用完全平方公式与平方差公式把已知条件展开,求出x的值,然后再求出的值,最后求平方根即可.解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选:D.5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>25【分析】要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致.解:当4>﹣5,而42<25,则“x>﹣5,则x2>25”是假命题,故选:A.7.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种【分析】能利用平方差公式分解因式,说明漏掉的是平方项的指数,只能是偶数,又只知道该数为不大于10的正整数,则该指数可能是2、4、6、8、10五个数.解:该指数可能是2、4、6、8、10五个数.故选:D.8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个【分析】由在△ABC中,∠A=36°,∠C=72°°,BD平分∠ABC,DE∥BC,可求得∠ABD=∠EDB=∠DBC=∠A=36°,∠BDC=∠ABC=∠C=72°,∠AED=∠ADE,即可得△ABC,△ABD,△EBD,△BCD,△AED是等腰三角形.解:在△ABC中,∠A=36°,∠C=72°,∴∠ABC=∠C==72°,∴△ABC是等腰三角形,∴∠DBC=36°,∴∠ABD=∠DBC=36°,∴BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个【分析】由∠1=∠2,可得∠BAC=∠EAD,又由于AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠B=∠E,就可以用AAS判定△ABC≌△AED;加④∠C=∠D,就可以用ASA判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等,其中能使△ABC≌△AED的条件有:①③④.故选:C.10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4【分析】把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选:B.二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=5.【分析】直接利用幂的乘方运算法则将原式变形进而得出m,n的值即可.解:∵2m=4n﹣1,27n=3m﹣1,∴2m=22n﹣2,33n=3m﹣1,故,解得:,故n﹣m=5.故答案为:5.12.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:713.若x2+kx+81是完全平方式,则k的值应是±18.【分析】利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±18.故答案为:±18.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是19cm、19cm.【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.解:该三角形是等腰三角形,当底边长为12cm时,其它两条边为(50﹣12)÷2=19(cm),即三边长分别为12cm、19cm、19cm,能组成三角形.当腰长为12cm时,底边长为50﹣2×12=26(cm),即三边长分别为12cm,12cm,26cm,不能组成三角形.综上,另两边长是19cm、19cm.故答案为:19cm、19cm.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为3.【分析】估算出+的取值范围可以得到答案.解:∵3<+<4,∴[+]的值为3.故答案为:3.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE(SAS)∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是②④(填上所有正确答案的序号).【分析】①将i3表示成i2•i即可;②将i4表示成i2•i2即可;③利用多项式乘以多项式的法则计算即可;④利用式子的规律即依次每四项的和为0进行计算即可.解:①∵i3=i2•i,i2=﹣1,∴i3=﹣i.∴①不正确;②∵i4=i2•i2,i2=﹣1,∴i4=1×1=1.∴②正确;③∵(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=7﹣i,∴③不正确;④∵i+i2+i3+i4=i﹣1﹣i=1=0,∴i5+i6+i7+i8=i4(i+i2+i3+i4)=0.∴i+i2+i3+i4+…+i2019=i2017+i2018+i2019=i2016(i+i2+i3)=i﹣1+i=﹣1,∴④正确.综上,正确的是:②④.故答案为:②④.三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.【分析】(1)先计算算术平方根、立方根,再计算加减即可;(2)先根据绝对值的性质去绝对值符号,再计算加减即可;(3)先计算多项式乘多项式,再去括号、合并同类项即可;(4)先利用平方差公式和完全平方公式及单项式乘多项式法则计算,再去括号、合并同类项即可.解:(1)原式=0.5+0.5+2=3;(2)原式=﹣1+﹣+2﹣=1;(3)原式=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=3xy﹣9x2﹣2y2+6xy﹣6x2﹣2xy+3xy+y2=10xy﹣15x2﹣y2;(4)原式=2(4x2﹣1)+5x2﹣15xy﹣(x2﹣4xy+4y2)=8x2﹣2+5x2﹣15xy﹣x2+4xy﹣4y2=12x2﹣11xy﹣4y2﹣2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣9【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.解:(1)原式=b(a2﹣b2)=b(a+b)(a﹣b);(2)原式=﹣[(x2+2)2﹣6(x2+2)+9]=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2.20.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.解:(1),验证:====,∵,∴;(2)==(n为整数)22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.【分析】先由△BEO≌△DFO,即可得出OF=OE,DO=BO,进而得到AO=CO,再证明△ABO≌△CDO,即可得到AB=CD.【解答】证明:∵△BEO≌△DFO,∴OF=OE,DO=BO,又∵AF=CE,∴AO=CO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP =∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣(180°﹣α)=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。

2018-2019学年上学期八年级 数学期中考试卷含答案

2018-2019学年上学期八年级 数学期中考试卷含答案

2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。

上海市松江区2018-2019八年级上期中数学卷(含答案)

上海市松江区2018-2019八年级上期中数学卷(含答案)

2018学年第一学期八年级期中考试数学试卷时间:90分钟 满分:100分 2018.11 题号一 二 三 四 得分 得分一、填空题(每题2分,共30分)1.如果12-a 有意义,那么a 的取值范围是 .2.计算:2)2(-=. 3.计算:62⋅= .4.若最简二次根式a +4与1-2a 是同类二次根式,则=a. 5.不等式x x 22-<的解集是______________.6.方程()()525-=-x x x 的根是 .7.若方程()01312=+--x x n 是关于x 的一元二次方程,则n .8.已知关于x 的方程()0122=+--x x k 有两个不相等的实数根,则k 的取值范围是. 9.函数x x y -52-=的定义域是 .10.已知函数xx x f 1)(-=,若2)(=x f ,则________=x . 11.已知y 与x 成正比例,当8=x 时,12-=y ,则y 与x 的函数的解析式为 .12. 在实数范围内分解因式:=--342x x .13.某厂工业废气年排放量为450万立方米,为了改善上海市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是 .14. 如果()()k k x k y 222-+-=是正比例函数,则k=.15. 已知a ,b 是实数,且()()11122=++++b b a a ,问a ,b 之间有怎样的关系: .二、选择题(每题3分,共15分)16. 下列根式中,能与3合并的二次根式为………………………… ( )A.24B.23 C.12 D. 18 17. 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是…… ( )A. 042=+xB. 01442=+-x xC. 032=++x xD. 01-22=+x x18. 下列各式中,一定成立的是………………………… ( )A. ()b a b a +=+2B. ()11222+=+a aC. 1112-⋅+=-a a aD. ab bb a 1= 19. 下列说法正确的个数是………………………… ( )①2+x 是x 的函数;②等腰三角形的面积一定,它的底边和底边上的高成正比例;③在函数x y 2-=中,y 随x 的增大而增大;④已知0<ab ,则直线x ba y -=经过第二、四象限. A. 1个 B.2个 C.3个 D. 4个20. 等腰ABC ∆的一边长为4,另外两边的长是关于x 的方程0012=+-m x x 的两个实数根,则等腰三角形底边的值是………………………… ( )A.4B.25C.4或6D. 24或25三、简答题(每题5分,共20分)21. 计算:233-3135.012+-+ 22. 计算:()0312323>÷⎪⎭⎫ ⎝⎛-⋅a a b b a ab b23. 用配方法解方程02532=--x x 24. 解方程:()()33-2)23(2+=-x x x四、解答题(第25、26题每题6分,第27、28题每题7分,第29题9分,共35分) 25. 先化简,再求值:已知2231+=x ,求()2441-122--++-x x x x x 的值26. 已知y 与1-x 成正比例,且当3=x 时,4=y .(1)求y 与x 之间的函数解析式;(2)当1-=x 时,求y 的值;(3)当53-<<y 时,求x 的取值范围.27. 已知直线kx y =过点()12,-, A 是直线kx y =图像上的点,若过A 向x 轴作垂线,垂足为B ,且90=∆AB S ,求点A 的坐标.28. 某商店购进一种商品,进价30元。

江苏省苏州市高新区2018-2019学年八年级上学期期中考试数学试题(解析版)

江苏省苏州市高新区2018-2019学年八年级上学期期中考试数学试题(解析版)

江苏省苏州市高新区2018-2019学年八年级上学期期中考试数学试题一、选择题(本大题共10小题,共30.0分)1. 下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D.2. 在平面直角坐标系中,点P (1,-2)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为( )A. 6B. 8C. 10D. 8或104. 今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( )A. 2.2×104B. 22000C. 2.1×104D. 225. 如图,在数轴上表示实数√7+1的点可能是( )A. PB. QC. RD. S6. 如图是跷跷板的示意图.支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是( )A. 80∘B. 60∘C. 40∘D. 20∘7. 如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E处,折痕为BD ,则下列结论一定正确的是( )A. AD =BDB. AE =ACC. ED +EB =DBD. AE +CB =AB8. 由下列条件不能判定△ABC 为直角三角形的是( )A. a =13,b =14,c =15B. ∠A +∠B =∠CC. ∠A :∠B :∠C =1:3:2D. (b +c)(b −c)=a 29. 如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于()A. 6B. 8C. 9D. 1810. 如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①AB ∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.81的算术平方根是______.12.在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为______.13.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=20,则CD=______.14.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=______.15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是______.16.如图,在△ABC中,AB=AC,∠B=66°,D,E分别为AB,BC上一点,AF∥DE,若∠BDE=30°,则∠FAC的度数为______.17.如图,数轴上点A、点B表示的数分别中1和√5,若点A是线段BC的中点,则点C所表示的数是______.18.已知:如图,△ABC中,∠A=45°,AB=6,AC=4√2,点D、E、F分别是三边AB、BC、CA上的点,则△DEF周长的最小值是______.三、计算题(本大题共1小题,共6.0分)3+(−√2)2;19.(1)计算:√4-√27(2)已知:4x2=20,求x的值.四、解答题(本大题共8小题,共64.0分)20.已知如下图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.21.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.22.已知点A(1,2a-1),点B(-a,a-3).①若点A在第一、三象限角平分线上,求a值.②若点B到x轴的距离是到y轴距离的2倍,求点B所在的象限.23.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形ABC;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积=______.24.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=√2.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:在平面直角坐标系中,点P(1,-2)位于第四象限,故选:D.根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】C【解析】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,∵2+2=4=4,所以不能构成三角形,故舍去,∴答案只有10.故选:C.因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.【答案】A【解析】解:21780人,这个数精确到千位表示约为2.2×104.故选:A.用科学记数法a×10n(1≤a<10,n是正整数)表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.5.【答案】B【解析】解:∵4<7<9,∴2<<3,∴3<+1<4,∴在数轴上表示实数+1的点可能是Q.故选:B.先判断出+1的范围,然后根据数轴判断即可.本题考查了实数与数轴,无理数的大小,确定出+1的范围是解题的关键.6.【答案】C【解析】解:∵OA=OB′,∴∠OAC=∠OB′C=20°,∴∠A′OA=∠OAC+∠OB′C=2∠OAC=40°.故选:C.欲求∠A′OA的度数,根据三角形的外角等于与它不相邻的两个内角和,可知∠A′OA=∠OAC+∠OB′C,又OA=OB′,根据等边对等角,可知∠OAC=∠OB′C=20°.主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.三角形的外角等于与它不相邻的两个内角和.7.【答案】D【解析】解:∵△BDE由△BDC翻折而成,∴BE=BC.∵AE+BE=AB,∴AE+CB=AB,故D正确,故选:D.先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.8.【答案】A【解析】解:A、∵()2+()2≠()2,故不能判定△ABC是直角三角形;B、∵∠A+∠B=∠C,A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;C、∵∠A:∠B:∠C=1:3:2,∴∠B=180°×=90°,故能判定△ABC为直角三角形;D、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故能判定△ABC为直角三角形.故选:A.根据勾股定理的逆定理可分析出A、D的正误;根据三角形内角和定理可分析出B、C的正误.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.也考查了三角形内角和定理.9.【答案】C【解析】解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故选:C.作EH⊥BC于H,根据角平分线的性质得到EH=DE=3,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.【答案】B【解析】解:在四边形ABCD中,∠ABD与∠BAC不一定相等,故①AB∥CD;②△ABD≌△BAC都不一定成立,∵AC⊥BD,∴Rt△CDH中,CD2=DH2+CH2;Rt△ABH中,AB2=AH2+BH2;Rt△ADH中,AD2=DH2+AH2;Rt△BCH中,BC2=CH2+BH2;∴AB2+CD2=AD2+CB2,故③正确;∵AC⊥BD,∴∠ABH+∠BAH=90°,又∵AB=AC=BD,∴等腰△ABC中,∠ACB=(180°-∠BAC),等腰△ABD中,∠ADB=(180°-∠ABD),∴∠ACB+∠BDA=(180°-∠BAC)+(180°-∠ABD)=180°-(∠ABH+∠BAH)=180°-45°=135°,故④正确.综上所述,真命题的个数是2个,故选:B.依据AC⊥BD,运用勾股定理即可得到AB2+CD2=AD2+CB2,依据AB=AC=BD,且AC⊥BD,运用等腰三角形的性质以及三角形内角和定理,即可得到∠ACB+∠BDA=135°.本题主要考查了命题与定理,解决问题的关键是掌握勾股定理以及等腰三角形的性质.11.【答案】9【解析】解:81的算术平方根是:=9.故答案为:9.直接利用算术平方根的定义得出答案.此题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.12.【答案】(-1,-2)【解析】解:∵两点关于x轴对称,∴对应点的横坐标为-1,纵坐标为-2.故答案为:(-1,-2).根据关于x轴对称点坐标性质,让横坐标不变,纵坐标互为相反数即可得到点P关于x轴的对称点的坐标.此题主要考查了关于x轴对称的点的特点;用到的知识点为:两点关于x轴对称,纵坐标互为相反数,横坐标不变.13.【答案】10【解析】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AB=10,故答案为:10.根据直角三角形中,斜边上的中线等于斜边的一半解答.本题考查的直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.14.【答案】2【解析】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB-BE=6-4=2,故答案为2在Rt△BED中,求出BE即可解决问题;本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】8【解析】解:面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==8.故答案为:8.根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.本题考查勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.16.【答案】18°【解析】解:∵AB=AC,∠B=66°,∴∠C=66°,∴∠BAC=48°,∵AF∥DE,∠BDE=30°,∴∠BAF=∠BDE=30°,∠FAC=18°,故答案为:18°.根据等腰三角形的性质和平行线的性质即可得到结论.本题考查了等腰三角形的性质,平行线的性质,熟练掌握性质定理是解题的关键.17.【答案】2−√5【解析】解:设点C所表示的数是x,∵点A是线段BC的中点,∴AC=AB,∴1-x=-1,∴x=2-.即点C所表示的数是2-.故答案为2-.设点C所表示的数是x,根据AC=AB列出方程,解方程即可.本题考查了实数与数轴,用到的知识点为:数轴上两点间的距离公式,线段中点的定义.掌握公式与定义是解题的关键.18.【答案】12√105【解析】解:如图,作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DF=DM,FE=FN,AE=AM=AN,∴△DEF的周长DE+EF+FD=DM+DF+FN,∴当点E固定时,此时△DEF的周长最小,∵∠BAC=45°,∠BAE=∠BAM,∠CAE=∠CAN,∴∠MAN=90°,'∴△MNA是等腰直角三角形,∴MN=AE,∴当AE的值最小时,MN的值最小,∵AC=4,∴AK=KC=4,∵AB=6,∴BK=AB-AK=2,在Rt△BKC中,∵∠BKC=90°,BK=2,CK=4,∴BC==2,∵•BC•AH=•AB•CK,∴AH=,根据垂线段最短可知:当AE与AH重合时,AE的值最小,最小值为,∴MN的最小值为,∴△DEF的周长的最小值为.故答案为.如图,作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DF=DM,FE=FN,AE=AM=AN,推出△DEF 的周长DE+EF+FD=DM+DF+FN,推出当点E固定时,此时△DEF的周长最小,再证明△MNA是等腰直角三角形,推出MN=AE,推出当AE的值最小时,MN的值最小,求出AE的最小值即可解决问题;本题考查了相似三角形的性质和判定和平行线分线段成比例定理,能根据相似三角形的性质和平行线分线段成比例定理得出正确的比例式是解此题的关键.19.【答案】解:(1)原式=2-3+2=1;(2)方程整理得:x2=5,解得:x=±√5.【解析】(1)原式利用平方根、立方根定义计算即可求出值;(2)方程整理后,利用平方根定义开方即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】证明:连接BD,∵AB=CB,BD=BD,AD=CD,∴△ABD≌△CBD(SSS).∴∠A=∠C.【解析】连接BD,已知两边对应相等,加之一个公共边BD,则可利用SSS判定△ABD≌△CBD,根据全等三角形的对应角相等即可证得.此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS,SAS,ASA,HL等.21.【答案】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD=√AB2−BD2=6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6√2,∴C△ABC=AB+BD+CD+AC=24+6√2.【解析】(1)由AD⊥BC可得出∠ADB=90°,在Rt△ABD中,利用勾股定理即可求出AD的长;(2)由AD⊥BC、∠ACD=45°可得出△ACD为等腰直角三角形,结合AD的长度可得出CD、AC的长度,再利用周长的定理即可求出△ABC的周长.本题考查了勾股定理、等腰直角三角形以及三角形的周长,解题的关键是:(1)在Rt△ABD中利用勾股定理求出AD的长;(2)根据等腰直角三角形的性质求出CD、AC的长.22.【答案】解:①∵点A在第一、三象限角平分线上,∴2a-1=1,解得,a=1;②∵点B到x轴的距离是到y轴距离的2倍,∴|a-3|=2|-a|,解得,a=1或-3,当a=1时,点B(-1,-2)在第三象限,当a=-3时,点B(3,-6)在第四象限.【解析】①根据角平分线的性质列出方程,解方程即可;②根据点的坐标特征,结合题意得到|a-3|=2|-a|,求出a,得到点B的坐标,判断即可.本题考查的是角平分线的性质,点的坐标,掌握角的平分线上的点到角的两边的距离相等是解题的关键.23.【答案】10【解析】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..此时正方形的面积为()2=10,故答案为:10.(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.本题考查了作图-应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.24.【答案】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中{BD=CE ∠B=∠C BE=CF,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【解析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°-∠BED-∠FEC=180°-∠DEB-∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.25.【答案】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,在Rt △PCB 中,PC 2+CB 2=PB 2,即:(4-2t )2+32=(2t )2,解得:t =2516, ∴当t =2516时,PA =PB ; (2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E ,此时BP =7-2t ,PE =PC =2t -4,BE =5-4=1,在Rt △BEP 中,PE 2+BE 2=BP 2,即:(2t -4)2+12=(7-2t )2,解得:t =83,∴当t =83时,P 在△ABC 的角平分线上.【解析】(1)设存在点P ,使得PA=PB ,此时PA=PB=2t ,PC=4-2t ,根据勾股定理列方程即可得到结论; (2)当点P 在∠CAB 的平分线上时,如图1,过点P 作PE ⊥AB 于点E ,此时BP=7-2t ,PE=PC=2t-4,BE=5-4=1,根据勾股定理列方程即可得到结论;本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.26.【答案】(1)证明:如图,连接FD ,∵AD 、BE 、CF 分别是三边上的中线,∴CD =12BC =√22,CE =12AC =12, FD =12AC =12, 由勾股定理得,AD 2=AC 2+CD 2=12+(√22)2=32, CF 2=CD 2+FD 2=(√22)2+(12)2=34, BE 2=BC 2+CE 2=(√2)2+(12)2=94,∵32+34=94,∴AD 2+CF 2=BE 2;(2)解:设两直角边分别为a 、b ,∵AD 、BE 、CF 分别是三边上的中线,∴CD =12a ,CE =12b ,FD =12AC =12a ,由勾股定理得,AD 2=AC 2+CD 2=b 2+(12a )2=14a 2+b 2,CF 2=CD 2+FD 2=(12a )2+(12b )2=14a 2+14b 2, BE 2=BC 2+CE 2=a 2+(12b )2=a 2+14b 2, ∵AD 2+CF 2=BE 2,∴14a 2+b 2+14a 2+14b 2=a 2+14b 2,整理得,a 2=2b 2,∴AD =√62b , CF =√32b , BE =32b ,∴CF :AD :BE =1:√2:√3,∵没有整数是√2和√3的倍数,∴不存在这样的Rt △ABC .【解析】(1)连接FD ,根据三角形中线的定义求出CD 、CE ,再根据三角形的中位线平行于第三边并且等于第三边的一半可得FD=AC ,然后分别利用勾股定理列式求出AD 2、CF 2、BE 2即可得证; (2)设两直角边分别为a 、b ,根据(1)的思路求出AD 2、CF 2、BE 2,再根据勾股定理列出方程表示出a 、b 的关系,然后用a 表示出AD 、CF 、BE ,再进行判断即可.本题考查了勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,用两条直角边分别表示出三条中线的平方是解题的关键,也是本题的难点.27.【答案】解:(1)∵AB =AC ,∴∠ABC =∠C ,∵BD =BC =AD ,∴∠A =∠ABD ,∠C =∠BDC ,设∠A =∠ABD =x ,则∠BDC =2x ,∠C =180°−x 2, 可得2x =180°−x2,解得:x =36°,则∠A =36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【解析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。

江苏省连云港市赣榆区2018-2019学年八年级上学期期中考试数学试卷(word版含解析)

江苏省连云港市赣榆区2018-2019学年八年级上学期期中考试数学试卷(word版含解析)

江苏省连云港市赣榆区2018-2019 学年八年级上学期期中考试数学试卷一、选择题(本大题有8 小题,每小题 3 分,共24 分)1.下列四个图案是我国几家银行的标志,其中不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【点评】此题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8【分析】直接根据勾股定理求解即可.解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.等腰三角形中,两边的长分别为3和7,则此三角形周长是()A.13 B.17 C.13 或17 D.15【分析】分 3 是等腰三角形的腰长与底边两种情况讨论求解.解:①3 是腰长时,三角形的三边分别为3、3、7,∵3+3=6<7,∴3、3、7 不能组成三角形,②3 是底边时,三角形的三边分别为3、7、7,能组成三角形,周长=3+7+7=17,综上所述,此三角形周长是17.故选:B.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB 的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.5.如图,已知△ABC,∠C=90°,AD 是∠BAC 的角平分线,CD=3,AC=4,则点D到A B 的距离是()A.3 B.4 C.5 D.6【分析】首先过点 D 作DE⊥AB 于E,由在△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,根据角平分线的性质,即可得DE=CD,解:过点D 作DE⊥AB 于E,∵在△ABC 中,∠C=90°,即DC⊥AC,∵AD 是∠BAC 的角平分线,∴DE=CD=3.∴点D 到AB 的距离为3.故选:A.【点评】此题考查了角平分线的性质.此题比较简单,注意掌握角的平分线上的点到角的两边的距离相等是解此题的关键.6.如图,在△ABC 中,AB=AC,D 为B C 中点,∠BAD=35°,则∠C 的度数为()A.35°B.45°C.55°D.60°【分析】由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.解:AB=AC,D 为BC 中点,∴AD 是∠BAC 的平分线,∠B=∠C,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C= (180°﹣70°)=55°.故选:C.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.7.已知:如图,点P在线段A B 外,且P A=PB,求证:点P在线段A B 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB 的平分线PC 交AB 于点CB.过点P 作PC⊥AB 于点C 且AC=BCC.取AB 中点C,连接PCD.过点P 作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;C、利用SSS 判断出△PCA≌△PCB,∴CA=CB,∠PCA= ∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D、利用HL 判断出△PCA≌△PCB,∴CA=CB,∴点P 在线段AB 的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.【点评】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若a b=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab= ×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.二、填空题(本大题有8 小题,每小题 3 分,共24 分将结果直接填在横线上)9.已知△ABC 与△A′B′C′关于直线L 对称,且∠A=50 度,∠B′=70°,那么∠C′=60 度.【分析】根据成轴对称的两个图形全等求得未知角即可.解:∵△ABC 与△A′B′C′关于直线L 对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=70°,∵∠A=50°,∴∠C′=∠C=180°﹣∠B﹣∠A=180°﹣70°﹣50°=60°.故答案为:60.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.如图,△ABC 中,AD⊥BC 于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC .【分析】根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.解:还需添加条件AB=AC,∵AD⊥BC 于D,∴∠ADB=∠ADC=90°,在Rt△ABD 和Rt△ACD 中,,,故∴Rt△ABD≌Rt△ACD(HL)答案为:AB=AC.【点评】此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.11.如图,已知△ABC 中,∠ACB=90°,以△ABC 的各边为边在△ABC 外作三个正方形,S1、S2、S3分别表示这三个正方形的面积若S1=9,S2=22,则S3= 13 .【分析】根据勾股定理和正方形的面积公式计算.解:∵∠ACB=90°,∴AC2+BC2=AB2,∵S1=AC2,S3=BC2,S2=AB2,∴S3=S2﹣S1=22﹣9=13,故答案为:13.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.如图,把长方形纸片沿着线段A B 折叠,重叠部分△ABC 的形状是等腰三角形.【分析】根据折叠的性质和平行线的性质即可得到结论.解:∵AD∥BC,∴∠DAB=∠ABC,∵把长方形纸片沿着线段AB 折叠,∴∠CAB=∠DAB,∴∠CAB=∠CBA,∴CA=CB,∴△ABC 的形状是等腰三角形,故答案为:等腰.【点评】本题考查矩形的性质、翻折变换、等腰三角形的判定、解题的关键是学会利用翻折不变性解决问题,属于中考常考题型.13.如图,DE 是△ABC 边A C 的垂直平分线,若B C=9,AD=4,则B D= 5【分析】根据垂直平分线的性质可得AD=CD,进而求出BD 的长度.解:∵DE 是△ABC 边AC 的垂直平分线,∴AD=CD,∵BC=9,AD=4,∴BD=BC﹣CD=BC﹣AD=9﹣4=5,故答案为:5.【点评】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.14.在△ABC 中,AB=AC,∠BAC=100°,点D在B C 边上,连接A D,若△ABD 为直角三角形,则∠ADC 的度数为130°或90°.【分析】根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.解:∵在△ABC 中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点 D 在BC 边上,△ABD 为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.15.直角三角形两直角边长分别为6和8,则它斜边上的高为.【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边上的高.解:设斜边长为c,高为h.由勾股定理可得:c2=62+82,则c=10,直角三角形面积S=×6×8= ×10×h,可得:h=.故答案为:.【点评】本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,是解此类题目常用的方法.16.如图,∠AOB=30°,点P 为∠AOB 内一点,OP=8.点M、N 分别在OA、OB上,则△PMN 周长的最小值为8 .【分析】分别作点P 关于OA、OB 的对称点P1、P2,连P1、P2,交OA 于M,交OB 于N,△PMN 的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.解:分别作点P 关于OA、OB 的对称点P1、P2,连P1、P2,交OA 于M,交OB 于N,连接OP,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN 的周长的最小值=P1P2∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.△PMN 的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为:8.【点评】本题考查了轴对称﹣最短路线问题,正确正确作出辅助线,证明△OP1P2 是等边三角形是关键.三、解答题(本脸有10 小题,共102 分,解答时应写出必要的步曝、过程成文字说明)17.(8 分)如图,已知线段AC,BD 相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5 时,求CD 的长.【分析】(1)根据AE=DE,BE=CE,∠AEB 和∠DEC 是对顶角,利用SAS 证明△AEB≌△DEC 即可.(2)根据全等三角形的性质即可解决问题.(1)证明:在△AEB 和△DEC 中,,.∴△AEB≌△DEC(SAS)(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.【点评】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.(8 分)如图,点B、C、E、F 在同一直线上,BE=CF,AC⊥BC 于点C,DF⊥ EF 18.于点F,AB=DE求证:(1)△ABC≌△DEF;(2)AB∥DE.【分析】(1)根据HL 即可证明Rt△ABC≌Rt△DEF;(2)利用全等三角形的性质即可解决问题;证明:(1)∵AC⊥ BC,DF⊥EF,∴∠ACB=∠DFE=90°,∵BE=CF,∴BC=EF,在Rt△ABC 和Rt△DEF 中,.∴Rt△ABC≌Rt△DEF(HL)(2)∵△ABC≌△DEF,∴∠ACB=∠DFE,∴AB∥DE.【点评】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8 分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200 元,问要多少投入?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD 的长,由BD、CD、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt△ABD 和Rt△DBC 构成,则容易求解.解:连接BD,在Rt△ABD 中,BD2=AB2+AD2=32+42=52,在△CBD 中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S 四边形ABCD=S△BAD+S△DBC=,==36..所以需费用36×200=7200(元)【点评】通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.(9 分)如图,在2×2 的正方形网格中,每个小正方形的边长均为1.请分别20.在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC 成轴对称图形.【分析】根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以称找出不同的对称轴,再思考如何画对称图形.画对任意三种即可..【点评】此题考查的是利用轴对称设计图案,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.21.(10 分)如图,花果山上有两只猴子在一棵树CD 上的点B 处,且BC=5m,它们都要到A 处吃东西,其中一只猴子甲沿树爬下走到离树10m 处的池塘A 处,另一只猴子乙先爬到树顶D 处后再沿缆绳DA 线段滑到A 处.已知两只猴子所经过的路程相等,设BD 为xm.(1)请用含有x的整式表示线段A D 的长为15﹣x m;(2)求这棵树高有多少米?【分析】已知BC,要求CD 求BD 即可,可以设BD 为x,找到两只猴子经过路程相等的等量关系,即BD+DA=BC+CA,根据此等量关系列出方程即可求解.解:(1)设BD 为x 米,且存在BD+DA=BC+CA,即BD+DA=15,DA=15﹣x,故答案为:15﹣x;(2)∵∠C=90°∴AD2=AC2+DC2∴(15﹣x)2=(x+5)2+102∴x=2.5∴CD=5+2.5=7.5答:树高7.5 米;【点评】本题考查了勾股定理在实际生活中的运用,考查了直角三角形的构建,本题中正确的找出BD+DA=BC+CA 的等量关系并根据直角△ACD 求BD 是解题的关键.22.(11 分)作图题:如图所示是每一个小方格都是边长为1 的正方形网格,(1)利用网格线作图:①在BC 上找一点P,使点P 到AB 和AC 的距离相等;②在射线AP 上找一点Q,使QB=QC.(2)在(1)中连接CQ 与BQ,试说明△CBQ 是直角三角形.【分析】(1)根据网格特点作出∠A 的角平分线与BC 的交点就是点P,作BC 的垂直平分线与AP 的交点就是点Q.(2)首先利用勾股定理计算出CQ2、BQ2、BC2,然后利用勾股定理逆定理可得△CB Q 是直角三角形.解:(1)点P 就是所要求作的到AB 和AC 的距离相等的点,点Q 就是所要求作的使QB=QC 的点.(2)连接CQ、BQ,∵CQ2=12+52=26,BQ2=12+52=26,BC2=62+42=36+16=52,∴CQ2+BQ2=BC2,∴∠CQB=90°,∴△CBQ 是直角三角形.【点评】本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,关键是掌握角平分线的性质和线段垂直平分线的性质..23.(10 分)如图,在△ABC 中,CF⊥AB 于F,BE⊥AC 于E,M 为BC 的中点,BC=10,EF=4.(1)求△MEF 的周长:(2)若∠ABC=50°,∠ACB=60°,求∠EMF 的度数.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半求出EM、FM,再根据三角形的周长的定义列式计算即可得解;(2)根据等腰三角形两底角相等求出∠BMF,∠CME,然后根据平角等于180°列式计算即可求出∠EMF.解:(1)∵CF⊥AB,BE⊥AC,M 为BC 的中点,∴EM= BC=5,FM= BC=5,∴△MEF 周长=EF+EM+FM=4+5+5=14;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME═180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,平角的定义,是基础题,熟记性质并准确识图是解题的关键.24.(12 分)如图,已知等腰三角形ABC 中,AB=AC,点D、E 分别在边AB、AC 上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A、F 的直线垂直平分线段BC.(1)证得△ABE≌△ACD 后利用全等三角形的对应角相等即可证得结论;【分析】(2)利用垂直平分线段的性质即可证得结论.解:(1)∠ABE=∠ACD;在△ABE 和△ACD 中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.25.(12 分)已知,在△ABC 中,∠A=90°,AB=AC,点D 为BC 的中点.(1)如图①,若点E、F 分别为AB、AC 上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F 分别为AB、CA 延长线上的点,且D E⊥DF,那么BE=AF 吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF ,再根据全等三角形的性质即可证出BE=AF;(ASA)(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△ FDA(ASA),再根据全等三角形的性质即可得出BE=AF.(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC 为等腰直角三角形,∠EBD=45°.∵点 D 为BC 的中点,∴AD= BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE 和△ADF 中,,,∴△BDE≌△ADF(ASA)∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB 和△FDA 中,,,∴△EDB≌△FDA(ASA)∴BE=AF.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解(2)根据题的关键是:(1)根据全等三角形的判定定理ASA 证出△BDE≌△ADF;全等三角形的判定定理ASA 证出△EDB≌△FDA.26.(14 分)如图,已知△ABC 中,∠C=90°,AC=8,BC=6,点D 在线AC 上,将△ABC 沿着BD 折叠,点 C 恰好落在AB 边的点E.(1)求CD 的长.(2)P 为平面内,△ABC 外部的一点,且满足△ABD 与△ABP 全等,求点P 到直线AC 的距离.【分析】(1)由折叠可得:∠AED=∠BED=∠C=90°,BE=BC=6,CD=DE,根据勾股定理可求CD 的长;(2)分△APB≌△ADB 和ABP≌△BAD 两种情况讨论,根据全等三角形的性质可求点P 到直线AC 的距离.(1)解:在Rt△ABC 中∵∠C=900,AC=8,BC=6∴AB=10由折叠可知△BDC≌△BDE∴∠AED=∠BED=∠C=90°BE=BC=6,CD=DE∴AE=4设CD=x在RT△ADE 中,AE=4,DE=x,AD=8﹣x∵AE2+DE2=AD2∴42+x2=(8﹣x)2∴x=3,即CD 的长为 3(2)若△APB≌△ADB如图:过点P 作PF⊥AC 于点F,连接PD 交AB 于点 E∵△APB≌△ADB∴AP=AD=AC﹣CD=5,∠PAB=∠BAD∴PE=DE,AE⊥PD∵∠ABD=∠CBD,∠C=∠BED=90°∴DE=CD=3∴PD=6AE= =4∵S= ×AD×PF= ×PD×AE△APD∴PF=若△ABP≌△BAD如图:过点P 作PF⊥AC 于点 F∵△ABP≌△BAD∴∠PBA=∠DAB∴PB∥AD∵PF⊥AC,BC⊥AC∴PF∥BC 且PB∥AD∴四边形PFCB 是平行四边形∴PF=BC=6综上所述:点P 到直线AC 的距离为6 或【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了勾股定理以及全等三角形的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年秋季学期期中调研考试
八年级数学试题
本试题共24小题,满分120分,考试时间120分钟.
注意事项:
本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交.
一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置将符合要求的选项前面的字母代号涂黑. 本大题共15小题,每题3分,计45分)
1.如下字体的四个汉字中,是轴对称图形的是()
2.下面各组线段中,能组成三角形的是()
A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14
3.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A’B’C’D’E’F’.下列判断错误的是()
A. AB=A’B’
B. BC∥B’C’
C. 直线l⊥BB’
D. ∠A’=120°
4.若一个多边形的每个外角都为36°,则这个多边形是()
A.六边形
B.八边形
C.十边形
D.十二边形
5.已知图中的两个三角形全等,则∠α的度数是()
A.72°B.60°C.58°D.50°
6. 在平面直角坐标系中,点P(-2,3)关于y轴对称的点在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为()
A.13 B.3 C.4 D.6
8.如图,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则下列结论不正
确的是()
A.△AOD≌△BOC
B.PC=PD
C.OC=AC
D.∠COP=∠DOP
9.到△ABC的三个顶点距离相等的点是△ABC的()
A.三边中线的交点
B.三条角平分线的交点
C.三边上高的交点
D.三边中垂线的交点
10.如图,∠CBD,∠ADE为△ABD的两个外角,∠CBD=70°,∠A=31°,则∠ADE的度数()
A.131°
B.139°
C.141°
D.149°
11. .等腰三角形的周长是18cm,其中一边长为4cm,则腰长为()
A.4cm
B.7cm
C.4cm或7cm
D.无法确定
12.如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC ≌△ADC的是( )
A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°
13.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()
A.5个B.4个C.3个D.2个
14.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AC=6cm. △ADC的周长为14cm,则BC的长是()
A.7cm
B.8cm
C.9cm
D.10cm
15.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF
分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EP F是等腰直角三角形;③2S
四边
=S△ABC;④B E+CF=EF.当∠EPF在△ABC内绕顶点P旋转时(点E与A、B重合).上述形AEPF
结论中始终正确的有( )
A.1个B.2个C.3个D.4个
二、解答题.(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分.)
16. (6分)已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC
求证:△ABC 是等腰三角形.
17.(6分)如图,已知BE =CF ,AB ∥CD ,AB =CD . 求证:△ABF ≌△DCE .
18. (7分)如图,已知△ABC 各顶点的坐标分别为A (﹣3,2),B (﹣4,﹣3),C (﹣1,﹣1),请你画出△ABC 关于y 轴对称的△
A 1
B 1
C 1,并写出△A 1B 1C 1的各顶点坐标.
19. (7分)如图是A 、B 、C 三岛的平面图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向。

从C 岛看 A 、B 岛的视角∠ACB 为多少?
20.(8分)已知从n 边形的一个顶点出发共有4条对角线,该n 边形的周长为56,且各边长是连续的自然数,求这个多边形的各边长.
21(8分).如图,在△ABC 中,∠ABC =90°,BE ⊥AC 于点E ,点D 在AC 上,且AD =AB ,AK 平分∠CAB ,交线段BE 于点F ,交边CB 于点K .
第19题
第17题
(1)在图中找出一对全等三角形,并证明; (2)求证:FD ∥BC .
22.(10分)如图,(1)P 是等腰△ABC 底边BC 上的一个动点,过点P 作BC 的垂线,交AB 于点Q ,交CA 的延长线于点R .请观察AR 与AQ ,它们有何数量关系?并证明你的猜想. (2)如果点P 沿着底边BC 所在的直 线,按由C 向B 的方向运动到CB 的 延长线上时,(1)中所得的结论还成 立吗?请你在图(2)中完成图形,并 给予证明.
23.(11分)如图,已知△ABC 中,∠B =∠C ,AB =8厘米,BC =6厘米,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时点Q 在线段CA 上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为t (秒)(0≤t ≤3). (1)用t 的代数式表示PC 的长度;
(2)若点P ,Q 的运动速度相等,经过1秒后,△BPD 与 △CQP 是否全等,请说明理由;
(3)若点P ,Q 的运动速度不相等,当点Q 的运动速度a 为多少时,能够使△BPD 与△CQP 全等?
24.(12分)如图所示:△ABC 是等腰直角三角形,BC =AC ,直角顶点C 在x 轴上,一锐角顶点B 在y 轴上.
(1)如图1所示,若C 的坐标是(2,0),点A 的坐标是(﹣2,﹣2),求:点B 的坐标; (思路提示:过点A 作AD ⊥x 轴于点D ,通过证明△BOC ≌△CDA 来达到目的.)
第22题
第23题
(2)如图2,若y 轴恰好平分∠ABC ,AC 与y 轴交于点D ,过点A 作AE ⊥y 轴 于E ,问BD 与AE 有怎样的数量关系,并说明理由;
(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第四象限内,过A 点作AF ⊥y 轴于F ,
在滑动的过程中,两个结论①
OB AF OC -为定值;②OB
AF
OC +为定值,只有一个结论成立,请你判断
正确的结论加以证明,并求出定值.
第24题
2017年秋点军期中调研考试八年级数学参考答案
1—15:ADBCD ,ADCDC ,BCCBC
16、17、18.略
19.先求∠BAC=30°及∠ABE=120°,再求∠ABC=80°,得∠ACB=70°
20.依题意得n-3=4,则n=7(2分),则该多边形为7边形;设最短边长为x ,由题意得 7x+!+2+3+4+5+6=56,解得x=5,则该多边形的边长分别为5,6,7,8,9,10,11
21.(1)△ADF ≌△ABF(2分),证明3分;(2)证明3分
22.(1) AR=AQ(1分),证明略(3分);(2)(1)中结论正确1分,画图正确2分,证明3分
23.(1)BP=2t ,则PC=BC-BP=6-2t(2分); (2)△BPD ≌△CQP .(1分)
理由(4分):∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC-BP=6-2=4厘米, ∵AB=8厘米,点D 为AB 的中点,∴BD=4厘米.∴PC=BD ,
在△BPD 和△CQP 中,BD =PC,∠B =∠C,BP =CQ,∴△BPD ≌△CQP (SAS ); (3)(4分)∵点P 、Q 的运动速度不相等,∴BP ≠CQ 又∵△BPD ≌△CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm , ∴点P ,点Q 运动的时间t=
23秒。

点Q 的运动速度为a=3
8
(厘米/秒). 24.(4分)(1)过点B 作BD ⊥OD ,
∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°, ∴∠BCD=∠DAC , 在△ADC 和△COB 中,

∴△ADC ≌△COB (AAS )

∴AD=OC,CD=OB,
∴点B坐标为(0,4);
(2)(4分)延长BC,AE交于点F,
∵AC=BC,AC⊥BC,
∴∠BAC=∠ABC=45°,
∵BD平分∠ABC,
∴∠COD=22.5°,∠DAE=90°﹣∠ABD﹣∠BAD=22.5°,
在△ACF和△BCD中,

∴△ACF≌△BCD(ASA),
∴AF=BD,
在△ABE和△FBE中,

∴△ABE≌△FBE(ASA),
∴AE=EF,∴BD=2AE;
(3)(4分)作AE⊥OC,则AF=OE,
∵∠CBO+∠OBC=90°,∠OBC+∠ACO=90°,
∴∠ACO=∠CBO,
在△BCO和△ACE中,

∴△BCO≌△ACE(AAS),∴CE=OB,∴OB+AF=OC.
∴=1.。

相关文档
最新文档