有理数加减混合运算的五种运算技巧
有理数混合运算简便算法与技巧

有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。
一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。
③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。
二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。
例:计算:-(0.5)-(-341) + 2.75-(721) 解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441 =-2解法二:-(0.5)-(-341) + 2.75-(721)=-0.5 + 341+ 2.75-721 = (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。
有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。
它们的混合运算在解决复杂问题时尤为重要。
下面将介绍有理数的加减乘除的混合运算技巧。
一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。
1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。
1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。
二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。
2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。
2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。
三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。
3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。
3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。
四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。
4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。
4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。
五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。
5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。
5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。
六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。
有理数混合运算的解题方法和技巧

一、理解运算顺序有理数混合运算的运算顺序:①从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键.例1:计算:3+50÷22×(51-)-1 ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.例2:计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- ③从左向右:同级运算,按照从左至右的顺序进行.例3:计算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431二、应用四个原则:1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用.3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
4、分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算.如何分段呢?主要有:(1)运算符号分段法。
有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。
在运算中,低级运算把高级运算分成若干段。
一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和。
即(先乘方、后乘除、再加减。
)把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法。
(2)括号分段法,有括号的应先算括号里面的。
在实施时可同时分别对括号内外的算式进行运算。
(3)绝对值符号分段法。
绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算.(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。
有理数的混合运算技巧

有理数的混合运算技巧有理数是指可以表示为两个整数的比值的数,包括正数、负数和0。
在数学运算中,我们常常会遇到有理数的混合运算,即同时涉及加减乘除等多种运算。
下面将介绍一些有理数混合运算的技巧,帮助大家更好地理解和应用这些运算。
对于有理数的加法和减法运算,我们可以利用数轴来帮助我们理解和计算。
假设有两个有理数a和b,我们可以将数轴上的0点作为起点,用正数表示向右的距离,用负数表示向左的距离。
若a和b 同号,则它们的绝对值相加即可;若a和b异号,则我们可以将其转化为同号相加的形式,即取它们绝对值较大的数减去绝对值较小的数,再根据其符号确定结果的符号。
在乘法运算中,我们可以利用有理数的乘积法则简化计算。
如果有理数a和b相乘,那么它们的符号由a和b的符号决定,如果a和b同号,则结果为正,否则结果为负。
而它们的绝对值相乘得到的结果,就是它们的乘积的绝对值。
除法运算也是有理数混合运算中常见的一种。
当我们需要计算a除以b时,可以将除法转化为乘法来处理,即计算a乘以b的倒数。
这样,我们就可以将除法运算转化为乘法运算,从而简化计算的过程。
在进行有理数混合运算时,注意运算的顺序也是非常重要的。
根据数学运算法则,我们需要先进行括号内的运算,然后按照从左到右的顺序进行乘法和除法运算,最后进行加法和减法运算。
如果有多个括号,我们可以从内向外依次计算。
有理数混合运算中还涉及到了分数的运算。
当我们需要对有理数进行分数形式的表示时,可以将有理数的分子和分母表示为最简形式,即它们没有公因数。
通过化简分数,我们可以更方便地进行运算。
对于有理数混合运算中的复杂问题,我们可以运用代数运算的技巧进行求解。
例如,可以利用因式分解、分数的通分和约分、提取公因数等方法,将复杂的运算问题转化为简单的运算步骤,从而减少计算的复杂度。
有理数的混合运算是数学中的重要内容,它涉及到加法、减法、乘法、除法以及分数等多种运算。
通过掌握运算技巧和规律,我们可以更加灵活地进行有理数混合运算,解决实际问题。
有理数混合运算(6种题型)(解析版)

有理数混合运算(6种题型)会进行有理数的混合运算,合理应用运算律,进行简便运算.一.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.二.计算器—基础知识(1)计算器的面板是由键盘和显示器组成.(2)开机键和关机键各是AC/ON,OFF,在使用计算器时要按AC/ON键,停止使用时要按OFF键.(3)显示器是用来显示计算时输入的数据和计算结果的装置.键上的功能是第一功能,直接输入,下面对应的是第二功能,需要切换成才能使用.(4)开方运算按用到乘方运算键x2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx2被开方数ENTE.(6)对于开立方运算的按键顺序是:32ndf∧被开方数ENTE.(7)部分标准型具备数字存储功能,它包括四个按键:MRC、M﹣、M+、MU.键入数字后,按M+将数字读入内存,此后无论进行多少步运算,只要按一次MRC即可读取先前存储的数字,按下M﹣则把该数字从内存中删除,或者按二次MRC.注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.三.计算器—有理数计算器包括标准型和科学型两种,其中科学型使用方法如下: (1)键入数字时,按下相应的数字键,如果按错可用(DEL )键消去一次数值,再重新输入正确的数字. (2)直接输入数字后,按下对应的功能键,进行第一功能相应的计算.(3)按下(﹣)键可输入负数,即先输入(﹣)号再输入数值.(4)开方运算按用到乘方运算键x 2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx 2被开方数ENTE 或直接按键,再输入数字后按“=”即可.(6)对于开立方运算的按键顺序是:32ndf ∧被开方数ENTE 或直接按x 3,再输入数字后按“=”即可 注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.题型一:有理数四则混合运算一、填空题1.(2022秋·江苏无锡·七年级统考期中)定义一种新运算:x y x y xy =+−★,则计算()32−=★___________.【答案】5【详解】解:∵x y x y xy =+−★,∴()()3232323265−=−+−−⨯=−++=★,故答案为:5【点睛】本题考查了新运算和有理数的混合运算,理解新运算的定义是解题的关键.二、解答题 2.(2022秋·江苏徐州·七年级校考阶段练习)计算(1)13251216−+−(2)()()()0510037÷−⨯+−÷−(3)()()()25549−⨯−÷−+【答案】(1)16− (2)37(3)47(4)1−【分析】(1)原式结合后,相加即可求出值;(2)原式先算乘除运算,再算加减运算即可求出值;(3)原式先算乘除运算,再算加法运算即可求出值;(4)原式利用减法法则变形,结合后相加即可求出值.【详解】(1)原式()1312251616=+−−=−; (2)原式33077=+=;(3)原式24947=−+=;(4)原式223331212113344=−++−=−+=−.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【答案】(1)24−(2)14 【分析】(1)利用乘法分配律进行计算即可;(2)先计算乘除法,再计算加减法即可.【详解】(1)解:1336124⎛⎫⨯− ⎪⎝⎭ 133636124⎛⎫=⨯+⨯− ⎪⎝⎭327=−24=−(2)()()18632−÷−⨯−()118623⎛⎫=−⨯−⨯− ⎪⎝⎭184=−14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则和运算律是解题的关键.【答案】(1)5−(2)11−(3)1179919− (4)6−(5)81(6)75=【分析】(1)根据有理数加法的运算律,同分母的相结合,能凑整的相结合,再进行计算.(2)运用乘法分配律进行计算即可.(3)将原式写成1(100)(18)19−⨯−,再根据乘法分配律进行计算即可. (4)倒用乘法分配律+ab ac ad a b c d +=++()进行计算即可.(5)先根据“除以一个数等于乘以它的倒数”,将除法运算变为乘法运算,再运用乘法分配律进行计算即可.(6)按照有理数混合运算法则:先乘方,再乘除,最后再加减,有括号的先算括号里边的,进行计算即可.【详解】(1)34(3)12.5(16)( 2.5)77−++−−−34(3)12.5(16) 2.577=−++−+34[(3)(16)](12.5 2.5)77=−+−++2015=−+=5−;(2)7537()(36)96418−+−⨯−75373636363696418=−⨯+⨯−⨯+⨯28302714=−+−+22714=−+2514=−+11=−;(3)18991819−⨯1(100)(18)19=−⨯−1100181819=−⨯+⨯ 18180019=−+ 1179919=−;(4)22218()134333⨯−+⨯−⨯ 22218134333=−⨯+⨯−⨯2(18134)3=−+−⨯2(9)3=−⨯ 6=−;(5)1571(3)()261236−+−÷−157(3)(36)2612=−+−⨯−1573633636362612=−⨯+⨯−⨯+⨯181083021=−+−+903021=−+6021=+81=;(6)211[(4)(0.4)]3(2)343÷−−⨯−÷⨯−−21[()0.1]33234=⨯−+⨯⨯+11()332610=−+⨯⨯+133215=−⨯⨯+325=−+75=【点睛】本题主要考查了有理数的四则混合运算,熟练掌握运算律和运算法则是解题的关键.【答案】(1)6(2)5 【详解】(1)解:()()745−−+−745=+−6=;(2)解:113(60)234⎛⎫−−+⨯− ⎪⎝⎭113(60)(60)(60)234=−⨯−−⨯−+⨯−302045=+−5=. 【点睛】本题考查有理数的加减混合运算,有理数的四则混合运算.掌握有理数的混合运算法则是解题关键.注意在解(2)时利用乘法分配律更简便.6.(2020秋·江苏徐州·七年级校考阶段练习)计算:(1)()()2317716−−−+−112019++−【答案】(1)3−(2)45.08−(3)19 30(4)1 3(5)7 4−(6)7(7)54−(8)17 60【详解】(1)解:()() 2317716−−−+−2317716 =−+−710=−3=−;(2)()()26.54 6.418.54 6.4−+−−+26.5418.54 6.4 6.4 =−−−+45.08=−;(3)3111253⎛⎫+−−+ ⎪⎝⎭ 3111253=−−+ 456301*********=−−+1930=;(4)531245⎛⎫⎛⎫−⨯− ⎪ ⎪⎝⎭⎝⎭58245=⨯ 13=;(5)172.5(8)516⎛⎫⎛⎫−⨯⨯−⨯− ⎪ ⎪⎝⎭⎝⎭15785216=−⨯⨯⨯74=−;(6)251(18)(3)29115⎛⎫⎛⎫−⨯−+−⨯−⨯ ⎪ ⎪⎝⎭⎝⎭ 15114115=+⨯43=+7=;(7)12(45)35⎡⎤⎛⎫⎛⎫−÷−÷− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 15(45)32⎛⎫=−÷⨯ ⎪⎝⎭5(45)6=−÷ 6(45)5=−⨯54=−;(8)111111114354652019−+−+−++−111111113445561920=−+−+−++−11320=− 2036060=−1760=.【点睛】此题考查了有理数的四则混合运算,正确掌握有理数混合运算的法则及运算顺序是解题的关键.【答案】25【分析】根据题意的算法进行运算,即可求得结果.【详解】解:原式的倒数是129314510220⎛⎫⎛⎫−−+−÷− ⎪ ⎪⎝⎭⎝⎭()12932045102⎛⎫=−−+−⨯− ⎪⎝⎭581830=+−+25=故原式125=.【点睛】本题考查了有理数的混合运算,理解题意,正确运算是解决本题的关键.8.(2022秋·江苏扬州·七年级校联考期中)定义一种新运算:观察下列各式,并解决问题.131538=⨯+=,3135116=⨯+=,5455429=⨯+=,请你想一想:43= a b = ab b a (填入()543−. 【答案】(1)23,5a b +(2)≠(3)42−【分析】(1)根据题目所给新运算的运算顺序和运算法则进行计算即可;(2)先根据题目所给新运算的运算顺序和运算法则将a b 和b a 计算出来,再用作差法比较即可;(3)根据题目所给新运算的运算顺序和运算法则进行计算即可.【详解】(1)解:4345323=⨯+=;5a b a b =+;故答案为:23,5a b +.(2)∵5a b a b =+,5b a b a =+,∴()()()()5544a b b a a b b a a b −=+−+=−,∵a b ¹,∴440a b −≠∴a b b a ≠.故答案为:≠.(3)()543−−()5453=−−⨯+ ()517=−−()5517=−⨯+− 42=−.【点睛】本题主要考查了新定义下的有理数的混合运算,解题的关键是正确理解题意,明白题中所给新定义的运算顺序和运算法则,熟练掌握有理数的混合运算顺序和运算法则.题型二:有理数四则混合运算的应用一、填空题1.(2022秋·江苏·七年级开学考试)园林公司在林州大道旁种植了120棵树,有116棵成活,后来又补栽4棵,全部成活,这124棵树苗的成活率为_____【答案】97%【分析】根据成活率等于成活数除以总数再乘以100%计算即可.【详解】解:1164100%97% 1204+⨯≈+.答:成活率是97%.故答案为:97%.【点睛】此题属于百分率问题,明确成活率是指成活的棵数占总棵数的百分之几;要注意题中的“全部成活”,是指后来又补种的4棵全部成活,而不是种的120棵全部成活.二、解答题(1)接送完第5批客人后,该驾驶员在邗江路和文昌路十字路口什么方向,距离十字路口多少千米?(2)后来他开车回到出发地,途中没有带到客人,若该出租车每千米耗油0.09升,那么在整个过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费9元,超过3km的部分按每千米加1.8元收费,在整个行驶过程中,该出租车驾驶员共收到车费多少元?【答案】(1)东3千米处(2)2.16升(3)57.6元【分析】(1)求出行驶路程的代数和,利用结果的符号和数值作出判断即可;(2)求出行驶路程的绝对值的和,利用路程和乘以每千米耗油量即可得出结论;(3)分别计算接送每批客人的收费数额再相加即可得出结论.【详解】(1)∵()()347253km ++−+−+=,∴出租车在解放路和青年路十字路口东边,距离十字路口3千米;(2)∵34725324km ++−+−++=,∴240.09 2.16⨯=(升).∴在这过程中共耗油2.16升.(3)∵接送第一批客人的收费为:9元,接送第二批客人的收费为:()9 1.84310.8+⨯−=(元),接送第三批客人的收费为:()9 1.87316.2+⨯−=(元),送第四批客人的收费为:9元,接送第五批客人的收费为:()9 1.85312.6+⨯−=(元),∴910.816.2912.657.6++++=(元).所以在这过程中该出租车驾驶员共收到车费57.6元.【点睛】本题考查了正负数的意义和有理数的运算,解题关键是明确正负数的意义,能熟练运用有理数运算法则进行计算.【答案】(1)小明家这10天轿车行驶的路程为240km(2)估计小明家一个月耗电费用为162元【分析】(1)记录数字的和再加上10个25即可得到结果;(2)用(1)的结论乘以3即可得到总路程,再根据“该轿车每行驶100km耗电15度,且轿车充电的价格为每度1.5元,”列式解答即可;【详解】(1)解:()314182623210km +−+−+−+−+=−,()251010240km ⨯−=,答:小明家这10天轿车行驶的路程为240km . (2)240310015 1.5162⨯÷⨯⨯=(元),答:估计小明家一个月(按30天算)的电动轿车耗电费用为162元.【点睛】本题考查正数与负数以及有理数的加减乘除混合运算,正确列出算式并掌握相关运算法则是解答本题的关键.4.(2022秋·江苏泰州·七年级泰州市第二中学附属初中校考期中)小刚坐公交车去参加志愿者活动,他从南站上车,上车后发现车上连自己共有12人,经过A 、B 、C 、D 4个站点时,他观察到上下车情况如下(记上车为正,下车为负):()3,2A +−,()5,3B +−,()3,4C +−,()7,4D +−. (1)经过4个站点后车上还有 人;(2)小刚发现在A 、B 、C 、D 这四站上车的人中,有一半投币付费(每人2元),还有一半刷卡付费(每人1.4元),求这四站公交公司共收入多少元? 【答案】(1)17(2)这四站公交公司共收入30.6元【分析】(1(2)先求出4个站一共上车的人数,再根据这四站上车的人中,有一半投币付费(每人2元),还有一半刷卡付费(每人1.4元),进行求解即可. 【详解】(1)解:()()()()()()()()1232533474+++−+++−+++−+++−1232533474=+−+−+−+−125=+ 17=人,∴经过4个站点后车上还有17人; (2)解:353718+++=人,11218 1.41830.622⨯⨯+⨯⨯=元,∴这四站公交公司共收入30.6元,答:这四站公交公司共收入30.6元.【点睛】本题主要考查了有理数的加法的应用,有理数混合计算的应用,正确理解题意是解题的关键.(1)这20筐苹果中,最重的一筐比最轻的一筐多重千克.(2)与标准重量比较,这20筐苹果总计超过或不足多少千克?(3)若苹果每千克售价85元,则出售这20筐苹果可卖多少元?【答案】(1)5.5(2)超过8千克(3)43180元【分析】(1)根据正负数的意义确定最重的一筐和最轻的一筐,然后利用有理数减法计算法则求解即可;(2)把所给的记录相加,如果结果为正则超过标准重量,如果结果为负则不足;(3)先求出这20筐苹果的总重量,然后根据可卖的钱数=单价×重量进行求解即可.【详解】(1)解:由表格可知,最重的一筐比最轻的一筐重:()2.53 5.5−−=(千克).答:最重的一筐比最轻的一筐多重5.5千克.(2)解:由表格可得,()()()3124 1.520321 2.58−⨯+−⨯+−⨯+⨯+⨯+⨯()()()3830220=−+−+−+++8=(千克).答:与标准重量比较,20筐苹果总计超过8千克.(3)解:由题意可得,()202588543180⨯+⨯=(元),∴出售这20筐苹果可卖43180元.【点睛】本题主要考查了有理数减法的应用,有理数四则混合运算的应用,正确理解题意是解题的关键.6.(2022秋·江苏扬州·七年级校考阶段练习)思考下列问题并在横线上填上答案.(1)已知数轴上有M ,N 两点,点M 与原点的距离为2,M ,N 两点的距离为1.5,则满足条件的点N 所表示的数是__________;(2)在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示4−的点重合,若数轴上E ,F 两点之间的距离是10(E 在F 的左侧),且E 、F 两点经过上述折叠后重合,则点E 表示的数是__________,点F 表示的数是__________;(3)数轴上点A 表示数8,点B 表示数8−,点C 在点A 与点B 之间,点A 以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C 以每秒3个单位的速度先向右运动碰到点A 后立即返回向左运动,碰到点B 后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,当三个点聚于一个点时,这一点表示的数是多少?点C 在整个运动过程中,移动了多少单位? 【答案】(1)3.5或0.5或 3.5−或0.5− (2)6−,4 (3)8,4,24【分析】(1)先求出点M 所表示的数,进而即可求解; (2)先求出折痕对应的数为:-1,进而即可求解; (3)先求出A 、B 相遇时所花的时间,进而即可求解. 【详解】(1)解:∵点M 2, ∴点M 表示的数为:2±, ∵,M N 两点的距离为1.5,∴N 表示的数为:2 1.5 3.5±=或0.5;2 1.5 3.5−±=−或0.5−, 故答案是:3.5或0.5或 3.5−或0.5−;(2)∵折叠纸面,使数轴上表示2的点与表示4−的点重合, ∴折痕对应的数为:1−,∵数轴上,E F 两点之间的距离是10(E 在F 的左侧),且,E F 两点经过上述折叠后重合, ∴点E 表示的数是:156−−=−,点F 表示的数是:154−+=, 故答案是:6−,4;(3)当三个点聚于一个点时,则A 、B 相遇,运动的时间为:()()880.5 1.58+÷+=(秒),此时,这一点表示的数是:8 1.584−+⨯=,点C 在整个运动过程中,移动了:2483=⨯个单位.【点睛】本题主要考查数轴上的点所表示的数,两点间的距离,折叠的性质,掌握数轴上两点的距离等于对应的两数之差的绝对值,是解题的关键.【答案】(1)3(2)a 的值为8,点A 表示的数为2−,点B 表示的数为6 (3)72【分析】(1)根据数轴的性质列出运算式子,再计算有理数的加法即可得;(2)先根据3根木条的长度等于14与10−之间的距离可求出a 的值,再根据数轴的性质列出运算式子,计算有理数的加减法即可得;(3)先参照(2)的思路求出爷爷比小红大52岁,再利用124减去52即可得. 【详解】(1)解:由题意得:点B 表示的数为253−+=,故答案为:3.(2)解:由题意得:a 的值为()141038−−÷=⎡⎤⎣⎦, 则点A 表示的数为1082−+=−, 点B 表示的数为1486−=,即a 的值为8,点A 表示的数为2−,点B 表示的数为6.(3)解:由题意得:爷爷比小红大()12432352−−÷=⎡⎤⎣⎦(岁), 则爷爷现在的年龄为1245272−=(岁), 故答案为:72.【点睛】本题考查了数轴、有理数的加减法与除法的应用,熟练掌握数轴的性质是解题关键. 题型三:程序流程图与有理数计算一、单选题【答案】B【分析】分别将三组数据代入程序流程图运算求解即可. 【详解】解:①当7x =,2y =时x y >, 222()(72)525x y ∴−=−==;②当2x =−,=3y −时x y >,[]222()2(3)11x y ∴−=−−−==;③当4,1x y =−=−时x y <,[]222()4(1)(5)25x y ∴+=−+−=−=,∴能使输出的结果为25的有①③,故选:B .【点睛】本题主要考查了与程序流程图有关的有理数计算,有理数比较大小,正确读懂程序流程图是解题的关键.二、填空题2.(2022秋·江苏盐城·七年级校考阶段练习)如图所示是计算机某计算型序,若开始输入2x =−,则最后输出的结果是__________.【答案】14−【分析】直接利用运算程序,进而计算得出答案. 【详解】解:当2x =−时,()231615−⨯−−=−+=−,则5x =−时,()53115114−⨯−−=−+=−,故答案为:14−.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则,理解本题的运算程序是解决本题的关键. 3.(2020秋·江苏扬州·七年级校考期中)根据如图所示的程序计算,若输入x 的数值为2−,则输出的数值为______.【答案】 3.625−/538−/298−【分析】把x 的值代入程序中计算,再根据结果3<−输出即可. 【详解】解:把2x =−代入程序中计算得:()()2212⎡⎤⎣+⎦−÷−()()412=+÷−()52=÷−2.53=−>−,把 2.5x =−代入程序中计算得:()()22.512⎡+⎤⎣⎦−÷−()()6.2512=+÷−()7.252=÷−3.6253=−<−.故输出的数值为 3.625−. 故答案为: 3.625−.【点睛】此题考查了有理数的混合运算,代数式求值,熟练掌握运算法则是解本题的关键.【答案】4【分析】根据程序流程图的流程,列出算式,进行计算即可.【详解】解:输入的值为1时,由图可得:212420⨯−=−<;输入2−可得:()222440−⨯−=>;∴输出的值应为4; 故答案为:4.【点睛】本题考查程序流程图.按照流程图的流程准确的列出算式,是解题的关键.5.(2022秋·江苏淮安·七年级统考期中)如图所示是计算机程序计算,若开始输入1x =−,则最后输出的结果是___.【答案】-11【分析】读懂计算程序,把1x =−,代入,按计算程序计算,直到结果小于5−即可. 【详解】解:当输入x ,若()41x ⨯−−小于5−,即为输出的数,当1x =−时,()()()414113x ⨯−−=⨯−−−=−,3−不小于5−,因此,把3x =−再输入得,()()()4143111x ⨯−−=⨯−−−=−,11−小于5−,故答案为:11−.【点睛】本题考查实数的混合运算,掌握计算法则是关键.6.(2022秋·江苏无锡·七年级校考期中)如图是一个对于正整数x 的循环迭代的计算机程序.根据该程序指令,如果第一次输入x 的值是3时,那么第一次输出的值是10;把第一次输出的值再次输入,那么第二次输出的值是5;把第二次输出的值再次输入,那么第三次输出的值是16;以此类推得到一列输出的数为10,5,16,8,4,2,1,4,…若第五次输出的结果为1,则第一次输入的x 为 _____.【答案】32、5、4【详解】解:若第五次输出的结果为1, 则第5次输入为:2, 第4次输出为:2, 第4次输入为:4, 第3次输出为:4, 第3次输入为:8或1, 第2次输出为:8或1, 第2次输入为:16或2, 第1次输出为:16或2, 第1次输入为:32、5或4, 故答案为:32、5、4.【点睛】本题考查了有理数的混合运算,解题关键是读懂题意,寻找到数字变化的规律,利用规律解决问题.三、解答题 7.(2023秋·江苏扬州·七年级统考期末)如图,按图中的程序进行计算.(1)当输入的30x =时,输出的数为______;当输入的16x =−时,输出的数为______;(2)若输出的数为52-时,求输入的整数x 的值.【答案】(1)60−,64−;(2)26x =±或13±【分析】(1)根据图中的程进行列式计算,即可求解;(2)当输出的数为52-时,分两种情况进行讨论.【详解】(1)解:根据运算程序可知:当输入的30x =时,得:()3026045⨯−=−−<, ∴输入的30x =时,输出的数为60−;根据运算程序可知:当输入的16x =−时,得:()1623245−⨯−=−−>; 再输入32x =−,得:()3226445−⨯−=−−<,∴输入的32x =−时,输出的数为64−;故答案为:60−,64−;(2)解:当输出的数为52-时,分两种情况: 第一种情况:()252x ⨯−=−,解得:26x =±;第二种情况:当第一次计算结果为26−时,再循环一次输入的结果为52-,则()226x ⨯−=−,解得:13x =±,综上所述,输出的数为52-时,求输入的整数x 的值为:26x =±或13±. 【点睛】本题考查程序流程图与有理数的计算、绝对值,解题的关键是掌握有理数的运算法则和解绝对值方程.题型四:算“24”点一、填空题1.(2022秋·七年级单元测试)用一组数3,4,﹣4,﹣6算24点(每个数只能用一次):________.【答案】3×4×[﹣4﹣(﹣6)]=24(答案不唯一)【分析】此题只要符合题的要求,得数等于24即可,答案不唯一.【详解】解:3×4×[﹣4﹣(﹣6)]=12×(﹣4+6)=12×2=24,故答案为:3×4×[﹣4﹣(﹣6)]=24(答案不唯一).【点睛】本题主要考查有理数的混合运算,此题要注意要求的得数为24,而且每个数字只能用一次. 2.(2022秋·江苏镇江·七年级校联考阶段练习)“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行混合运算(每张牌只能使用一次),使得运算结果是24或者是24−,现抽出的牌所对的数字是4,5−,3,1−,请你写出刚好凑成24的算式__________.【答案】[]34(5)1⨯−−−【分析】利用“24点游戏”的游戏规则写出算式即可.【详解】解:根据题意得:[]34(5)1⨯−−−38=⨯=24.故答案为:[]34(5)1⨯−−−(答案不唯一).【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022秋·江苏南京·七年级南京钟英中学校考阶段练习)已知4个有理数:1,2,3,4−−−−,在这4个有理数之间用“,,,+−⨯÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是___________.【答案】(1)(2)(3)(4)24−⨯−⨯−⨯−=(答案不唯一)【分析】根据“24点”游戏规则列出算式即可.【详解】解:(1)(2)(3)(4)24−⨯−⨯−⨯−=故答案为:(1)(2)(3)(4)24−⨯−⨯−⨯−=(答案不唯一)【点睛】此题考查了有理数的混合运算,弄清“24点”游戏规则是解题的关键 4.(2022秋·江苏南京·七年级阶段练习)算“24点”是一种数学游戏:把所给的四个数字用运算符号(可以有括号)连接起来,使得运算结果为24,注意:每个数字只能用一次,请你用“5、5、5、1”这4个数字算“24点”,列出的算式是____.【答案】555124⨯−=(答案不唯一)【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题。
专题1.5 有理数加减混合运算解题技巧和方法(知识梳理与考点分类讲解)-2024-2025学年七年级

专题1.5 有理数加减混合运算解题技巧和方法(知识梳理与考点分类讲解)纵观整个初中阶段,学生在重视数学思维的时候,对计算能力的培养往往不够,到了初三及中考时,往往在计算上正确率不高,或计算效率不高,这往往就是基础计算没有打牢,尤其是计算的方法和技巧不够,初一上学期,有多章计算题,对于很多在小学阶段计算薄弱的同学要特别注意,本篇主要介绍有理数加减混合运算中常见的技巧和方法,在计算过程中可以试着使用,会将一些稍复杂的计算简单化。
常见的有理数加减混合运算技巧与方法:【技巧1】相反数结合法互为相反数的两个数和为0,我们在计算时,可以将互为相反数的两个数先结合进行计算。
【技巧2】同号结合法在有理数的加减混合运算中,比小学多引入了负数的加减运算,有些同学在计算时会将减号与负号混淆,不知道如何计算,因此我们在计算时可以将同号相结合,最后再按照有理数的加减法则进行计算。
【技巧3】同分母结合法在计算时,我们可以将同分母的先进行计算,异分母需要通分,有时计算上会比较繁琐。
【技巧4】凑整法在进行计算时,我们经常会遇到小数、分数、百分数等相加减,我们除了要熟练掌握三者之间的关系外,在计算时,也可以利用凑整法将题目简便化。
【技巧5】拆分法有时遇到带分数时,我们可以将之拆分成整数与真分数的和进行计算,有些计算中也可以将某个数拆分成两个数之和(差)或乘积。
具体解题过程的的解题方法与技巧往往不是单一的方法与技巧,而是综合灵活运用方法与技巧进行解题,学生应当适当多练习巩固。
【技巧1】相反数结合法【例1】:计算:11 0.53 2.75542⎛⎫⎛⎫---+-+⎪ ⎪⎝⎭⎝⎭【答案】0【分析】先将带分数化为小数,然后去掉括号,利用加法结合律和交换律进行计算即可求出答案.解:原式0.5 3.25 2.75 5.5=-++-()()0.5 5.5 3.25 2.75=--++ 66=-+0=【点拨】本题考查有理数的加减运算,解题的关键是熟练运用有理数的加减运算法则,本题属于基础题型.【举一反三】【变式1】计算: ()31282869+-++;【分析】把互为相反数的两数相加;解:()31282869+-++, ()31282869=⎡⎤⎣-⎦+++,31069=++,100=;【点拨】本题考查了有理数的加减混合运算的简便运算,合理地运用有理数的加法运算律使计算简化是解题的关键.【变式2】计算:1241123523⎛⎫⎛⎫⎛⎫+---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】15-【分析】利用有理数加法的交换律和结合律计算,即可求解. 解:1241123523⎛⎫⎛⎫⎛⎫+---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1121422335⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-+---- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()4015=+-+15=-.【点拨】本题主要考查了有理数简便算法,熟练掌握有理数加法的交换律和结合律是解题的关键.【技巧2】同号结合法【例2】用简便方法运算(1)1.4+(-0.2)+0.6+(-1.8); (2)(1)()21112 2.75524⎛⎫----+-+ ⎪⎝⎭【分析】(1)利用加法的运算律解通过同号结合得到互为相反数解答即可;(2)先化简绝对值、将分数化成小数,再利用有理数的加减运算法则和运算律利用同号结合法进行计算即可得;解:(1)1.4+(-0.2)+0.6+(-1.8) (2) ()21112 2.75524⎛⎫----+-+ ⎪⎝⎭=(1.4+0.6)+(-0.2-1.8) 0.4 1.5 2.25 2.75=---- =2+(-2) ()()0.4 1.5 2.25 2.75=-+-+ =0; 1.95=--【点拨】本题考查了化简绝对值、有理数的加减混合运算,熟练掌握有理数的加减运算法则和运算律并通过同号结合和相反数和为0是解题关键.【举一反三】【变式1】用简便方法运算.(1)()()()()0.5 3.2 2.8 6.5---++-+; (2) 13211()()()25323-++-++-.【答案】(1)1-; (2)25-【分析】按照有理数的加减法运算法则和运算律进行计算.解:(1)原式0.5 3.2 2.8 6.5=-++- (2)11213()()22335=-+-++()()0.5 6.5 3.2 2.8=--++ 3015=-+()76=-+ 25=-1=-.【点拨】本题考查了有理数的加减混合运算,解题的关键是掌握有理数的加减法运算法则和运算律.【技巧3】同分母结合法【例3】计算:15533.2542244⎡⎤⎛⎫⎛⎫----+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.【答案】 2.25-【分析】先算括号里,再算括号外,转化为同分母相加减即可解答.解:15533.2542244⎡⎤⎛⎫⎛⎫----+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦15533.2542244⎡⎤⎛⎫=--++-+ ⎪⎢⎥⎝⎭⎣⎦15533.2542244⎡⎤⎛⎫⎛⎫=--++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦155193.252244⎡⎤⎛⎫⎛⎫=--++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦73.2522⎛⎫=-+ ⎪⎝⎭3.25 5.5=- 2.25=-.【点拨】本题考查有理数加减混合运算.解题的关键是熟记有理数加减法则,混合运算顺序,运算定律,准确熟练地进行计算.【举一反三】【变式1】计算127533648787⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭时运算律用得最合理的是( ) A .127533648787⎡⎤⎡⎤⎛⎫⎛⎫+-++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦B .271536347887⎡⎤⎡⎤⎛⎫⎛⎫-+++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦C .271536347887⎡⎤⎡⎤⎛⎫⎛⎫-+++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦D .172536348877⎡⎤⎡⎤⎛⎫⎛⎫++-+- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦【答案】D【分析】根据运算律在简便运算中运用方法,先计算同分母分数,再算加法即可得出结论. 解:计算127533648787⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭时运算律用得最合理的是172536348877⎡⎤⎡⎤⎛⎫⎛⎫++-+- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦;故选:D .【点拨】此题考查了有理数的加法的简便运算,掌握有理数简便运算中运算律的运用方法是解题的关键.【变式2】嘉琪同学在计算21114233223-++时,运算过程正确且比较简便的是( )A .2111(43)(2)3322+-+B .2111(42)(3)3223-++C .2111(43)(2)3322+--D .2111(43)(2)3322---【答案】C【分析】原式利用加法交换律和结合律将分母相同的结合即可.解:嘉琪同学在计算21114233223-++时,运算过程正确且比较简便的是2111(43)(2)3322+--.故选:C .【点拨】此题考查了有理数的加减混合运算,熟练掌握加法交换律与加法结合律是解本题的关键.【技巧4】凑整法【例4】用简便方法运算:3222654115353⎛⎫⎛⎫⎛⎫⎛⎫++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【答案】8解析:可把相加得到整数的数相加. 解:3222654115353⎛⎫⎛⎫⎛⎫⎛⎫++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,3222645115533⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭,()113=+-,8=.【点拨】本题考查了有理数的加减混合运算的简便运算,合理地运用有理数的加法运算律使计算简化是解题的关键.【举一反三】【变式1】()()()2.48 4.337.52 4.33-++-+-=______.【答案】-10【分析】用加法交换律和加法结合律进行计算即可. 解:原式=()()()[ 2.487.52][4.33 4.33]-+-++-=10-. 故答案为:10-.【点拨】本题主要考查了有理数的混合运算,熟练掌握有理数的运算顺序和运算法则,以及加法交换律和结合律在有理数范围同样适用是解题的关键.【变式2】计算:31120.2572 1.5 2.75424⎛⎫⎛⎫-++-+-++ ⎪ ⎪⎝⎭⎝⎭. 【答案】8-【分析】可利用加法交换律和结合律以及分数与小数的互化进行有理数的加减运算即可求解.解:原式 2.750.257.5 2.25 1.5 2.75=-+--++()()()2.75 2.750.25 2.257.5 1.5=-++-+-+026=--8=-.【点拨】本题考查有理数的加减混合运算,解答的关键是熟练掌握运算法则和运算顺序,会利用加法运算律进行简便运算.【技巧5】拆分法【例5】阅读:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,可以按如下方法计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭.上面这种方法叫拆项法.仿照上面的方法,请你计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】1312-【分析】利用拆项法计算即可.解:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()75120222021140442486⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-+-+-+-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()75120222021140442486⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-++-+-+-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦261302412⎛⎫=+-=- ⎪⎝⎭.【点拨】本题主要考查有理数加减法的计算,熟练掌握有理数加减法的运算法则是解题的关键.【举一反三】【变式1】.计算:5212018201740351632⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】3-【分析】先将带分数拆分成两项,再利用有理数的加减运算法则和运算律进行计算即可得.解:原式5212018201740351632⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5212018201740351632=----+--()5214035201820171632⎛⎫=----++ ⎪⎝⎭5431666⎛⎫=--++ ⎪⎝⎭12=--3=-.【点拨】本题考查了化简绝对值、有理数的加减混合运算,熟练掌握有理数的加减运算法则和运算律是解题关键.【变式2】计算:522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】113-【分析】先分组,将222009401833⎛⎫-+ ⎪⎝⎭放在一起计算得到整数,再将结果相加即可;解:522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭225120094018200813362⎛⎫⎛⎫⎛⎫=-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5120092008162⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭11162=- 131=-;【点拨】此题考查有理数的加减混合运算,掌握正确的计算顺序是解题的关键.。
有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧理数加减混合运算是数学中非常常见和重要的运算。
下面将介绍五种运算技巧,帮助学生掌握这一技巧。
技巧一:整理运算顺序在进行理数加减混合运算时,首先要整理运算顺序。
首先进行加减法运算,然后再进行乘除法运算。
对于括号中的运算,应该优先计算,以保证得到正确的结果。
例如:计算式3+(5-2)×4÷2首先,根据括号中的运算,计算得到3+3×4÷2然后,按照乘除法优先于加减法的原则,计算得到3+6÷2最后,进行加法运算,得到最终结果6技巧二:分数的化简和通分在进行理数加减混合运算时,经常会遇到分数的加减运算。
为了计算方便,需要将分数化简和通分。
分数化简的原则是将分子和分母的公因数约去。
例如,对于分数12/8,可以将分子和分母都除以4得到3/2通分是将两个分数的分母改为相同的数,使得计算更加方便。
例如,计算1/2+1/3,需要将两个分数的分母都改为6,得到3/6+2/6=5/6技巧三:加减法的运算法则在进行理数加减混合运算时,需要根据加减法的运算法则进行计算。
对于同号数相加,直接将它们的绝对值相加,然后保持符号不变。
例如,计算-3+(-5)=-8对于异号数相加,首先将它们转化为同号数相减,然后按照同号数相减的方式计算。
例如,计算5+(-2)=5-2=3技巧四:小数的运算在进行理数加减混合运算时,经常会遇到小数的运算。
对于小数的加减,需要保持小数位数一致,以免出现误差。
例如,计算4.5+1.7,首先对小数进行对齐,然后按照整数加法进行运算,最后在结果中保留相同的小数位数,得到6.2技巧五:对数进行合并和拆分有时候,在进行理数加减混合运算时,数学表达式中可能存在一些可以进行合并或拆分的数。
例如,计算2/3-1/5-1/15,可以将2/3拆分为1/3+1/3,然后进行运算,得到1/3-1/5-1/15=(5/15)-(3/15)-(1/15)=1/15综上所述,掌握这五种运算技巧对于理数加减混合运算非常重要。
有理数加减混合运算方法与技巧

有理数加减混合运算方法与技巧(原创版2篇)目录(篇1)一、有理数加减法的基本概念二、有理数加减法的运算规则三、有理数加减法的运算技巧四、有理数加减法的应用实例正文(篇1)有理数加减法是我们日常生活中经常用到的一种数学运算,掌握好有理数加减法的方法和技巧对我们的生活和学习都有很大的帮助。
本文将从有理数加减法的基本概念、运算规则、运算技巧和应用实例四个方面进行详细的介绍。
一、有理数加减法的基本概念有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。
有理数加减法就是将两个有理数进行相加或相减的运算。
二、有理数加减法的运算规则有理数加减法的运算规则如下:1.同号相加,取相同符号,并把绝对值相加。
2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3.任何数同零相加,仍得原数。
4.任何数同零相减,仍得原数。
三、有理数加减法的运算技巧1.交换律:两个有理数相加,交换加数的位置,结果不变。
2.结合律:三个或三个以上有理数相加,可以任意改变加数的位置,结果不变。
3.分配律:一个有理数与两个有理数之和相乘,可以先把这个有理数分别与两个加数相乘,再相加,结果不变。
四、有理数加减法的应用实例例如:计算(-2)+3-(-1)+(-4)。
根据有理数加减法的运算规则和技巧,我们可以先将同号的数相加,再将异号的数相减。
即:(-2)+3-(-1)+(-4)=(-2+3)+(-4-(-1))=1-3= -2。
通过以上介绍,相信大家对有理数加减法的方法和技巧有了更深入的了解,希望对大家有所帮助。
目录(篇2)一、有理数加减混合运算的概念与基本原则二、有理数加减混合运算的方法1.先乘除后加减2.同号相加减,异号相减3.运用交换律和结合律简化运算三、有理数加减混合运算的技巧1.将混合运算转化为纯加法或纯减法2.使用分配律进行运算3.注意运算顺序,避免出现错误四、有理数加减混合运算的实例与解析正文(篇2)有理数加减混合运算是我们在日常生活中经常遇到的一种运算方式,掌握其方法和技巧对于我们解决实际问题具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17-47
64-192824-40-24-192840-)24()19()28(40=+=++=++=-+++++-=2443.23.443.243.4)4()3.2()4(3.4=-+-=--+=-+-+++=4
6
10313255245353
1524325535)31()524()325(535=-=--+=-+-=-+++-+=有理数加减法的运算技巧
学生对于单独的两个有理数的加法或者减法比较容易掌握,计算时的准确率较高,但是当加减发混合在一起的时候,学生的思路就模糊不清了,所以有理数的加减混合运算是有理数运算的基础也是一大难点。
小编根据有理数加减混合运算题目的特点,总结了有理数加减混合运算的五大运算技巧,由于个人经验所限,如有不到之处,还请大家不吝赐教。
大家都知道,有理数的加减混合运算的式子首先统一成有理数的加法运算,再利用加法的运算律进行简便运算。
一、符号相同的数可以先相加
例1:(-40)-(-28)-(-19)+(-24)
解:原式 (根据“减去一个数,等于加上这个数的相反数”将加减
法统一成加法)
(省略加号和括号,改写成代数和的形式) (注意:运用加法运算律时,一定要连同前面的符号一起
交换位置)
【举一反三】 38-22-(-62)+(-78)
【答案】解:原式=0
二、互为相反数的两个数,可以先相加得0
例2:(+4.3)-(-4)+(-2.3)-(+4)
解:原式
(观察:4与-4互为相反数)
【举一反三】(-6.37)+(-334)+6.37+2.75
【答案】解:原式=-1
三、同分母的分数可以先相加
例3:535-523-(-425)+(-13);
解:原式
2
3
175
.225.05.05.05
.075.225.05.05.0)75.2()25.0(5.0-=-=--+=+--=+-+-+=4
43
1
3252534553
1
52432
553
5)
3
1()524()325(535=+=--+++-=-++--+=-+++-+= 【举一反三】)12
7(65)43(6513-+--- 【答案】解:原式=6
113 四、几个数相加得整十,整百时,可以先相加;有小数或分数能够凑成整数的先加
例4:0.5+(-14)-(-2.75)+12
(化成同形:将能化成有限小数的分数化为小数进行加减运算)
解:原式 【举一反三】 -8-7.8+(-2)+6.8
【答案】解:原式=-11
五、两个带分数相加,可以把整数部分与分数部分分别相加
例5:535-523-(-425)+(-13)
解:原式 【举一反三】 41
22)75.0()218()25.6()43
17(-+---+-+
【答案】解:原式=-3。