有理数混合运算的方法技巧

合集下载

七年级有理数的混合运算的技巧

七年级有理数的混合运算的技巧

一.懂得运算次序有理数混杂运算的运算次序:①从高等到低级:先算乘方,再算乘除,最后算加减;有理数的混杂运算涉及多种运算,肯定合理的运算次序是精确解题的症结 例1.盘算:3+50÷22×(51-)-1②从内向外:假如有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.例2.盘算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯--③从左向右:同级运算,按照从左至右的次序进行(或应用分派律.联合律);例3:盘算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431二.应用四个原则:1.整体性原则: 乘除混杂运算同一化乘,同一进行约分;加减混杂运算按正负数分类,分离同一盘算,或把带分数的整数.分数部分拆开,分离同一盘算.2.简明性原则:盘算时尽量使步调简明,可以或许一步盘算出来的就同时算出来;运算中尽量应用轻便办法,如五个运算律的应用.3.口算原则:在每一步的盘算中,都尽量应用口算,口算是进步运算率的重要办法之一,习惯于口算,有助于造就反响才能和自负念.4、分段同时性原则:对一个算式,一般可以将它分成若干小段,同时分离进交运算.若何分段呢?重要有:(1)运算符号分段法.有理数的根本运算有五种:加.减.乘.除和乘方,个中加减为第一级运算,乘除为第二级运算,乘方为第三级运算.在运算中,低级运算把高等运算分成若干段. 一般以加号.减号把全部算式分成若干段,然后把每一段中的乘方.乘除的成果先盘算出来,最后再算出这几个加数的和.(2)括号分段法,有括号的应先算括号里面的.在实行时可同时分离对括号表里的算式进交运算.(3)绝对值符号分段法.绝对值符号除了本身的感化外,还具有括号的感化,从运算次序的角度来说,先盘算绝对值符号里面的,是以绝对值符号也可以把算式分成几段,同时进行盘算.(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分离运算. 例4.盘算:2÷(-12)4-(-1)101+(-2)2×(-3)2三.控制运算技能(1).归类组合:将不合类数(如分母雷同或易于通分的数)分离组合;将同类数(如正数或负数)归类盘算.(2).凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消. (3).分化:将一个数分化成几个数和的情势,或分化为它的因数相乘的情势. (4).约简:将互为倒数的数或有倍数关系的数约简. (5).倒序相加:应用运算律,转变运算次序,简化盘算. (6).正逆用运算律:正难则反,逆用运算定律以简化盘算.乘法分派律a(b+c)=ab+ac 在运算中可简化盘算.而反过来,ab+ac=a(b+c)同样成立,有时逆用也可使运算轻便.(7)绝对值和偶次幂的非负性.如,()0352=+++b a ,求a-b 的值;又如,盘算:514131412131-+-+-例5.盘算:(1) -321625 ÷2+(12 +23 -34 -1112)×24(2)(-32 )×(-1115 )-32 ×(-1315 )+32 ×(-1415 )四.懂得转化的思惟办法有理数运算的本质是肯定符号和绝对值的问题.是以在运算时应掌控“遇减化加.遇除变乘,乘方化乘”,如许可防止因记忆量太大带来的一些凌乱,同时也有助于学生抓住数学内涵的本质问题.把所学的有理数运算归纳综合起来.可归纳为三个转化:一是经由过程绝对值将加法.乘法在先肯定符号的前提下,转化为小学里学的算法术的加法.乘法;二是经由过程相反数和倒数分离将减法.除法转化为加法.乘法; 三是将乘方运算转化为积的情势.若控制了有理数的符号轨则和转化手腕,有理数的运算就能精确.快速地解决了.例6.盘算:(1)(-6)-(+5)+(-9)+(-4)-(-9) (2)(-212 )÷114 ×(-4)(3)22+(2-5)×13×[1-(-5)2]五.会用三个概念的性质假如a .b 互为相反数,那么a+b=O,a= -b; 假如c,d 互为倒数,那么cd=l,c=1/d; 假如|x|=a(a >0),那么x=a 或-a.例7.已知 a.b 互为相反数,c.d 互为倒数,x 的绝对值等于2,试求x 2-(a+b+cd)x+(a+b)2016+(-cd)2017的值有理数的混杂运算习题一.选择题1. 盘算3(25)-⨯=( )A.1000B.-1000C.30D.-30 2. 盘算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-18 3. 盘算11(5)()555⨯-÷-⨯=4. 下列式子中精确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<- D. 234(2)(3)2-<-<- 5. 422(2)-÷-的成果是( )A.4B.-4C.2D.-26. 假如()0312=++-b a ,那么1ba +1.2(3)2--⨯ 2. 12411()()()23523+-++-+-3.11( 1.5)4 2.75(5)42-+++- 4. 8(5)63-⨯-- 5. 3145()2-⨯- 6. 25()()( 4.9)0.656-+----7. 22(10)5()5-÷⨯- 8. 323(5)()5-⨯- 9.25(6)(4)(8)⨯---÷- 10. 1612()(2)472⨯-÷-11.2(16503)(2)5--+÷- 12. 32(6)8(2)(4)5-⨯----⨯13. 21122()(2)2233-+⨯-- 14.199711(10.5)3---⨯ 15. 2232[3()2]23-⨯-⨯-- 16. 232()(1)043-+-+⨯ 17.4211(10.5)[2(3)]3---⨯⨯-- 18. 4(81)( 2.25)()169-÷+⨯-÷19. 215[4(10.2)(2)]5---+-⨯÷- 20.666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯- 21. 235()(4)0.25(5)(4)8-⨯--⨯-⨯- 22.23122(3)(1)6293--⨯-÷-。

有理数混合运算的法则

有理数混合运算的法则

有理数混合运算的法则有理数混合运算的法则是指在数学运算过程中,结合有理数的四则运算及括号运算,按照一定的优先级和次序进行计算的规则。

它包括了加法、减法、乘法和除法,并可以与括号运算进行组合。

下面将详细介绍有理数混合运算的法则。

1.优先级法则:混合运算中,按照运算符的优先级进行计算。

在没有括号的情况下,先进行乘法和除法的运算,然后再进行加法和减法的运算。

2.加法法则:对于两个有理数相加,先将它们的分母取相同的公倍数,然后将分子相加,最后保持分母不变。

例如,2/3+1/4=8/12+3/12=11/123.减法法则:对于两个有理数相减,先将它们的分母取相同的公倍数,然后将分子相减,最后保持分母不变。

例如,2/3-1/4=8/12-3/12=5/124.乘法法则:对于两个有理数相乘,直接将它们的分子相乘作为结果的分子,将分母相乘作为结果的分母。

例如,2/3*1/4=2/12=1/65.除法法则:对于两个有理数相除,将除数的倒数乘以被除数。

即,将除数的分子与被除数的分母相乘作为结果的分子,同时将除数的分母与被除数的分子相乘作为结果的分母。

例如,2/3÷1/4=2/3*4/1=8/36.括号运算法则:括号运算具有最高的优先级,先进行括号内的运算。

括号内的运算可以是加法、减法、乘法和除法的混合运算,遵循上述基本法则,然后将结果代入到整体运算中。

例如,(2/3+1/4)*3=(8/12+3/12)*3=11/12*3=11/4除了以上的基本法则,有理数混合运算还可以进行多步计算和优化运算。

多步计算指的是在混合运算中,可以依次进行多个运算步骤,根据运算符的优先级依次计算。

优化运算指的是根据数学性质和规律,对有理数进行合理的变形和化简,从而简化计算过程。

这些技巧和方法可以有效提高计算速度和准确度。

综上所述,有理数混合运算的法则是一套用于有理数运算的规则和方法,涉及加法、减法、乘法、除法和括号运算。

通过合理应用这些法则,可以快速准确地进行混合运算,并得到正确的结果。

有理数混合运算简便算法与技巧

有理数混合运算简便算法与技巧

有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。

一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。

②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。

③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。

④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。

二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。

例:计算:-(0.5)-(-341) + 2.75-(721) 解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441 =-2解法二:-(0.5)-(-341) + 2.75-(721)=-0.5 + 341+ 2.75-721 = (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。

将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。

初一数学有理数混合运算解题方法与技巧

初一数学有理数混合运算解题方法与技巧

初一数学有理数混合运算解题方法与技巧板块一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.示例:a+b=b+a(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.示例:(a+b)+c=a+(b+c)(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.示例:a-b=a+(-b)有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.示例:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是求正3,负0.15,负9,正5,负11的和.板块二、有理数基本乘法、除法有理数乘、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等.示例:ab=ba (乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.示例:abc=a(bc)(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.示例:a(b+c)=ab+ac(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.板块三、有理数混合运算的顺序在进行有理数运算时,先算乘方,再算乘除,最后算加减,同级运算,按照从左到右的顺序进行,有括号的先算括号里的数.-----------------------------------------------------------------------------------------------------有理数运算所需的小学知识储备:整数、小数和分数的四则运算;约分和通分;常用的小数与分数的互化;基本的运算律和运算性质;在进行有理数运算之前,必须要掌握相反数、倒数和绝对值等相关概念:相反数:倒数:绝对值:要想学好有理数运算,必须要熟练掌握有理数运算法则:加法:减法:乘法:除法:乘方:有理数运算要点:有理数的运算顺序:先乘方和绝对值,再乘除,最后加减,有括号的先算括号里面的。

有理数的加减乘除的混合运算技巧

有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。

它们的混合运算在解决复杂问题时尤为重要。

下面将介绍有理数的加减乘除的混合运算技巧。

一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。

1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。

1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。

二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。

2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。

2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。

三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。

3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。

3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。

四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。

4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。

4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。

五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。

5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。

5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。

六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。

有理数的混合运算

有理数的混合运算

一.有理数的混合运算:1.加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

目前已经学到的第三极运算是乘方。

运算顺序按照从高级到低级,先乘方,再乘除,后加减。

2.同一级运算按照自左到右的顺序。

3.有括号的先算小括号,再算中括号,最后大括号。

二.会运用三个概念的性质1.如果a.b互为相反数,那么a+b=0,a= -b;2.如果c,d互为倒数,那么cd=l,c=1/d;3.如果|x|=a(a>0),那么x=a或-a三.运算技巧1.归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。

2.凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。

3.分解:将一个数分解成几个数和的形式, 或分解为它的因数相乘的形式。

4.约简:将互为倒数的数或有倍数关系的数约简。

5.倒序相加:利用运算律,改变运算顺序,简化计算。

6.正逆用运算律:正难则反, 逆用运算定律以简化计算。

乘法分配律a(b+c)=ab+ac在运算中可简化计算.而反过来,ab+ac=a(b+c)同样成立,有时逆用也可使运算简便.课前预习题1.下列说法中,正确的个数有()①−a一定是负数;②|−a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个B.2个C.3个D.4个2.如果mn>0,且m+n<0,则下列选项正确的是()A. m<0,n<0B. m>0,n<0C. m ,n 异号,且负数的绝对值大D.m ,n 异号,且正数的绝对值大3.20161-的相反数的倒数是________4.下列运算正确吗?不正确的话,请改正。

[]61671)7(61-19-261-13--261-1- 24-=-=-⨯=⨯=⨯)()(5.计算)()()(8-4--6-52÷⨯例题1.2.3. 计算)()()(8-4--6-52÷⨯4. 计算(1+2+3+...+99)×(10-3)×533练习1. 已知532=-b a ,则=+-2015262a b2.计算题(1)[]23-2315.0-1-1)()(⨯⨯⎥⎦⎤⎢⎣⎡⨯(2) 0132-43-2⨯++)()((3)[]2 4(-3)-23121-1-1-⨯⨯)(3.。

有理数的混合运算技巧和方法

有理数的混合运算技巧和方法

有理数的混合运算技巧和方法
有理数的混合运算是指同时包含加减乘除四种运算的运算式。

例如:3 + 4 × 2 ÷ 5 - 1。

要解决有理数的混合运算,需要遵循一定的运算顺序和运算法则。

1. 运算顺序
有理数的混合运算顺序与数学中的四则运算顺序相同,即先乘除后加减。

具体来说,要先进行乘除运算,再进行加减运算。

如果运算式中含有括号,则先计算括号内的运算。

2. 运算法则
有理数的混合运算法则包括以下三个方面:
(1) 乘法和除法法则:两个有理数相乘,结果的符号由这两个有理数的符号决定,即两数相乘,同号得正,异号得负。

两个有理数相除,结果的符号也由这两个有理数的符号决定,即两数相除,同号得正,异号得负。

(2) 加法和减法法则:两个有理数相加,结果的符号由这两个有理数的符号决定,即两数相加,同号得和,异号得差。

两个有理数相减,可以转化为相加,即 a - b = a + (-b),结果的符号也由这两个有理数的符号决定,即两数相减,同号得差,异号得和。

(3) 括号法则:括号可以改变运算顺序,但不会改变运算结果。

即 (a + b) × c = a × c + b × c, (a - b) × c = a × c - b × c。

3. 实际应用
在实际应用中,有理数的混合运算经常出现在各种数学问题中,例如计算利润、配平方程等。

掌握有理数混合运算的技巧和方法,可以帮助读者更好地解决这些问题。

以上就是有理数的混合运算技巧和方法的介绍。

有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧

有理数加减混合运算的五种运算技巧
一、比较法
比较法的原理是把有理数的乘除操作分解为加减操作来进行解题,通过比较有理数之间的大小关系,进一步缩小了最后的计算量。

比较法的基本步骤:
(1)确定大小关系:先比较两个有理数的大小,判断大者小者,再比较后一个有理数与前面大小关系,如此循环,直至将所有有理数排列出一个从大到小的数列。

(2)逐步缩小范围:将连续的有理数比较,判定大小,当有3个有理数需要比较大小时,由3个有理数中间的有理数开始比较,比较完毕后将左右2个有理数再比较。

(3)最终确定:最后将比较好的有理数从大到小进行排列,由此确定最终结果。

二、拆分法
拆分法的原理是将有理数的加减运算拆分为多个运算,实现加减混合运算,从而简化运算步骤,让结果更精确。

拆分法的基本步骤:
(1)拆分运算:因为有理数的加减运算拆分成多个运算,实现加减混合运算,所以首先根据有理数的运算关系,将其拆分开来进行计算。

(3)最终确定:拆分计算结束后,就可以得出最终的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数混合运算的方法技巧
一、有理数混合运算的原则
有理数的混合运算的关键是运算的顺序,为此,
必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算速度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算.
二、理解运算顺序
有理数混合运算的运算顺序:
①从高级到低级:先算乘方,再算乘除,最后算加减;
有理数的混合运算涉及多种运算,确定合理的运
算顺序是正确解题的关键
例1:3+50÷22×(51-)-1
解:原式=3+50÷4×(5
1-)-1············(先算乘方) =15141503-⎪⎪⎭
⎫ ⎝⎛-⨯⨯+
···············(化除为乘) =
2
1125315141503-=--=-⨯⨯-···(先定
符号,再算绝对值) ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
例2:计算:
()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝
⎛⨯-- 解原式[]926111-⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=[]926111-⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝
⎛--=()()677617651-=-⨯=-⨯⎪⎪⎭⎫ ⎝⎛- 也可这样来算:解原式==()926111-⨯⎪⎪⎭⎫ ⎝⎛+-=()67
761-=-⨯。

③从左向右:同级⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431运
算,按照从左至右的顺序进行;
例3:计算: 解⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--3887241424212442原式==⎪
⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯3878247=
33831-=--。

三、应用四个原则: 1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。

2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。

3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。

4、分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。

如何分段呢?主要有:(1)运算符号分段法。

有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。

在运算中,低级运算把高级运算分成若干段。

一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和.
把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法.
(2)括号分段法,有括号的应先算括号里面的。

在实施时可同时分别对括号内外的算式进行运算。

(3)绝对值符号分段法。

绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算.(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。

例2计算:-0.252÷(-1
2
)4-(-1)101+(-2)2×
(-3)2
解:原式=-1
16
×16-(-1)+4×9
=-1+1+36=36
说明:本题以加号、减号为界把整个算式分成三段,这三段分别计算出来的结果再相加。

四、掌握运算技巧
(1)、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。

(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。

(3)、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。

(4)、约简:将互为倒数的数或有倍数关系的数约简。

(5)、倒序相加:利用运算律,改变运算顺序,简化计算。

例计算2+4+6+…+2000
分析:将整个式子记作S=2+4+…+1998+2000.将这个式子反序写出.得S=2000+1998+…+4+2,两式相加,再作分组计算.
解: (1)令S=2十4+…+1998+2000,
反序写出,有S=2000+1998+…+4+2,
两式相加,有2S=(2+2000)+(4+1998)+…+(1998+4)+(2000+2)
=2002+2002+…+2002
l000个2002
=2002×1000=2002000
S=1001000
(6)、正逆用运算律:正难则反, 逆用运算定律以简化计算。

乘法分配律a(b+c)=ab+ac 在运算中可简化计算.而反过来,ab+ac=a(b+c)同样成立,有时逆用也可使运算简便.
例3计算:
(1) -321625 ÷(-8×4)+2.52+(12 +23 -34 -1112
)×24 (2)(-32 )×(-1115 )-32 ×(-1315 )+32
×(-1415
) 分析 : -321625
化成假分数较繁,将其写成(-32-1625 )的形式.对(12 +23 -34 -1112
)×24,则以使用乘法分配律更为筒捷,进行有理数混合运算时,要注意灵活运用运算律,以达到筒化运算的目的.
解:(1)原式=(-32-1625 )×(- 132 )+6.25 +(12 +23
-34 -1112
)×24
=1+1
50
+6.25+12+16-18-22
=1.02+6.25-12 =-4.73
(2)原式=3
2
×
11
15

3
2
×
13
15

3
2
×
14
15
=3
2
×(
11
15

13
15

14
15

=3
2
×
10
15
=1
五、理解转化的思想方法
有理数运算的实质是确定符号和绝对值的问题。

有理数的加减法互为逆运算,有了相反数的概念以后,加法和减法运算都可以统一为加法运算.其关键是注意两个变:(1)变减号为加号;(2)变减数为其相反数。

另外被减数与减数的位置不变.例如(-12)-(+18)+(-20)-(-14).
有理数的乘除也互为逆运算,有了倒数的概念后,有理数的除法可以转化为乘法。

转化的法则是:除以一个数,等于乘以这个数的倒数。

乘方运算,根据乘方意义将乘方转化为乘积形式,进而得到乘方的结果(幂)。

因此在运算时应把握“遇减化加.遇除变乘,乘方化乘”,这样可避免因记忆量太大带来的一些混乱,同时也有助于学生抓住数学内在的本质问题。

总之,要达到转化这个目的,起决定作用的是符号和绝对值。

把我们所学的有理数运算概括起来。

可归纳为三个转化:一个是通过绝对值将加法、乘法在先确定符号的前提下,转化为小学里学的算术数的加法、乘法;二是通过相反数和倒数分别将减法、除法转化为加法、乘法;三是将乘方运算转化为积的形式.若掌握了有理数的符号法则和转化手段,有理数的运算就能准确、快速地解决了.
例计算:
(1) (-6)-(+5)+(-9)+(-4)-(-9)
(2) (-21
2
)÷1
1
4
×(-4)
(3)22+(2-5)×1
3
×[1-(-5)2]
解:(1)原式=(-6) +(-5)+(-9)+(-4)+(+9) =-6-5-9-4+9=-15
(2) 原式=(-5
2

4
5
×(-4)=8
(3) 原式=4+(-3) ×1
3
×(-24)
=4+24
=28
六、会用三个概念的性质
如果a.b互为相反数,那么a+b=O,a= -b;如果c,d互为倒数,那么cd=l,c=1/d;如果|x|=a(a>0),那么x=a或-a.
例6 已知a、b互为相反数,c、d互为倒数,x的绝对值等于2,试求x2-(a+b+cd)x+(a+b)2000+(-cd)2001的值
解:∵a、b互为相反数,∴a+b=0;
又∵c、d互为倒数,∴cd=l;
|x|=2, ∴x=2或-2。

∴x2-(a+b+cd)x+(a+b)2000+(-cd)2001= x2-x-1当x=2时,原式= x2-x-1=4-2-1=1
当x=一2,原式= x2-x-1=4-(-2)-1=5
感谢您的支持与配合,我们会努力把内容做得更好!。

相关文档
最新文档