有理数混合运算易错题剖析

合集下载

有理数运算中的常见错误类型及原因分析

有理数运算中的常见错误类型及原因分析

有理数运算中的常见错误类型及原因分析1、违背运算顺序。

如例1 计算:8)87(87)8(⨯-÷⨯-错解:原式=1)7(7=-÷- 剖析:本题错误的原因在于违背了运算的顺序,乘除法应为同一级运算,应按照从左到右的顺序依次进行.正解:原式=648)78(87)8(=⨯-⨯⨯-.再如例2:-(-5)2错解:原式=52=25。

剖析:本题错误在于学生先算了相反数,再算乘方,应先算乘方,再取相反数。

正解应为:原式=-25。

像这样为求简便而违背运算顺序的错误是很普遍的。

2、概念不清。

如例 3 计算:32231432-÷⨯-。

错解:原式=18983434=-=-⨯⨯。

剖析:本题错误的原因在于对有理数乘方的意义理解不透彻,没有分清幂的底数,把22-误认为是2)2(-.正解:原式=178983434-=--=-⨯⨯-。

3、误用运算律例4 计算:)315141(23+-÷ 错解:原式=466911592323523423312351234123=+-=⨯+⨯-⨯=÷+÷-÷.剖析:本题错误的原因在于加、减法对于乘法有分配律,而除法是没有分配律的,应先算括号里的,再算除法. 正解:原式=60236023602323)602060126015(23=⨯=÷=+-÷ 4、符号错误例5 计算:)431(214)322(32-⨯--÷ 错解:原式=127314147214)83(32-=--=⨯--⨯.剖析:本题错误的原因在于把214前面的“-”号既作为运算符号,又作为性质符号.而在具体的运算过程中只能作为一种符号.正解:原式=1213141)47(214)83(32=+-=-⨯--⨯. 矫正有理数运算错误的教学策略。

1、培养学生正解的解题习惯和心态。

学生解题出现错误往往是没有认真读题,没有理解题意,理清运算顺序,就盲目动笔。

另外,在解题时粗心,遗漏运算符号造成错误。

有理数运算中常见的错误剖析

有理数运算中常见的错误剖析

学生在做题时由于不认真 ,导致在书写负数时常 常漏 掉括 号 、负 号等 。
五 、运算律运用错误
侈02 计算 :一9x(+11)一12x(-8)。
在有理数的计算 中,适 当运用运算律 ,可以使运
错解 :原 式 =一99一一96=一99+96=一3。
算 更加 简便 。
【错解剖析】学生在书写时漏掉 了 “一96”的括号。
小学思维定式的影响 ,对正 、负号的理解和运算律 的 的错误 。
理解 不 到 位 ,往 往 在 运算 过 程 中出 现错 误 。因此 ,在
侈03 计算 :一3 一50÷(一5) 一1。
学 生 的学 习过 程 中 ,要 熟 练地 掌 握 运算 顺 序 、运算 法
错解 :原 式 =9—50÷25一l=9—2一l=6。
2018年 第 3期 (总 第 261期 )
基础 教育 论坛
Jlc H U J|A O YU LU N TA N
№ 3. 2018 GeneraI。№ 261
有理数运算 中常见 的错误 剖析
汪 振 方 (福建省安 溪县金 火 中学)
摘 要 :在初 中数学学习过程 中,数与运算是最基础的 内容 ,其 中有理数的学习又是基础 中的基 础 。文章整理 了学生作 业 中有理 数运 算的常见错 误 ,并进行 了深入分析 ,期望 学生找到 正确 的解题 方法。
关键 词 :有理 数 ;常 见错 误 ;深度剖 析
有 理 数是 七 年 级 学生 进 入 初 中后 接 触 的 第 一个 数
三、概 念理解 不清错误
学概念 ,正 、负数概念对于学生在小学 阶段所建立 的
数 的概 念 而 言 是一 次 质 的飞跃 。大 多数 学 生 因为受 到

有理数乘除运算中常见错例分析

有理数乘除运算中常见错例分析

有理数乘除运算中常见错例分析例1 计算 -6-(-3)×13错解1:原式=-6-1=-7错因分析:以上解法错在-6-1这一步,在计算-(-3)×13时,漏掉了前面的“-”号。

错解2:原式=-3×13=-1 错因分析:有理数的混合运算中,一定要注意运算顺序,只有同级运算才可顺序进行,而本题中含有乘法和减法两级运算,解题中错误运用了运算顺序,先算了减法,从而导致了错误。

克服办法:有理数的混合运算时,一定要遵守运算顺序:先算乘方,后算乘除,最后算加减。

有括号的,先算括号里面的。

这是进行有理数运算时必须遵守的一个“游戏”规则,否则,就会出现计算错误。

同时,计算过程中还应仔细认真,不能漏掉运算符号。

正解:原式=-6-(-1) (运算顺序:先算乘除,后算加减)=-6+1=-5例2 计算 -9÷32 × 23错解:原式=-9÷1=-9错因分析:这是一道乘除混合运算试题,该同学只注意到题中32 与23互为倒数,它们的积为1,而忽略了运算顺序,出现了错误。

克服办法:三个数的乘除混合运算试题中,当乘法在前除法在后时,可先算除法,如:-9×32 ÷32=-9×1=-9,但当除法在前乘法在后时,一定要注意先把除法变成乘法,然后再进行计算。

正解:原式=-9× 23 × 23(除法法则:除以一个数等于乘以这个数的倒数) =-4例3 计算 -24×( 712 - 56 + 14-1) 错解1:原式=24×712 -24×56 +24×14-24×1 =14-20+6-24=-24错因分析:运用乘法分配率把括号前的数乘进括号内时,忽略了-24前的符号,导致了计算错误。

错解2:原式=-24×712 -(-24)×56 +(-24)×14-1 =-14+20-6-1=-1错因分析:把括号前的数乘进括号内时,-24分别与括号内的项712、- 56 、 14相乘,却没有与-1相乘,出现了漏乘,导致了错误。

有理数混合运算中典型问题的剖析

有理数混合运算中典型问题的剖析

有理数混合运算中典型问题剖析重点:掌握有理数混合运算法则,提高运算的准确性难点:熟练运用混合运算法则进行计算一、复习1、计算(1)()()1517++-(2)()()107---加法法则:减法法则: (3)()34-⨯(4)⎪⎭⎫ ⎝⎛-÷5735乘法法则:除法法则: (5)()35-幂运算符号确定法则:有理数混合运算顺序法则:二、知己知彼,剖析错因(1)()()3246-÷--- 考查知识点:(2)6616⨯⎪⎭⎫ ⎝⎛-÷ 考查知识点:错因:错因:(3)()⎪⎭⎫ ⎝⎛-+-⨯-83612124 考查知识点: 错因:(4)⎪⎭⎫⎝⎛-⨯÷-329423考查知识点:错因:(5)88764÷⎪⎭⎫⎝⎛-考查知识点:错因: 正解:(6)25.0472*******-⎪⎭⎫⎝⎛-⨯-⎪⎭⎫⎝⎛-÷ 考查知识点:错因:正解:三、小试牛刀(1)()22020231361-+⎪⎭⎫ ⎝⎛-⨯÷+-(2)()()()5525.62-÷÷-⨯-四、挑战自我、征服运算(1)()⎪⎭⎫ ⎝⎛-+--⎪⎭⎫ ⎝⎛++-81325.5414874(2)()4.045.14.095.1181876597⨯+⨯--⨯⎪⎭⎫ ⎝⎛-+-(3)⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-214034652018322017(4) ⎪⎭⎫ ⎝⎛+-÷-327291)631(五、思考升华思考题:定义★运算,观察下列运算:(+5)★(+14)=+19, (-13)★(-7)=+20 (-2)★(+15)=-17, (+18)★(-7)=-25,0★ (-19) =+19, ( +13 )★0=+13 .( 1 )归纳★运算的法则:两数进行★运算时,同号,异号。

特别地, 0和任何数进行★运算,或任何数和0进行★运算,。

(2)计算:(+17)★[0★(-16)]= 。

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)一、选择题1.现规定一种运算,a*b=ab-a+b,计算(-3*5)等于多少?()A.-7 B.-15 C.2 D.7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A.【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.2.9万亿1388900000000008.8910==⨯,故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.23+23+23+23=2n,则n=()【答案】C【解析】【分析】 原式可化为:23+23+23+23=4×23235222=⨯=,之后按照有理数乘方运算进一步求解即可.【详解】∵23+23+23+23=4×23235222=⨯=∴5n =,所以答案为C 选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为( )【答案】C【解析】 试题分析:(a+2b )(a+b )=2232a ab b ++,则C 类卡片需要3张.考点:整式的乘法公式.8.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.2017年常州市实现地区生产总值约6622亿元,将6622用科学记数法表示为( ) A .40.662210⨯B .36.62210⨯C .266.2210⨯D .116.62210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将6622用科学记数法表示为:36.62210⨯.故选B.【点睛】本题考查科学计数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值.10.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km【答案】B【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】科学记数法表示:384 000=3.84×105km故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( )A .1.361×104B .1.361×105C .1.361×106D .1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D .【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.13.随着垃圾数量的不断增加,宁波从2013年开始启动生活废弃物收集循环利用示范目,总投资约为15.26亿元,以下用科学记数法表示15.26亿正确的是()A .815.2610⨯B .81.52610⨯C .90.152610⨯D .91.52610⨯【答案】D【解析】【分析】先把15.26亿写成1526000000的形式,再根据科学记数法的法则,把15.26亿用科学计数法表示成10n a ⨯的形式即可.【详解】解:15.26=1526000000∵1526000000有10位整数,∴可以确定指数n=10-1=9,即用科学记数法表示为91.52610⨯,故答案为D.【点睛】本题主要考查了科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

有理数加减乘除混合运算易错题

有理数加减乘除混合运算易错题

有理数加减乘除混合运算易错题有理数加减乘除混合运算是数学中的基础知识之一,对于学生来说是一个重要且常见的考点。

在进行这类题目时,往往容易出现错误。

本文将针对有理数加减乘除混合运算易错题进行详细的解析,希望能够帮助大家更好地掌握这部分知识。

首先,我们需要了解有理数的加减乘除规则。

在进行有理数的加减运算时,同号两数相加减,取相同的符号,绝对值相加减;异号两数相加减,取绝对值相减,结果的符号取绝对值大的数的符号。

在进行有理数的乘除运算时,同号得正,异号得负,绝对值相乘相除。

接下来,我们来看几个常见的易错题:1. 计算:(-3) + (-5) - 7 ÷ (-1)解析:首先计算括号内的除法,7 ÷ (-1) = -7,然后进行加减法运算,(-3) + (-5) = -8,-8 - 7 = -15,所以答案为-15。

2. 计算:(-2) × (-4) + 6 - 5 ÷ 1解析:首先计算乘法,(-2) × (-4) = 8,然后进行加减法运算,8 + 6 = 14,14 - 5 = 9,所以答案为9。

3. 计算:(-9) - 4 × 3 + 5 ÷ (-1)解析:首先计算乘法,4 × 3 = 12,然后进行加减法运算,(-9) - 12 = -21,-21 + 5 = -16,所以答案为-16。

4. 计算:(-6) ÷ 2 - 4 × (-3) + 5解析:首先计算除法,(-6) ÷ 2 = -3,然后计算乘法,4 × (-3) = -12,最后进行加减法运算,-3 - (-12) = 9,9 + 5 = 14,所以答案为14。

以上就是几个有理数加减乘除混合运算的易错题,希。

七年级数学上册 第二章 有理数 2.8 有理数的混合运算 有理数混合运算错例剖析素材 (新版)苏科版

七年级数学上册 第二章 有理数 2.8 有理数的混合运算 有理数混合运算错例剖析素材 (新版)苏科版

有理数混合运算错例剖析在学习有理数的混合运算时,有的同学因对知识掌握不牢而出现解题失误,现就在运算中常见的几种典型错误总结如下:一、概念理解不全面例1 已知2x =,y 的平方等于16,求x y +的值. 错解:由2x =,216y =,易得2, 4.x y == 所以24 6.x y +=+=剖析:上述解法是对绝对值和平方的概念理解不清而出错,致使解答不完整,本题应分情况进行分类讨论. 正解:因为2x =,所以2x =或2x =-;又因为216y =,所以4y =或4y =-.(1)当2x =,4y =时,6x y +=;(2)当2x =,4y =-时,2x y +=-;(3)当2x =-,4y =时,2x y +=;(4)当2x =-,4y =-时, 6.x y +=-二、运算符号错误例2 计算:()211123329⎛⎫⎛⎫-⨯-÷⨯- ⎪ ⎪⎝⎭⎝⎭ 错解:原式=()2192 2.36⎛⎫⎛⎫-⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭ 剖析:上述解法的运算顺序和步骤都正确,但丢掉了结果的性质符号,致使结果错误.有理数的运算总是分两步进行的,一是判定结果的性质符号,二是进行绝对值的计算. 正解:原式=()2192 2.36⎛⎫⎛⎫-⨯-⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭三、误用运算律例3 计算:()11162312⎛⎫-÷-+ ⎪⎝⎭错解:原式=()()()11166612187266.2312⎛⎫-÷+-÷-+-÷=-+-=- ⎪⎝⎭ 剖析:错解受乘法分配律的影响,形成了思维定势,误认为除法也能用分配律,也就是说().a b c a b a c ÷+≠÷+÷正解:原式=()()64116624.1212124⎛⎫-÷-+=-÷=-⎪⎝⎭四、违背运算顺序 例4 计算:()()()115551010---⨯÷⨯- 错解1:原式=()11551622⎛⎫⎛⎫---÷-=--=- ⎪ ⎪⎝⎭⎝⎭; 错解2:原式=()11050.1010⨯÷⨯-= 剖析:有理数的运算顺序是:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里边的;对于同一级运算,应按从左到右的顺序进行. 本题错误的原因是改变了正确的运算顺序,由于贪图运算简便,错解1对同一级运算未能按从左到右的顺序进行,错解2提前进行了减法运算.正解:原式=()()()155********.10---⨯⨯⨯-=--=- 五、出现拆数上的错误例5 计算:()672311⎛⎫-÷- ⎪⎝⎭错解:原式=()()()()662972372332423.11111111⎛⎫-+÷-=-÷-+÷-=-= ⎪⎝⎭ 剖析:错解是把67211-拆成了67211-+,事实上6672721111⎛⎫-=-+ ⎪⎝⎭ ()67211⎛⎫=-+- ⎪⎝⎭. 正解:原式=6622723= 7232424.11111111⎛⎫÷+÷==+= ⎪⎝⎭ 六、对乘方的意义理解不透例6 计算:()()22222235333⎛⎫+-++-⨯ ⎪⎝⎭错解:原式()444495914418.9999=+++⨯=++=剖析:上述解法把223与223⎛⎫⎪⎝⎭,23-与2(3)-给混淆了.223中的指数在分子上,它表示22433⨯=,而223⎛⎫⎪⎝⎭表示224339⨯=,所以223223⎛⎫≠ ⎪⎝⎭;又因为()23339-=-⨯=-,()()()23339-=-⨯-=,所以()2233.-≠-正解:原式()242295944.9999=+-++⨯=-+=。

〖2021年整理〗《有理数的乘除》常见错例剖析

〖2021年整理〗《有理数的乘除》常见错例剖析

《有理数的乘除》常见错例剖析有理数的乘除是继有理数的加减之后的又一种重要的运算,但对于刚刚接触负数的同学们来说非常容易出错,现将本节常见错误归类剖析如下:一、运算符号错误在计算乘除混合运算时,一定要先确定积的符号,再把绝对值相乘除。

切不可将运算符号和性质符号相混淆。

例1:计算:)5(15149-⨯- 错解:原式=)5(1514)5(9-⨯+-⨯- =31445- =3141 剖析:在将带分数拆开进行计算时,出现了符号错误。

此类错误在运用乘法的分配律或结合律时也易出现,要牢记一定要先确定结果的符号。

正解:原式=)5()1514()5(9-⨯-+-⨯- =31445+ =3248 二、运算顺序错误当算式中有有乘法和除法时,因为二者运算级别相同,所以应按照从左至右的顺序进行计算,千万不可在有乘除混合运算的式子当中运用乘法结合律。

例2:计算:)9(233281-÷⨯÷- 错解:原式=)9(81-÷-=9剖析:在乘除混合运算时,应先将除法全部都换成乘法,再统一计算。

本题就是贪图简便,先将32和23相互约分,导致结果错误。

正解:原式=)91(232381-⨯⨯⨯- =481 三、运算律运用错误有理数的乘法有交换律、结合律和分配律,但除法并没有这些运算律,所以在计算时不要误用。

例3:计算:)692(36+-÷错解:原式=636936236÷+÷-÷=6418+-=2021析:本题错误地对除法也运用分配律,导致结果错误,切记)(c b a +÷≠c a b a ÷+÷ 正解:原式=)1(36-÷=36-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的混合运算
【典型例题1】下面有四种说法,其中正确的是 ( )
A.一个有理数奇次幂为负,偶次幂为正
B.三数之积为正,则三数一定都是正数
C.两个有理数的加、减、乘、除(除数不为零)、乘方结果仍是有理数
D.一个数倒数的相反数,与它相反数的倒数不相等
【典型例题2】下列判断错误的是 ( )
(A )任何数的绝对值一定是正数; (B )一个负数的绝对值一定是正数;
(C )一个正数的绝对值一定是正数; (D )任何数的绝对值都不是负数;
【典型例题3】若01a b <<<且1a b +=,下面的几个关系.①02>+b a ;②b b a <+2;③2b>1;④2a>1,其中正确的个数是 ( )
A.1
B.2
C.3
D.4
【典型例题4】下列四个命题:(1)任何有理数都有相反数;(2)一个有理数和它的相反数之间至少还有一个有理数;(3)任何有理数都有倒数;(4)一个有理数如果有倒数,则它们之间至少还有一个有理数;(5)数轴上点都表示有理数;(6)任何一个有理数的平方必是正数。

上述命题中,说法正确的是 ;
【典型例题5】若有理数满足a<-1,0<b<c<1,则下列命题正确的是 。

A. 0abc <
B. a b b c a c -+-=-
C. ()()()0a b b c c a --->
D. 1a bc <-
【典型例题6】已知,,a b c 三个数中有两个奇数,一个偶数,n 是整数,若
(1)(22)(33)S a n b n c n =++++++,则问S 的奇偶性是 ;
【典型例题7】已知a,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,试求: 219981999()()()x a b cd x a b cd -+++++-的值
【典型例题8】体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0
(1) 这8名男生的百分之几达到标准?
(2) 他们共做了多少次引体向上?
【当堂检测】
1、a 是最小的正整数,b 是最大的负整数的相反数,c 是到数轴上距原点的距离最小的数,求2a b c ++的值
2、若130a b c ++-+=,求222()()()a b b c c a -----的值.
3、若有理数p n m ,,满足
1||||||=++p p n n m m ,求 =|3|2mnp mnp 多少?
4、若有理数,,,,a b c d e 满足abcde abcde =-,则e
e d d c c b b a a S ||||||||||++++=
的值是多少?
5、若正数a 的倒数等于其本身,负数b 的绝对值等于 3,且c a <,236c =, 求代数式2
2(2)5a b c --的值。

6、若31x -<<,化简:123y x x x =-+-++
7、求21-++x x 的最小值并求此时x 的取值范围为.
8、一天小明和冬冬利用温差来测量山峰的高度。

冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?
9、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式:
(1)_______________________;
(2)________________________;
(3)________________________;
10、已知,a b 互为相反数,,c d 互为倒数,x 的绝对值等于2,则220002001()()()x a b cd x a b cd -+++++-的值为_________ 。

11、数轴上离开原点距离小于2的整数点的个数为x ,不大于2的整数点的个数为y ,等于2的整数点的个数为2,求x+y+2的值。

12、若a与(b-)是互为相反数,求
22 189899
1997
a b
ab
+
.
13、用“”定义新运算:对于任意实数a,b,都有a b=b2+1。

例如,74=42+1=17,求53的值及当m为有理数时,m(m2)的值。

14、十·一”黄金周期间,省城逍遥津公园风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数): (单位:万人)
日期1日2日3日4日5日6日7日
人数变化+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2
(1) 若9月30日的游客人数记为1万,10月2日的游客人数是多少?
(2) 请判断7天内游客人数最多的是哪天?最少的是哪天?他们相差多少万人?
(3) 求这一次黄金周期间游客在该地总人数.。

相关文档
最新文档