合金化原理

合集下载

金属材料学--钢铁材料的合金化原参考课件

金属材料学--钢铁材料的合金化原参考课件
具有在一定程度内变化的化学成分、具有不同 的晶体结构因而不同性能和性质、用相界面与 其他相分隔的部分物质被称为相
成分分析,元素与含量 相分析,晶体结构(衍射晶面间距)与量(衍
射强度)和尺寸 组织分析,形貌(成分与相相同时有可能形貌
不同,如珠光体、索氏体、托氏体)
5
钢中基础相
α-铁,室温稳定,体心立方点阵,点阵产生 0.286645±1nm,由此计算出的最小原子间 距为0.248240nm,配位数为12时的原子直 径为0.25715 nm,理论摩尔体积为 0.709165×10-5m3/mol,理论密度为 7.875Mg/m3,通常采用的实际测定密度 7.870Mg/m3,室温线胀系数11.8×10-6/K。
900
800
700
600
19Cr 15Cr
12Cr 5Cr 0Cr
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
碳含量,%
20
封闭γ相区相图的特点
最为简单的相图,右边往往是一匀晶相图 (开启γ相区相图由于上面开口连接液相, 故一般应有一包晶相变)
α-Fe与δ-Fe相区合并
钴的特殊性,它开启γ相区,但却使Α3温度略微升 高,这使钴产生了一些反常的行为(如降低钢的 淬透性)。
13
扩大γ相区相图
δ
A4

度 A3
γ
A1 α
Fe
14
扩大γ相区相图的特点
合金元素在γ-Fe中有限固溶,当合金元素含 量超过溶解度限时,则将出现石墨、ε-铜等 单质相或Fe3C、Fe4N等化合物相。
12
碳含量,%
开启γ相区相图的特点
合金元素在γ-Fe中可以无限固溶,因而使γ相区存 在的温度范围显著变宽,使δ和α相区明显缩小, 当固溶度较大时甚至在室温温度也仍可使钢保持 为单相奥氏体。奥氏体形成元素如镍,本身就具 有面心立方点阵;而锰和钴的多型性固态相变晶 型中,在一定温度范围内存在着面心立方点阵。

钢的合金化原理

钢的合金化原理
复杂密排构造,如Cr, Mn, Fe等与C形成旳K:
M23C6型 复杂立方,Cr, Mn形成旳K:Cr23C6
M7C3型 复杂六方,Cr, Mn形成旳K:Cr7C3, Mn7C3
M3C型 正交晶系,Fe形成旳K:Fe3C
3)Fe-M-C形成旳三元K
M6C型
复杂立方,W、Mo旳K: Fe3Mo3C, Fe4Mo2C, Fe3W3C, Fe4W2C。
二. 碳化物(K)
1. 构造
1)rc/rM<0.59 简朴密排构造 V, Nb, Ta, Zr, Hf, Mo, W
MC型 面心立方,V, Nb, Ta,Zr, Hf, 如 VC,ZrC 等。 六方点阵,Mo, W, 如 MoC, WC。
M2C型 六方点阵,Mo,W,如:Mo2C, W2C
2)rc/rM>0.59 ,间隙化合物
rc/rMe > 0.59 —复杂点阵构造,如Cr、Mn、Fe , 形成Cr7C3、Cr23C6、Fe3C、Mn3C等形式旳K;
rc/rMe < 0.59 —简朴构造相,如Mo、W、V、Ti 等,形成VC等MC型,W2C等M2C型 。
Me量少时,形成复合K,如(Cr, M)23C6型 。
2)相同者相溶
一. 铁基固溶体
1. 置换(代位)固溶体 Ni, Co, Mn与γ-Fe形成无限固溶体。 Cr, V 与α-Fe形成无限固溶体。 其他置换原子与γ- Fe或α- Fe形成有限固溶体。
2. 间隙固溶体 间隙原子:B,C,N,O,H 间隙原子总是部分占据溶剂金属点阵旳八面体或四面体间
隙; 均为有限固溶体。
2、淬火态 Me分布与淬火工艺有关。溶入A体旳元素 淬火后存在于M、B中或AR中;未溶者仍在K中。

合金化原理的应用

合金化原理的应用

合金化原理的应用1. 简介合金化是指通过将两种或多种金属进行熔炼、混合或固相反应,使其形成一个新的金属系统的技术过程。

它利用不同金属之间的原子间相互作用,通过特定的工艺条件,使合金具有优异的性能。

合金化技术在材料科学、工程技术和制造业等领域有广泛的应用。

2. 合金化的种类合金化可以分为两类,包括固溶体合金化和化合物合金化。

2.1 固溶体合金化固溶体合金化是指通过将两种或多种金属溶解在一起,形成具有均匀分布的晶格结构的合金。

它可以通过固溶体混合、固溶体反应等方式进行。

固溶体合金化常用来改善材料的机械强度、耐蚀性、耐热性等性能。

固溶体合金化的常见应用包括: - 不锈钢的制备:将铁、铬、镍等元素进行固溶体合金化,可生成不锈钢,具有优异的耐腐蚀性能; - 铝合金的制备:将铝与其他金属(如铜、镁、锌等)进行固溶体合金化,可获得强度高、耐腐蚀性好的铝合金材料。

2.2 化合物合金化化合物合金化是指两种或多种金属元素之间形成化学化合物的过程。

在化合物合金中,金属元素的原子结合形式是固定的,有着严格的比例。

化合物合金常用来改善材料的导电性、磁性、光学性能等。

化合物合金化的常见应用包括: - 磁性材料的制备:将铁、镍、钴等金属与其他元素形成化合物合金,可获得具有特定磁性的材料,如永磁材料; - 半导体材料的制备:将硅、锗等半导体元素与其他金属形成化合物合金,可获得具有特定电学性能的材料,如硅锗合金。

3. 合金化的应用案例3.1 钢材中的合金化钢是一种由铁和碳组成的合金材料,通过在钢中添加其他金属或非金属元素,可以改变钢材的性能。

常见的钢材合金化应用包括: - 不锈钢:通过在钢中添加铬、镍等元素进行固溶体合金化,使钢具有耐腐蚀性能; - 高速钢:通过在钢中添加钨、钼等元素进行固溶体合金化,使钢具有高温硬度和耐热性能; - 合金结构钢:通过在钢中添加硅、锰等元素进行化合物合金化,使钢具有特定的力学性能。

3.2 铝合金中的合金化铝合金是由铝为基体,通过与其他金属形成固溶体合金或化合物合金进行合金化改性的材料。

合金化原理

合金化原理

1、影响加热速度的因素有哪些?为什么?答:(1)加热方法(加热介质)的不同。

由综合传热公式Q=а(T介-T工)得知,当加热介质与被加热工件表面温度差(T 介-T工)越小,单位表面积上在单位时间内传给工件表面的热量越小,因而加热速度越慢。

(2)工件在炉内排布方式的影响。

工件在炉内的排布方式直接影响热量传递的通道,例如辐射传递中的挡热现象及对流传热中影响气流运动情况等,从而影响加热速度。

(3)工件本身的影响。

工件本身的几何形状、工件表面积与其体积之比以及工件材料的物理性能(C、λ、γ等)直接影响工件内部的热量传递及温度,从而影响加热速度。

同种材料制成的工件,当其特征尺寸s与形状系数k的乘积相等时,以同种方式加热时则加热速度相等2、回火炉中装置风扇的目的是什么?气体渗碳炉中装置风扇的目的是什么?答:回火炉中装置风扇的目的是为了温度均匀,避免因为温度不均而造成材料回火后的硬度不均。

气体渗碳炉中装置的风扇的目的是为了气氛的均匀,避免造成贫碳区从而影响组织性能。

3、今有T8钢工件在极强的氧化气氛中分别与950度和830度长时间加热,试述加热后表层缓冷的组织结构,为什么?答:根据题意,由于气氛氧化性强,则炉火碳势低。

在950℃长时间加热时,加热过程中工件表面发生氧化脱碳。

工件最外层发生氧化反应,往里,由于950℃高于Fe-C状态图中的G点,所以无论气氛碳势如何低,脱碳过程中从表面至中心始终处于A状态,缓冷后,由表面至中心碳浓度由于脱碳和扩散作用,碳含量依次升高直至0.8%,所以组织依次为铁素体和珠光体逐渐过渡到珠光体,再至相当于碳含量为0.8%的钢的退火组织(P+C)。

当工件在830℃加热时,温度低于G点,最外层依然会发生氧化反应。

往里,工件将在该温度下发生脱碳。

由于气氛氧化性极强,则碳势将位于铁素体和奥氏体的双相区,所以工件发生完全脱碳。

由外及里的组织在缓冷后依次是铁素体,铁素体加珠光体,珠光体加渗碳体。

4、今有一批ZG45铸钢件,外形复杂,而机械性能要求高,铸后应采用何种热处理?为什么?答:实现应该采用均匀化退火,以消除铸件的偏析和应力(如果偏析不严重,也可以采用完全退火。

《金属材料学》各章小结

《金属材料学》各章小结

图1 钢合金化原理、主线、核心和设计思路2、结构钢复习小结表1 典型结构钢的特点、应用及演变横向图2 材料成分、工艺、组织、性能间的关系3、合金工具钢复习小结表2 典型工具钢的特点、应用及演变图2 铸铁成分、工艺、组织、性能关系图3 铝合金分类和性能特点总复习提要一、主线、核心和“思想”主线:零件服役条件→技术要求→选择材料→强化工艺→组织结构→最终性能→应用、失效。

寻求最佳方案,充分发掘材料潜力。

(1)同一零件可用不同材料及相应工艺。

例:调质钢符合淬透性原则可代用,柴油机连杆螺栓可用40Cr调质,也可用15MnVB;工模具钢,CrWMn、9SiCr、9Mn2V等钢在有些情况下也可考虑代用。

(2)同一材料,可采用不同的强化工艺。

例:60Si2Mn,有常规中温回火,也可等温淬火;T10钢,淬火方法有水、水-油、分级等。

根据不同零件的服役条件,考虑改进工艺,以达到提高零件寿命的目的。

强化工艺不同,组织有所不同,但都能满足零件的性能要求。

通过分析、试验,可得到最佳的强化工艺。

考虑问题不可呆板、机械、照搬书本,不要认为中C就是调质,低合金超高强度钢就是用低温回火工艺。

弹簧钢就是中温回火?其实,60Si2Mn有时也可用作模具。

某些低合金工具钢也可做主轴,GCr15也可制作量具、模具等。

要学活,思路要宽。

提出独特见解,怎样才能做到?核心:核心是合金化基本原理。

这是材料强韧化矛盾的主要因素,要真正理解“合金元素的作用,主要不在于本身的固溶强化,而在于对合金材料相变过程的影响,而良好的作用只有在合适的处理条件下才能得到体现。

”应该主要从强化机理和相变过程两个方面来考虑。

掌握了合金元素的作用,才能更好地理解各类钢的设计与发展,才能更好地采用热处理等强化工艺。

从钢厂出来,钢成分已定。

如何在这基础上充分优化材料的使用性能,关键就在于热处理等处理工艺。

企业中的许多问题都是因为在材料的加工过程中的工艺存在问题。

总结一下常用合金元素的作用、表现是很有必要的。

金属材料学

金属材料学

第一章合金化原理碳钢中的常存杂质1.锰(Mn )和硅(Si )炼钢过程中随脱氧剂或者由生铁残存而进入钢中的。

Mn:可固溶,也可形成高熔点MnS(1600℃)夹杂物。

MnS在高温下具有一定的塑性,不会使钢发生热脆。

Si:可固溶,也可形成SiO2夹杂物。

Mn和Si是有益杂质,但夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。

2.硫(S)和磷(P)S:S和Fe能形成FeS,并易发生热脆(裂)。

P:可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。

磷可以提高钢在大气中的抗腐蚀性能。

S和P是有害杂质,但可以改善钢的切削加工性能。

3.氮(N)、氢(H)、氧(O)N:在α-铁中可溶解。

N可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。

H:在钢中和应力的联合作用将引起金属材料产生氢脆。

O:在钢中形成硅酸盐2MnO•SiO2、MnO•SiO2或复合氧化物MgO•Al2O3、MnO•Al2O3。

N、H、O是有害杂质。

碳钢的分类1.按钢中的碳含量1)按Fe-Fe3C相图分类亚共析钢0.0218%≤w c≤0.77% 共析钢w c=0.77% 过共析钢:0.77%<w c≤2.11%2)按钢中碳含量的多少分类低碳钢:w c ≤0.25% 中碳钢:0.25%<w c≤0.6% 高碳钢:w c>0.6%2.按钢的质量(品质),碳钢可分为(1)普通碳素钢(2)优质碳素钢(3)高级优质碳素钢(4)特级优质碳素钢3.按钢的用途分类,碳钢可分为(1)碳素结构钢(2)优质碳素结构钢(3)碳素工具钢(4)一般工程用铸造碳素钢4.按钢冶炼时的脱氧程度分类,可分为(1)沸腾钢F (2)镇静钢Z (3)半镇静钢b (4)特殊镇静钢TZ碳钢的用途1-普通碳素结构钢(1)主要用于一般工程结构和普通零件(2)热轧后空冷是这类钢通常的供货状态。

(3)普通碳素结构钢的牌号表示方法由代表屈服点的字母(Q)、屈服点数值、质量等级符号(A、B、C、D)及脱氧方法符号(F、b、Z、TZ)等四个部分按顺序组成。

合金化的一般原理

合金化的一般原理
(2—66)
பைடு நூலகம்
各种合金元素应根据它们与氧亲和力大小、熔点高低以及热物理特征,决定其合理 的加入时间、地点。对于不氧化元素,如镍、镧、铜等,他们与氧的亲和力都比较小, 在吹炼过程中不会发生氧化,而熔化时吸热又比较多,可在加料时或吹炼前期做冷却剂 加入。铜虽不会发生氧化,但易蒸发,最好在初期渣形成后再加。 对于弱氧化元素,如钨、铬等总是以铁合金加入。 对于易氧化的合金元素,如铝、钛、硼、硅、钒、锰、稀土金属等,它们既易被钢 中溶解的氧氧化,也易被渣中∑(FeO)氧化,所以大都加入缶内。 (本节完)
合金化的一般原理
加入某一种或几种合金元素,使其在钢中的含量达到成品规格的操作过程,通称合 金化。冶炼一般合金钢和低合金钢时,合金加入量的计算方法与脱氧剂基本相同,只是 由于加入的合金种类往往较多,因此必须考虑各种合计所带入的合金元素的量或( 2— 65)变为:
合金加入量
[% M ]规格中限 [% M ]残余 [% M ]其它合金带入 ) ( 出钢量( kg ) ㎏/炉 [% M ]合金 M

合金化作用

合金化作用

合金化作用合金化作用是指将两种或两种以上的金属或者金属与非金属元素混合在一起,通过特定的加热和冷却过程,使其形成一种新的材料。

合金化作用不仅可以改变材料的物理和化学性质,还可以提高材料的强度、硬度、耐腐蚀性和耐磨性等特性。

本文将探讨合金化作用的原理、应用和影响。

合金化作用是基于金属原子之间的固溶原理。

当两种或两种以上的金属原子混合在一起时,它们之间形成了一个晶格结构。

这个晶格结构能够有效地阻止原子的移动,并提供了额外的电子层,从而增加了材料的硬度和强度。

此外,合金化作用还能够改变晶格的尺寸和形状,从而影响材料的导电性、热传导性和磁性等特性。

合金化作用在工业和科学研究领域有着广泛的应用。

首先,合金化作用可以用来改善金属材料的性能。

例如,钢是一种由铁、碳和其他元素组成的合金,通过调整合金中碳的含量,可以获得不同强度和硬度的钢材。

此外,合金化作用还可以用来改善材料的耐腐蚀性能。

例如,不锈钢是一种由铁、铬和其他元素组成的合金,具有出色的耐腐蚀性能,可广泛应用于制造厨具和化工设备等领域。

合金化作用还可以用来改变材料的热处理性能。

热处理是指通过加热和冷却等过程,改变材料的晶格结构和性能。

合金化作用可以通过调整合金中的元素含量和加热温度,来控制材料的晶格结构和相变行为。

例如,铝合金是一种常见的合金材料,通过合金化作用可以获得良好的热处理性能,用于制造飞机和汽车等领域。

合金化作用还可以用来改变材料的电学和磁学性能。

通过合金化作用,可以调整材料中的电子结构和磁性原子的分布,从而影响材料的导电性、磁性和电磁性能。

例如,铁镍合金是一种具有良好磁性和磁记忆效应的合金材料,广泛应用于制造磁头和磁记录介质等领域。

合金化作用对材料性能的影响主要取决于合金中各元素的含量和相互作用。

通过调整合金中元素的含量和比例,可以获得不同性能的合金材料。

此外,合金化作用还受到加热和冷却过程的影响。

不同的加热温度和冷却速率会导致不同的晶格结构和相变行为,从而影响材料的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合金化原理
合金化是指将两种或两种以上的金属或非金属熔炼在一起,形成新的金属材料。

合金化的原理是通过改变金属的晶体结构,使其性能得到改善。

合金化可以提高金属的硬度、强度、耐热性、耐腐蚀性等性能,从而扩大金属的应用范围。

下面将从合金化的原理、方法和应用三个方面来详细介绍合金化的相关知识。

合金化的原理。

合金化的原理主要包括固溶强化、析出强化和相变强化三种方式。

固溶强化是
指将一种金属溶解在另一种金属的晶格中,形成固溶体,从而提高金属的硬度和强度。

析出强化是指在合金中形成一种或多种溶解度有限的化合物,这些化合物的形成可以提高合金的硬度和强度。

相变强化是指在材料中发生相变时,晶粒的形态和尺寸发生变化,从而提高材料的性能。

合金化的方法。

合金化的方法主要包括熔炼法、粉末冶金法和表面合金化法。

熔炼法是将两种
或两种以上的金属熔炼在一起,然后冷却凝固成合金。

粉末冶金法是将金属粉末混合后通过压制、烧结等工艺形成合金。

表面合金化法是将一种金属的表面覆盖上另一种金属,以改善金属的表面性能。

合金化的应用。

合金化广泛应用于航空航天、汽车制造、电子设备等领域。

在航空航天领域,
合金化可以提高材料的耐高温、耐腐蚀性能,从而保证飞机在极端环境下的安全飞行。

在汽车制造领域,合金化可以提高汽车零部件的强度和硬度,延长零部件的使用寿命。

在电子设备领域,合金化可以提高电子元器件的导电性能和耐磨性能,从而提高设备的性能和可靠性。

总结。

合金化是一种重要的金属材料改性方法,通过改变金属的组织结构和成分,可以显著提高金属材料的性能。

合金化的原理主要包括固溶强化、析出强化和相变强化三种方式,合金化的方法主要包括熔炼法、粉末冶金法和表面合金化法。

合金化广泛应用于航空航天、汽车制造、电子设备等领域,为各行业的发展提供了重要的支撑。

通过对合金化的原理、方法和应用的介绍,相信读者对合金化有了更深入的了解,也希望本文能够对相关领域的科研工作者和工程技术人员有所帮助。

合金化作为一种重要的金属材料改性方法,将在未来的发展中发挥越来越重要的作用。

相关文档
最新文档